氮素对温室黄瓜花后叶片光合作用和叶绿素荧光参数影响的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是作物产量和品质形成的基础,直接受叶片氮素含量的影响,叶片光合作用速率是判断和分析作物氮素营养状况的重要指。叶绿素荧光技术是以光合作用理论为背景反映光合作用内在机理的新兴技术,它以测量简便、反应灵敏、获得结果快速和对作物无破坏性等特点被广泛应用于作物对逆境响应机理的分析,在作物氮素营养诊断上具有较大的潜力。因此利用叶片光合速率的测定和叶绿素荧光技术进行温室黄瓜叶片氮素营养状况的定量分析具有重要的理论和实践意义。本研究以温室水果型黄瓜戴多星(Cucumis Sativus cv.Deltastar)和申绿72(Cucumis sativus cv.Shenlv72)为试验材料,于2003年11月-2005年11月分别在上海Venlo型玻璃温室、PVC连栋温室以及连栋塑料大棚内进行了不同定植期和不同氮素处理水平的栽培试验,通过黄瓜功能叶片的光合作用速率测定、叶绿素荧光参数测定、植株养分化学分析以及温室内小气候数据采集,建立了适合不同光温条件下温室黄瓜叶片氮浓度与叶片最大总光合速率的定量关系,建立了适合不同温度条件的叶片氮浓度与叶绿素荧光参数定量关系以及叶绿素荧光参数与叶片最大总光合速率定量关系。并用与建立模型相独立的数据对模型进行了检验,结果表明模型能较好预测温室黄瓜叶片光合作用速率、叶绿素荧光参数和叶片氮素含量。主要结果如下:
     首次系统分析了不同定植期的光温条件差异对黄瓜叶片氮素含量的影响,利用定植后生理发育时间和定植到初果期以及初果期到盛果期的日平均辐热积定量描述了光温条件和生育期对温室黄瓜叶片氮素含量的影响。结果表明,黄瓜叶片氮素含量随定植后生理发育时间的变化在定植到初果期表现为负指数递增,而在初果期到生育末期表现为负指数递减,而且指数方程参数与相应的日平均辐热积表现出正弦函数关系。因此可以根据温室内温度和太阳辐射来计算定植后的生理发育时间和相应的日平均辐热积,进而求算不同光温条件下温室黄瓜叶片适宜氮浓度及其随生育期的变化(N%_(opt)(t))。通过实测的叶片氮浓度与相应定植期的叶片适宜氮浓度之比值求算,消除了不同定植期的光温条件差异对叶片氮素含量的影响,建立了适合不同光温条件下温室黄瓜叶片氮素含量与叶片光合作用速率关系的模拟模型。用与建模相独立的试验数据对模型进行检验,结果表明该模型对温室黄瓜叶片最大总光合速率的预测结果与实测结果之间基于1:1直线的决定系数R~2和回归估计标准误差RMSE分别为0.83和1.56μmol CO_2·m~(-2)·s~(-1)。
     首次利用光合作用温度三基点定量分析温室内1.5m高空气温度对黄瓜叶片叶绿素荧光参数的影响,结果表明,无氮胁迫处理的黄瓜叶片光适应下PSII的实际量子效率(ΦPSⅡ)随温室内1.5 m高空气温度的变化表现为三段函数关系。用试验数据拟合得到温度大于22℃时的方程参数,由此计算不同温度条件下(大于22℃)温室黄瓜叶片ΦPSⅡ的适宜值。在此基础上,定量分析了不同施氮水平的黄瓜叶片氮素含量与叶片叶绿素荧光参数的关系。结果表明,消除光温条件差异影响的黄瓜叶片氮素含量与消除温度差异影响的叶片ΦPSⅡ表现出负指数递增关系,用与建模相独立的试验数据对模型进行检验,结果表明模型对黄瓜叶片光适应下PSⅡ的实际量子效率(ΦPSⅡ)的模拟结果与1:1直线间的R~2为0.86,预测的回归估计标准误(RMSE)为0.05。黄瓜叶片氮素含量与叶片叶绿素荧光参数的定量关系是实现叶绿素荧光技术作为温室黄瓜叶片氮素胁迫诊断手段的前提。
     首次利用黄瓜叶片ΦPSⅡ随温室内1.5 m高空气温度变化的函数关系,定量分析了温室黄瓜叶片叶绿素荧光参数与叶片光合作用速率的关系。结果表明,黄瓜叶片ΦPSⅡ与叶片最大总光舍速率表现出负指数递增关系。在此基础上,初步建立了基于叶绿素荧光参数与叶片光合作用速率定量关系的温室黄瓜叶片氮素胁迫诊断模型。用模型估算黄瓜叶片最大总光合速率,再由叶片最大总光合速率估算叶片氮浓度的方法,并与建模相独立的试验数据相比较,结果表明,该模型可以较好预测温室黄瓜叶片氮浓度,预测结果与实测结果之间基于1:1直线的决定系数R~2和回归估计标准误差RMSE分别为0.66和0.175%。与直接由叶片光合作用速率测定来估算叶片氮素含量的胁迫诊断方法相比,本模型克服了叶片光合速率数据的测定因仪器价格昂贵,且操作程序复杂而不能在生产上进行实际运用的缺点,为温室黄瓜氮素胁迫诊断提供简便、快速和准确的监测手段。
     本研究建立的模型可以根据温室内温度和太阳辐射以及温室黄瓜叶片叶绿素荧光参数估算叶片光合作用速率或叶片氮素含量,与已有的温室黄瓜作物生长模型相结合,可以定量预测不同光温条件下氮素对温室黄瓜生长速率的影响,从而为不同定植期种植的温室黄瓜作物的氮肥优化管理提供理论依据和决策支持。
Photosynthesis and chlorophyll fluorescence parameters analyzed have been important tools for estimating crop biochemical contents (nitrogen, chlorophyll), and is becoming increasingly popular in recent years. In this study, a series of field experiments with greenhouse cucumber including different nitrogen treatments were carried out in a Venlo-type greenhouse, a multi-span PVC greenhouse, and a multi-span plastic greenhouse in Shanghai (E121.5°, N31.2°) from 2003 to 2005 to collect data for model development and validation. Leaf photosynthesis rate and leaf chlorophyll fluorescence parameters were measured with Li-6400 portable photosynthesis system and a modulated fluorometer (FMS-2 Hansatech, Norfolk, UK) using the saturation pulse method after the nitrogen treatments started, respectively. The objectives of this research were to quantify the effects of leaf nitrogen concentration on leaf photosynthesis rate of greenhouse cucumber under different radiation and temperature conditions, to determine the relationship between leaf nitrogen concentration and leaf chlorophyll fluorescence parameters, and the relationship between leaf photosynthesis rate and leaf chlorophyll fluorescence parameters, and to develop models for monitoring nitrogen status in greenhouse cucumber. This word would provide theoretical basis and key techniques for non-destructive monitoring of nitrogen fertilization management in greenhouse cucumber.
