用户名: 密码: 验证码:
玉米膜孔灌农田水氮分布特性和耗水规律试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节水农业发展的需求和由于施用氮肥而引起的地下水环境污染问题的日益突出,研究膜孔灌玉米的耗水规律和农田氮素的分布特性具有十分重要的科学价值和生产实践意义。目前,国内学者主要针对膜孔灌入渗特性、田面水流运动特性、灌水技术要素和灌溉质量评价等进行了一系列研究工作,而这些研究均未涉及膜孔灌的农田氮素分布及作物耗水规律问题。本论文在查阅和总结国内外膜孔灌和土壤氮素运移等相关文献资料的基础上,结合国家自然科学基金项目“膜孔灌农田氮素运移特性与灌溉质量评价方法研究”,采用室外小区试验和理论研究相结合、以试验为主的技术路线,研究了玉米膜孔灌农田水氮分布特性和耗水规律,主要研究成果如下:
     (1)对膜孔灌不同灌溉制度的农田土壤水氮分布特性进行了试验研究。结果表明:不同灌溉制度的农田土壤水氮在0~60cm土层季节性动态变化较大,土壤硝态氮在膜孔中心垂直剖面各生育期均存在一个集中分布区,距膜孔中心水平距离越远,分布区浓度峰越小。土壤垂直剖面硝态氮季节性含量受灌水次数、灌水定额的影响,在近施肥点影响较大,远施肥点影响较小。灌水次数越多、灌水定额越大,土壤表层硝态氮季节性减小的越快,硝态氮减小的土层越深,深层80~100cm硝态氮累积量越大,灌水定额对其的影响较灌水次数的影响大。本文试验条件下,在玉米生育期中以灌水4次、灌水定额为524.7m~3/hm~2为最佳。
     (2)研究了膜孔灌农田土壤水氮分布与氮素转化特性。结果表明:膜孔灌具有很好的保墒特性,通过覆膜减缓了传统畦灌土壤表层含水率随季节的突变现象,较畦灌节水20.0%左右。膜孔灌消除了畦灌因土壤强烈蒸发对尿素水解及铵态氮硝化的影响,膜孔灌尿素水解速度均匀平缓,本文试验条件下农田土壤中尿素的水解和铵态氮的硝化在20天基本完成。膜孔灌土壤硝态氮主要分布在膜孔附近,膜孔中心垂直剖面土壤硝态氮分布比较均匀,土壤硝态氮含量呈先增加后减小的分布形状;而畦灌的分布则比较集中,在近施肥点垂直剖面土壤硝态氮含量较高,远施肥点很小。本文试验条件下,膜孔灌较畦灌相比,80~100cm深层硝态氮淋溶损失减小27.0%。
     (3)研究了玉米膜孔灌耗水规律和水分生产效率。结果表明:膜孔灌玉米生育期中,灌水定额越大、灌水次数越多,玉米生育期耗水量越大。耗水量受灌水次数的影响大小主要体现在增加灌水次数的时间上,受灌水定额的影响作用较灌水次数的大;在一定的灌溉定额和灌水次数条件下,玉米生育期耗水量和耗水强度均与灌水量和灌水次数之间符合线性函数关系;揭示了玉米生育期累积耗水量和耗水强度与生育期天数之间分别满足对数函数和一元二次函数关系;膜孔灌玉米产量、土壤水分生产效率与耗水量之间均满足一元二次函数关系。本文试验条件下,膜孔灌较畦灌相比,水分生产效率提高23.3%,增产15.9%。
     (4)研究了玉米膜孔灌的灌溉制度。结果表明:灌水次数和灌水定额对玉米生物指标的影响为在灌水次数较少、灌水定额较小时影响显著,苗期增加灌水对玉米株高和径粗的影响很大,使玉米的抗倒伏能力减小。玉米进入抽穗期生殖生长基本停止,收获后玉米株高、叶面积与抽穗期基本相同;建立了抽穗期玉米株高与同期累积耗水量之间的一元二次函数关系;通过理论分析计算,得到本文试验条件下玉米的高效用水灌溉定额为2111.97m~3/hm~2真,通过试验从节水和高产两方面综合考虑,得到玉米最佳灌溉制度为:灌溉定额为2098.95m~3/hm~2,灌水4次,分别于拔节期灌水2次,抽穗期灌水1次,灌浆期灌水1次,灌水定额为524.7m~3/hm~2。
It has an important scientific value and productive meanning to studying the maize water consumption law and the distribution of water-nitrigen in farmland under film hole irrigation as the development of water-saving agriculture and the obvious problem of groundwater contamination. At present, home researchers have done a series of research on film hole irrigation, including infiltration characteristics, water movement characteristics on field surface, technic factors of irrigation and irrigation quality evaluation, but these studies did not deal with the distribution characteristics of field nitrogen and crop water consumption law. This thesis based on the related literature of film hole irrigation and nitrogen transport from the home and abroad, combined with the National Natural Science Fundation of China "Study on nitrogen transport characteristics and appraisal method on irrigation quality under film hole irrigation in fertilization farmland", this paper use the technical route included both outdoor experiment and theoretical analysis, and mainly on the experiment, study the water-nitrogen distribution characteristics and water consumption law under film hole irrigation in maize field. The main research results are as follow:
     (1) Study on the distribution characteristics of farmland water-nitrogen of different irrigation schedule. The results shown that the water and nitrogen seasonal changes obliviously in 0~60cm soil layers, and in each growing period, the nitrate nitrogen has a concentrated distribution area in soil profile, and the concentration peak reduced with the increasing of horizontal distance away from film hole center. The effects of irrigation frequency and irrigation quota to soil profile nitrate nitrogen more obvious in near fertilization point than further. The greater of irrigation quota and irrigation frequency, the faster of nitrate nitrogen seasonal reduced and deeper the reduced depth, and the nitrate nitrogen cumulative amount larger in 80~100cm depth, the irrigation quota has a largger effect than irrigation frequency. Irrigation four times, irrigation quota 524.7m~3/hm~2 is the best irrigation treament in maize growing period.
     (2) Study on the water-nitrogen distribution and nitrogen transformation characteristics under film hole irrigation. Film hole irrigation has a very good characteristics of moisture preservation, slow down the soil moisture sharply change phenomenon of border irrigation by film-covered, and saving water about 20.0%. The film hole irrigation eliminate the effect of intensive evaporation of border irrigation to nitrogen transformation, urea transformation rate even and gentle, and completed in 20 days after fertilization. In film hole irrigation, the nitrate nitrogen mainly distribution near the film hole and relative uniformity in vertical soil profile. In border irrigation, the nitrate nitrogen distribution concentrated in vertical soil profile near fertilization point. Compared with border irrigaion, nitrate nitrogen leaching amount reduced 27.0% in film hole irrigation.
     (3) Study on water consumption law and water productive efficiency of maize under film hole irrigation. The water consumption amount increases with the irrigation quota and irrigation frequency, and the effect of irrigation frequency to water consumption amount mainly depend on the irrigation time, and it has a little effect compared with irrigation quota; In certain irrigation quota and frequency, the water consumption amount and water consumption intensity all have a linear functional relationship with irrigation amount and frequency; The cumulative water consumption amount and water consumption intensity separately has a logarithmic and quadratic function relationship with maize growing days; The maize yield and water productive efficiency has a quadratic function relationship with water consumption amount. Compared with border irrigaion, productive efficiency of water promote 23.3%, increasing yield 15.9% in film hole irrigation.
     (4) Study on maize irrigation schedule under film hole irrigation manner. The effect of irrigation quota and frequency to maize biological index has an obvious influence in low irrigation quota and few irrigation frequencies. Increasing irrigation in seeding period has a big influence to maize height and stem diameter, decreasing the resistance lodging ability. The maize height has a quadratic function with cumulative water consumption in earing period; By calculation, obtain the irrigation quota (2111.973m~3/hm~2) in high water use efficiency; By experiment obtain the optimal irrigation schedule: total irrigation quota, 2098.95 m~3/hm~2, irrigation frequency, four times, irrigation two times in jointing period, one time in earing period, one time in filling period, and irrigation quota, 524.7m~3/hm~2 .
引文
[1]姜恒,杨绍安.对我国粮食安全战略的思考[J].生产力研究,2006,(7):173-175.
    [2]周蕙秋,王常君.我国粮食综合生产能力的现状、存在问题及对策选择[J].经济管理论坛,2005,(20):74.