     The effects of leaf nitrogen concentration on leaf photosynthesis rate of greenhouse cucumber were investigated under different radiation and temperature conditions. The results showed that the optimal leaf nitrogen concentration for photosynthesis was found to be an exponential function of the physiological development time (PDT) and the product of thermal effectiveness and PAR (TEP). The leaf optimal nitrogen concentration was calculated by formula as follows: N%_(opt)(t) is leaf optimal nitrogen concentration of anytime in whole growing season; a is initial leaf nitrogen concentration of seedings when transplanting, determined as 2.5% from the result of our experiment data; N%_(max) is the maximum leaf nitrogen concentration of the whole growing season; b is the increasing rate of leaf nitrogen concentration from planting date to the time when leaf nitrogen concentration reaches N%_(max); Tpdt is physiological development time for the duration from transplanting to the date when the N%_(max) obtained, determined as 20 days from the result of our experiments data; N%_(min) is the minimum leaf nitrogen concentration from the time when leaf nitrogen concentration reaches N%_(max) to the end of the growing season; TC is the time coefficient for the leaf nitrogen concentration changing N%_(max) to N%_(min).y=y_(max)*sin (0.5π*ATEP/ATEP_(opt))
     y is referred to parameters of N%_(max), b, N%_(min), TC; y_(max) is defined as the maximum of these parameters, which appeared in the experiments (from August to November 2005) as our experiments, and determined as 4.8%、0.155、3.8%和9.5, respectively; ATEP is the average daily value of TEP over the period from planting date to fruit setting (for N%_(max) and b) and from fruit setting to fruit harvest (for N%_(min) and TC), MJ·m~(-2); ATEP_(opt) is the average daily value of TEP over the period from planting date to fruit setting and from fruit setting to fruit harvest when the maximum values of N%_(max), b, N%_(min), TC attained, determined as 4.01和2.89 MJ·m~(-2) according to the data from the experiments (from August to November 2005), respectively.
     The relationship between the ratio of the actual maximum leaf gross photosynthesis rate (Pgmax_i) to that under conditions without nitrogen deficiency (Pgmax_0) (PR= Pgmax_i / Pgmax_0) and the ratio of the actual leaf nitrogen concentration (N%) to the optimal leaf nitrogen concentration (N%_(opt)) (NR= N%/ N%_(opt)) was also found to be an exponential function.
     Based on these quantitative relationships, a general model was developed to estimate the effects of leaf nitrogen concentration on the maximum leaf gross photosynthesis rate of greenhouse cucumber under different PAR and temperature conditions.PR=1.05*(1-exp(-5.6*(NR-0.42)/1.05)) R~2=0.80 SE=0.10
     PR is the ratio of the actual maximum leaf gross photosynthesis rate to that under conditions without nitrogen deficiency; NR is the ratio of the actual leaf nitrogen concentration to the optimal leaf nitrogen concentration.
     Independent experimental data were used to validate the model. The coefficient of determination (R~2) and the root mean squared error (RMSE) between the estimated and the measured maximum leaf gross photosynthesis rate based on the 1:1 line are 0.83 and 1.56umol CO_2·m~(-2)-s~(-1), respectively.
     The actual photochemical efficiency of PSII reaction (ΦP5II) under conditions without nitrogen deficiency was found to be an exponential function of air temperature at 1.5m above the ground inside the greenhouse. The optimal leafΦPSII under different temperature was calculated as follow:
     ΦPSII(T) is the optimal leafΦPSII under conditions without nitrogen deficiency when the temperature is T;ΦPSII_(max) is the maximumΦPSII of the whole growing season; a is the increasing rate ofΦPSII from the base temperature to the base optimum temperature whenΦPSII_(max) obtained; b is the decreasing rate ofΦPSII from the upper optimum temperature to the maximum temperature after theΦPSII_(max) obtained; T'_b, T'_(ob), T'_(ou), T'_m are the base temperature, the base optimum temperature, the upper optimum temperature and the maximum temperature, determined as 5, 22, 28,45℃, respectively, for greenhouse cucumber photosynthesis. The parameters ofΦPSII_(max) and b are determined as 0.65 and 0.13 from experiments data, respectively. Farther experiments of low temperature growing seasons are needed to determine the parameters of a.
     Based on this quantitative relationship, a general equation was developed to estimate the relationship between leaf nitrogen concentration and leafΦPSII under different temperature conditions.ΦPSII R =0.95*(1-exp(-6*(NR-0.4)/0.95)) R~2=0.680, SE=0.103
     NR is the ratio of the actual to the optimal leaf nitrogen concentration;ΦPSII R is the ratio of the actual to the optimal leafΦPSII.
     Independent experimental data were used to validate the model. The coefficient of determination (R~2) and the root mean squared error (RMSE) between the predicted and the measured leafΦPSII based on the 1:1 line are 0.86 and 0.05, respectively.
     The relationship between leafΦPSII and the maximum leaf gross photosynthesis rate of greenhouse cucumber under different temperature conditions was estimated as follow, based on the relationship between leafΦPSII and air temperature at 1.5m above the ground inside the greenhouse.PR =1.05*(1-exp (-4.5*(ΦPSIIR -0.3)/ 1.05)) R~2= 0.68, SE = 0.10
     PR is is the ratio of the actual maximum leaf gross photosynthesis rate to that under conditions without nitrogen deficiency;ΦPSII R is the ratio of the actual to the optimal leafΦPSII.
     A nitrogen monitored model based on quantified relationship between chlorophyll fluorescence parameters and leaf photosynthesis rate was developed. Independent experimental data were used to validate the model. The coefficient of determination (R~2) and the root mean squared error (RMSE) between the predicted and the measured leaf nitrogen concentration based on the 1:1 line are 0.66 and 0.175%, respectively, showing that the model is good for nitrogen fertilization management in greenhouse cucumber.
引文
[1].孙羲,林荣新,马国瑞.水稻氮素营养[C].1986.中国土壤学会土壤氮素工作会议文集.北京: 科学出版社1-13
    