    [3]杨依天.我国粮食生产面临的问题[J].知识在线,2006,(1):23-24.
    [4]李应海,田军仓.膜上灌技术的研究进展[J].宁夏农学院学报,2003,24(4):96-99.
    [5]张光辉,蒋定生,邵明安.节水灌溉一膜上灌研究综述[J].水土保持通报,1997,17(7):93-98.
    [6]田军仓,韩丙芳,王炳亮.精细地面灌溉技术的研究进展[J].宁夏农学院学报,2002,23(3):75-76.
    [7]曹志洪.科学施肥与我国粮食安全保障[J].土壤,1998,(2):57-63.
    [8]张春伦,朱兆明,胡思民.缓解尿素肥效及氮肥利用率研究[J].土壤肥料,1998,(6):17.
    [9]朱兆良.我国土壤氮素研究工作的现状与展望[M].北京:科学出版社,1996.
    [10]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社.1992,6-11,111-115,145,164-303
    [11]Hagin J,and Lowengart A.Fertigation State of the art Proceeding[J].International Fertilizer.Society,York,UK,1999,(29):1-23.
    [12]Pier J W,Doerge T A.Nitrogen and water interaction in trickle irrigation watermelon[J].Soil Sci.Soc.AM,1995,59(1):145-150.
    [13]张建君.滴灌施肥灌溉土壤水氮分布规律的试验研究及数学模拟[D].北京:中国农业科学研究院,2002.
    [14]董玉云,费良军.膜孔灌充分供水点源入渗研究进展[J].干旱地区农业研究.2005,23(6):200-203.
    [15]谭奇林.充分供水条件下点源入渗实验研究[D].西安:西安理工大学,1998.
    [16]费良军,吴军虎,王文焰等.充分供水条件下单点膜孔入渗湿润特性研究[J].水土保持学报,2001,15(5):137-140.
    [17]缴锡云.膜孔灌溉理论与技术要素的试验研究[D].西安:西安理工大学,1999.
    [18]吴军虎.膜孔灌溉入渗特性与技术要素试验研究[D].西安:西安理工大学,2000.
    [19]李发文.膜孔灌溉交汇入渗特性及其影响因素研究[D].两安:西安理工大学,2002.
    [20]刘世君.膜孔多向交汇入渗湿润体特性实验研究[J].地下水,2004,26(1):65-68.
    [21]费良军,李发文,吴军虎.膜孔灌单向交汇入渗湿润体特性影响因素研究[J].水利学报,2003,(5):62-68.
    [22]李发文,费良军.膜孔多向交汇入渗特性及其影响因素研究[J].水土保持学报,2003,17(4):105-109.
    [23]聂新山,韩俊.膜孔渗析速度初探[J].水土保持学报,1996,(3):18-22.
    [24]门旗,米孟恩,陈祖森.膜孔灌溉评价方法的研究[J].灌溉排水,1996,15(1):29-33.
    [25]门旗,米孟恩,陈祖森等.膜孔沟灌水力特性和基本参数的研究[J].节水灌溉,1997,(4):8-22.
    [26]吴军虎,费良军,王文焰.膜孔灌溉单孔入渗特性研究[J].水科学进展,2001,(3):307-311.
    [27]费良军,李发文.膜孔灌单向交汇入渗数学模型研究[J].农业工程学报,2003,(3):68-71.
    [28]费良军,朱兴华,吴军虎.膜孔灌多向交汇入渗减渗特性和数学模型研究[J].水利学报,2006,36(1):104-108.
    [29]程东娟,费良军,尹娟.膜孔灌单向交汇入渗减渗量和交汇入渗界面面积试验研究[J].农业工程学报,2007,23(6):105-108.
    [30]费良军,谭奇林,王文焰.由膜孔灌水流推进和消退资料推求点源入渗参数[J].灌溉排水,1999,18(1):7-9.
    [31]吴军虎,费良军,王运生等.由膜孔畦灌水流推进及水深资料推求点源入渗参数[J].西安理工大学学报,1999,15(4):95-98.
    [32]费良军,程东娟,赵新宇.由膜孔灌田面灌水参数推求基于Kostiakov模型的点源入渗参数[J].农业工程学报,2007,23(3):88-90.
    [33]朱兴华,费良军,吴军虎.单膜孔肥液点源入渗水分特性研究[J].灌溉排水学报,2005,24(6):6-9.
    [34]董玉云,费良军,穆红文.膜孔单点源肥液入渗运移特性研究[J].沈阳农业火学学报,2006,37(1):70-73.
    [35]费良军,程东娟,朱兴华.单膜孔点源肥液入渗水氮分布特性试验研究[J].农业工程学报,2006,22(10):12-15.
    [36]董玉云.膜孔入渗土壤水氮运移特性试验与数值模拟[D].西安:西安理工大学,2007.
    [37]朱兴华.施肥条件下膜孔自由入渗水、氮运移特性实验研究[D].西安:西安理工大学,2006.
    [38]费良军,朱兴华.不同施肥方式的单膜孔点源入渗水肥运移特性研究[A].中国农业工程学会2005年学术年会论文集,259-262.
    [39]董玉云,费良军,穆红文.肥液浓度对单膜孔入渗No_3~--N运移特性影响的室内试验研究[J].农业工程学报,2006,22(5):204-206.
    [40]穆红文.膜孔灌自由入渗氮素运移转化特性试验及数值模拟[D].西安:西安理工大学,2007.
    [41]吕谋超,件峰,彭贵芳等.地下和地表滴灌土壤水分运动的室内试验研究[J].灌溉排水,1996,15(1):42-44.
    [42]陈渠昌,吴忠渤,佘国英等.滴灌条件下沙地土壤水分分布与运移规律[J].灌溉排水,1999,18(1):28-31.
    [43]王全九,王文焰,吕殿青等.膜下滴灌盐碱地水盐运移特征研究[J].农业工程学报,2000,16(4):54-57.
    [44]李光永,曾德超,段中锁等.地埋点源滴灌土壤水分运动规律的研究[J].农业工程学报,1996,12(3).66-71
    [45]王振华,郑旭荣,仁杰等.灌水频率对地下滴灌线源入渗土壤水分运动规律影响的试验研究[J].水利学报,2007,增刊:299-302.
    [46]汪志荣,王文焰,王全九等.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,(6):39-43.
    [47]孙海燕,王全九.滴灌湿润体交汇情况下土壤水分运移特征的研究[J].水土保持学报,2007,21(2).115-118
    [48]Goldberg D.Drip irrigation principles,design and agricultural practices[M].Drip irrigation scientific publications.Israel,1976.
    [49]Jury W.A.and Earl K.D.Water movement in bare and cropped soil under isolated trickle emitters:I analysis of bare soil experiment[J].Soil Sci.Soc.Amer.Proc.1977,1:852-856.
    [50]J.R.Philip.Steady infiltration from buried point sources and spherical cavities[J].Water Resources Research,1968,5:1039-1047.
    [51]R.A.Wooding.Steady Infiltration From a Shallow Circular Pond[J].Water Resources Research,1968,6:1259-1273.
    [52]P.A.C.Raats.Steady infiltration from point sources,cavities and basins[J].Soil Sci.Soc.Am.Proc.1971,35:689-694.
    [53]D.Lockington,J.Y.Parlange and A.Surin.Optimal prediction of saturation and wetting fronts during trickle irrigation[J].Soil Sci.Soc.Am.J,1984,48:488-494.
    [54]J.Ben-Asher,Ch.Charach.Infiltration and water extraction from trickle irrigation source,the effective hemisphere model[J].Soil Sci.Soc Am.J,1986,50.
    [55]Warrick A W.Point and line infiltration calculation of the wetted soft surface[J].Soil Sci.Soc.Am.J,1985,49:1581-1583.
    [56]A.Brandt,E.Bresler,I.Ben-Asher.Infiltration from a trickle source mathematical models[J].Soil Sci.Soc.Am.Proc,1971,35:675-682.
    [57]Sen H S,Paul D.A simple numerical solution for two-dimensional moisture distribution under trickle irrigation[J].Soil Sci,1992.,154:350-356.
    [58]Andrea N A,Tariq N K.Scott H.Soil-water distribution under trickle source[J].Journal of Irrigation and Drainage Engineering,1993,119(3):484-500.
    [59]付琳.滴灌时的土壤浸润状况[J].灌溉排水,1983,2(3):36-45.