    [2].林克惠.1996.施肥对农产品品质的影响[J].云南农业大学学报11(6):114-120
    
    [3].曹志洪.1998.科学施肥和我国粮食安全[J].土壤2:57-153
    
    [4]. J. VOS and H. BIEMOND. 1992. Effects nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life spans of leaves and stem branching [J]. Annals of botany70:27-25
    
    [5].温祥珍等.2001.温室生产在中国农业发展中的地位与作用[C].国际农业科技大会论文集
    
    [6].李式军主编.2002.高级设施园艺学[M].北京:中国农业出版社.
    
    [7].陈春宏,向邦银,蒋春强,等.2003.从生产运行实践看大型蔬菜温室设施发展方向[J].上海 农业学报19(3):29-32
    
    [8].李廷轩,周键民,段增强,等.2005.中国设施栽培系统中的养分管理[J].水土保持学报19(4): 70-75
    
    [9].李廷轩,张锡洲,王昌全,等.2001.保护地土壤次生盐渍化的研究进展[J].西南农业学报 14:103-107
    
    [10].李海云,王秀峰,邢禹贤.2001.设施土壤盐分积累及防治措施研究进展[J].山东农业大学学??报(自然科学版)32(4):535-538
    
    [11].李俊良,崔德杰,孟祥霞,等.2002.山东寿光保护地蔬菜施肥现状及问题研究[J].土壤通报 33(2):126-128
    
    [12].李俊良,朱建华,张晓晟,等.2001.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生 物学报7(2):126-129
    
    [13].曹仁林,贾晓葵.2001.我国集约化农业中N污染问题及防治对策[J].土壤肥料3:3-6
    
    [14].李海云,邢禹贤,王秀峰.2001.蔬菜硝酸盐积累的控制措施[J].长江蔬菜4:11-13
    
    [15].陈国安.2002.蔬菜硝酸盐的含量及其调控[J].长江蔬菜11-13
    
    [16].杨旭,邹志荣,贺忠群,等.2003.蔬菜无土栽培营养液中的氮素及其调控[J].西北植物学报 23(9):1644-1649
    
    [17].F. Tei, P. Benincasa. 2002. Critical nitrogen concentration in processing tomato [J]. Europ. J.Agonomy. 18:45-55
    
    [18].Papastylianoc and Puckridge. 1983. Stem nitrate nitrogen and yield of wheat in a permanentrotation experiment [J]. Australian Journal of Agricultural Resource34: 599-606
    
    [19].Engel R E, Zubriski J C. 1982. Nitrogen content ratio in spring wheat at several growth stages [J].Commun. J. Soil. Sci. Plant Anal. 15(7): 531-544
    
    [20].Elliott, Reuter D J. 1987. Improved strategies for diagnosing and correcting nitrogen deficiency inspring wheat [J]. J. Plant Nutr. 10(9-16): 1761-1770
    
    [21].史定珊,关文雅.1993.河南冬小麦遥感动态监测技术[M]//冬小麦气象4遥感动态监测与估产. 北京:气象出版社.116-120
    
    [22].曹卫星主编.2002.作物学通论[M].北京:高等教育出版社.
    