    [60]刘晓英,杨振刚,王天俊.滴游条件下土壤水分运动规律的研究[J].水利学报,1990,1:11-21.
    [61]李光永,曾德超,郑耀全.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998,(11):21-25.
    [62]池宝亮,黄学芳,张冬梅等.点源地下滴灌土壤水分运动数值模拟及验证[J].农业工程学报,2005,21(3):56-58.
    [63]周青云,康绍忠.葡萄根系分区变替滴灌的土壤水分动态模拟[J].水利学报,2007,38(10): 1245-1251.
    [64]B.Bar-Yosef and M.R.Shelkholslami.Distribution of water and ions in soils irrigated and fertilized from a trickle source[J].Soil Sci.Soc.Am.J,1976,40:575-582.
    [65]Laher M.and Avnimelech Y.Nitrification inhibition in drip irrigation systems[J].Plant and Soil,1980,55:35-42.
    [66]Edwards J.H.,Bruce R.R.,Horton B.D.,Chesness J.L.and Wehunt E.J.Soil cation and distribution as affected by NH4N03 applied through a drip irrigation system[J].J.Amer.Soc.Hort.Sci.,1982,107(6):1142-1148.
    [67]Feigin A.,Letey J,and Jarrell W M.Nitrogen utilization efficiency by drip irrigated celery receiving preplant or water applied N fertilizer[J].Agronomy Journal,1982,74:978-983.
    [68]Kwong K.F.N.K.,and Deville J.Application of 1 SN-labbelled urea to sugar cane through a drip-irrigation system in Mauritius[J].Fertilizer Research,1994,39:223-228.
    [69]Bharambe P.R.,Narwade S.K.,Oza S.R.,Vaishnava V.G.,Shelke D.K.,and Jadhav G.S.Nitrogen management in cotton through drip irrigation[J].Journal of the Indian Society of Soil Science,1997,45(4):705-709.
    [70]Hajrasuliha S.,Rolston D.E.,and Louie D.T.Fate of 15N fertilizer applied to trickle-irrigated grapevines[J].Am.J.Enol.Vitic,1998,49:191-198.
    [71]Khan Akbar Ali,Yitayew Muluneh,and Warrick A.W.Field evaluation of water and solute distribution from a point source[J].Journal of Irrigation and Drainage Engineering,ASCE,1996,122(4):221-227.
    [72]侯红雨.温室滴灌条件下氮素转化运移规律研究:[硕士学位论文][D].北京:中国农业科学院,2002.
    [73]Riga E,Charpentier S.Simulation of nitrogen dynamics in an alluvial sandy soil with drip fertigation of apple trees[J].Soil Use and Management,1999,15:34-40.
    [74]Sharrnasarkar F.C.,Sharmasarkar S.,Zhang R.,Vance G.E,Miller S.D.,and Reddy M.J.Modeling nitrate movement in sugar beet soils under flood and drip irrigation[J].ICID Journal,2000,49(1):43-54.
    [75]Bristow K.,Cote C.M.,Thorburn P.J.and Cook F.J.Soil wetting and solute transport in trickle irrigation systems[C].6t' International Micro-irrigation Technology for Developing Agriculture conference Papers,2000.
    [76]程先军,许迪.地下滴灌土壤水运动和溶质运移的数学模型及验证[J].农业工程学报,2001,17(6):1-4.
    [77]袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱区研究,2000,17(4):46-52.
    [78]杨治平,陈明昌,张强.不同施肥措施对保护地黄瓜养分利用效率及土壤氮素淋火的影响[J].水土保持学报,2007,21(2):57-60.
    [79]侯品,陈振楼,许世远等.大田蔬菜地春季硝酸氮淋溶特征研究[J].土壤通报,2006,37(4):691-694.
    [80]李世清,李生秀.半干旱地区农用生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242.
    [81]叶优良,李隆,张福锁.灌溉对大麦/玉米田带土壤硝酸氮累积和淋失的影响[J].农业工程学报,2004,20(5):105-109.
    [82]张玉铭,张佳宝,陈效民.华北太行山前平原农田土壤水分动态与氮素的淋溶损失[J].士壤学报,2006,43(1):17-25.
    [83]Jose A.A mador·Richard.Hull.Erikal.Patenaude·Jone T.Bushoven.Josef H.GOrres.Potential Nitrate leaching Under Common Landscaping Plants[J].Water Air Soil Pollute,2007,185:323-333.
    [84]Zhao-Zhong Feng,Xiao-Ke Wang,Zong-Wei Feng.Soil N and Salinity Leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District,China[J].Agriculture Water Management,2005,71:131-143.
    [85]毕经伟,张佳宝,陈效民.农田土壤中士壤水渗漏与硝态氮淋失的模拟研究[J].灌溉排水学报,2003,22(6):23-26.
    [86]马军花,任理.冬小麦生育期农田尺度下土壤硝态氮淋失动态的数值模拟[J].生态学报,2004,24(10):2289-2299.
    [87]胡克林,李宝国,陈德立等.预测农田水分渗漏和氮素淋失的两种模型比较[J].水科学进展,2004,15(1):87-93.
    [88]Iris Bechtold,Sigrid Kohne,Mohamed A.Youssef ect.Simulating nitrogen leaching and turnover in a subsurface-drained grassland receiving animal manure in northern Germang using DRAINMOD-N Ⅱ[J].Agriculture Water Management,2007,93:30-44.
    [89]A.I.Gardenas,J.W.Hopmans,B.R.Hanson 等.Two-dimensional moddling of nitrate leaching for various fertigation scenarious under micro-irrigation[J].Agriculture Water Management,2005,74:219-242.
    [90]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,(9):1-6.
    [91]Muneshwar Singh,Kundu S,Tripathi A K,etal.Influence of modified urea materials andmethods of application or ammonia Volatilization loss[J].Journal of the India Society of Soil Science,1996,44(3):512-514.
    [92]Rachhpal-Singh,Nye P H.A model of ammonia volatilization from applied urea,IV Effect of method of urea application[J].Journal of soil Science,1988,39:9-14.
    [93]丁洪,王跃思,项虹艳等.菜田氮素反硝化损失与N_2O排放的定量评价[J].园艺学报,2004,36(6):762-766.
    [94]项虹艳,朱波,王玉英等.氮肥对紫色十夏季玉米N2O排放和反硝化损失的影响[J].浙江大学学报(农业与生命科学版),2007,33(5):574-583.
    [95]丁洪,王跃思,李卫华.玉米-潮土系统中不同氮肥品种的反硝化损失与N_2O排放量[J].中国农业 科学,2004,37(12):1886-1891.
    [96]邹国元,张福锁,巨晓棠等.冬小麦-夏玉米轮作条件下氮素反硝化损失研究[J].中国农业科学,2004,37(10):1492-1496.
    [97]E.J.Bateman "E.M.Baggs.Contributions of nitrification and denitrification to N20 emissions from soils at different water-filled pore space[J].Biol Fertil Soil,2005,41:379-388.
    [98]Bachchhav S M.Fertigation in India-A case study.In Dahlia Greidinger International Symposium on Fertigation[J].Technion-IIT,Haifa,Israel,1995,11-24.
    [99]魏新平,王文焰.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998,17(4):58-63.
    [100]武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究[J].灌溉排水,1996,15(4):10-15.
    [101]冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响[J].农业环境保护,1996,15(6):277-279.
    [102]冯绍元,王凤新,黄冠华.喷灌条件下花生水肥耦合效应的田间试验研究[J].农业工程学报,1998,(4):98-102.
    [103]武晓峰,张思聪,唐杰.节水灌溉条件下冬小麦生长期田间氮素迁移转化试验[J].清华大学学报(自然科学版),1998,38(1):92-95.
    [104]Jiusheng Li,Bei Li,Minjie Rao.Spatial and temporal distributions of nitrogen and crop yield as affected by nonuniformity of sprinkler fertigation[J].Agriculture Water Management,2005,76:160-180.
    [105]Li Jiusheng,Zhang Jianjun,Ren Li.Nitrogen Distributions in Soil Under Fertigation From a Point Source[J].Transactions of the CSAE,2002,18(5):61-66.
    [106]赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    [107]刘方春,聂俊华,刘春生.不同施肥措施对土壤硝态氮垂直分布的特征影响[J].土壤通报,2005,36(1):50-53.
    [108]郭大应,熊清瑞.灌溉土壤硝态氮运移与土壤湿度的关系[J].灌溉排水,2001,20(2):66-68.
    [109]Jean-Michel Harmand.Hector Avila.Etienne Dambrine 等.Nitrogen dynamics and soil nitrate retention in a coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica[J].Biogeochemistry,2007,85:125-139.
    [110]T.B.S.Rajput,Neelam Patel.Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments[J].Agriculture Water Management,2005,76:160-180.
    [111]黄元仿,李韵珠,陆锦文.田间条件下十壤氮素运移的模拟模型[J].水利学报,2006,79:293-311
    [112]刘培斌,丁跃元,张瑜芳.田间一维饱和一非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490-498.
    [113]冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟[J].水利学报,1996,(8):8-15.
    [114]李久生,张建君,饶敏杰.滴灌施肥灌溉的水氮运移数学模拟及试验验证[J].水利学报,2005,36(8):932-937.
    [115]M.R.Cameira,R.M.Femando,L.R.Ahuja 等.Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region[J].Agriculture Water Management,2007,90:121-136.
    [116]郭金强,危常州,侯振安等.北疆棉花膜下滴灌耗水规律的研究[J].新疆农业科学,2005,42(4):205-209.
    [117]郑旭荣,胡晓棠,李明思.棉花膜下滴灌田间耗水规律的试验研究[J].节水灌溉,2000,(5):25-27.
    [118]刘建军,陈燕华,李明思.膜下滴灌棉花植株耗水率与土壤水分的关系[J].棉花学报,2002,14(4):200-203.
    [119]李富先,杨举芳,张玲等.棉花膜下滴灌需水规律和最大耗水时段及耗水量的研究[J].新疆农业大学学报,2002,25(3):43-47.
    [120]孔繁宇,胡同军.棉田地下滴灌土壤水分变化及需水规律初探[J].农业工程科学,2005,21(1):323-325.
    [121]万素梅,胡守林,翟云龙.膜下滴灌棉花土壤水分动态变化研究[J].水土保持研究,2007,14(1):90-91.
    [122]李思明,马富裕,郑旭荣等.膜下滴灌棉花田间需水规律研究[J].灌溉排水,2002,2l(1):58-60.
    [123]李明思,康绍忠,杨海梅.地膜覆盖对滴灌土壤湿润区及棉花耗水与生长的影响[J].农业工程学报,2007,23(6):49-54.
    [124]刘永新,田长彦,马英杰.南疆膜下滴灌棉花耗水规律以及灌溉制度研究[J].干旱地区农业研究,2006,24(1):108-112.
    [125]樊向阳,齐学斌,郎旭东等.不同覆盖条件下春玉米田耗水特性及提高水分利用率研究[J].干旱地区农业研究,2002,20(2):60-64.
    [126]李全起.不同种植模式下冬小麦夏玉米耗水特性研究[D].山东:山东农业大学,2006.
    [127]张海林,陈阜,秦耀东等.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40.
    [128]于舜章.精准灌溉条件下种植方式对作物耗水规律的影响[D].山东:山东农业大学,2005.
    [129]周凌云,徐梦雄.秸秆覆盖对麦田耗水量于水分利用率影响的研究[J].士壤通报,1997,28(5):205-206.
    [130]李全起,陈雨海,于舜章等.灌溉条件下秸秆覆盖麦田耗水特性研究[J].水土保持学报,2005,19(2):130-132.
    [131]张振华,蔡焕杰,杨润亚.基于CWSI和实际耗水量的膜下滴灌作物需水量研究[J].中国农村水利水电,2005,(3):4-6.
    [132]Guo-Wei Xu,Zi-Chang Zhang,Jian-Hua Zhang 等.Much improved water use efficiency of rice under non-flooded mulching cultivation[J].Journal of Integrative Plant Biolgy,2007,49(10):1527-1534.
    [133]Gouranga Kar,Ashwani Kunar.Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India[J].Agriculture Water Management,2007,94:109-116.
    [134]吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋吸效应影响的研究[J].植物营养与肥料科学,1999,5(4):307-315
    [135]程维新,胡朝炳,张兴权.农田蒸发与作物耗水量研究[M].北京:农业出版社,1993,111-127.
    [136]龚绍先.粮食作物与气象[M].北京:北京农业大学出版社,1988,253-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700