    [23].鸿启凌主编.2000.作物群体质量[M].上海科技出版社.
    
    [24].熊同苏主编.2000.园艺学通论[M].高等教育出版社.
    
    [25]. Yang Woon-Ho, Peng Shaobing, Huang Jianliang, et al. 2003. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal 95:212-217
    
    [26].陈防,鲁剑巍.1996.Spad-502叶绿素计在作物营养快速诊断上的应用初探[J].湖北农业科学 2:31-34
    
    [27].吴良欢,陶勤南.1999.水稻叶绿素计诊断追氮法研究[J].浙江农业大学学报25(2):135-138
    
    [28].王绍华,曹卫星.2002.水稻叶色分布特点与氮素营养诊断[J].中国农业科学25(2): 1461-1466
    
    [29].沈阿林,姚键.2000.沿黄稻区主要水稻品种的需肥规律叶色动态与施氮技术研究[J].华北农 学报15(4):131-136
    
    [30].王康,沈荣开.2002.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水4:??1-3
    
    [31].立志宏,刘宏斌.2003.应用叶绿素仪诊断冬小麦氮营养状况的研究[J].植物营养与肥料学报 90):401-405
    
    [32].薛利红,罗卫红,曹卫星,等.2003.植物水分和氮素光谱诊断研究进展[J].遥感学报1:73-80
    
    [33].Xue Lihong, Cao Weixing. 2004. Monitoring leaf nitrogen status in rice with canopy spectralreflectance [J]. Agronomy Journal. 96(1): 135-143
    
    [34].Inada K. 1965. Studies on a method for deterring the deepness of green color and chlorophyllcontent of intact crop leaves and its practical application. 2. photoelectric characters ofchlorophyll-meter and correlation between the reading and chlorophyll content in leaves [J]. Proc.Crop. Sci. SocJPn. 33:301-306
    
    [35].Thomas J R, and Gausman H W. 1977. Leaf reflectance VS,. leaf chlorophyll and carotenoidconcentration for eight crops [J]. Agronomy Journal. 69:799-802
    
    [36].Munden R, Curran PJ, and Catt JA.t 1994. The relationship between the red edge and chlorophyllconcentration in the broadbalk winter experiment at Rothamsted [J]. International Journal ofRemote Sensing. 15:705-709
    
    [37].薛利红,杨林章,李刚华.2004.遥感技术在精确施肥管理中的应用进展[J].农业工程学报 20(5):22-25
    
    [38].薛利红,曹卫星,罗卫红,等.2003.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中 国农业科学36(7):807-812
    
    [39].薛利红,曹卫星,罗卫红,等.2004.小麦叶片氮素状况与光谱特征的相关性研究[J].植物生 态学报28(2):172-177
    
    [40].刘洪见,郑丽敏.2005.计算机视觉技术在农业作物氮素营养诊断上的应用研究进展[J].麦类 作物学报25(5):117-121
    
    [41].杨艳.,滕光辉.2005.计算机视觉技术判别温室植物缺素研究现状[J].温室园艺.6
    
    [42].张彦娥,李民赞,张喜杰,等.2005.基于计算机视觉技术的温室黄瓜叶片营养信息检测[J]. 农业工程学报21(8):102-105
    
    [43].李长缨,滕光辉,赵春江,等.2003.利用计算机视觉技术实现对温室植物生长的无损监测[J]. 农业工程学报19(3):140-143
    
    [44].张亮,毛罕平.2005.基于计算机视觉技术的温室营养液调控系统研究[J].中国农机50-52
    
    [45].许大全主编.2002.光合作用效率[M].上海科学技术出版社.
    
    [46].Huber S C. et al. 1989. Photosynthetic Determinants of growth in maize plants: effects of nitrogen nutrition on growth, carbon fixation and photochemical features [J]. Plant cell physiol. 30(8): 1063-1072
    
    [47]. Chen Li-song, Cheng Lailiang. 2004. Photosynthetic enzymes and carbohydrate metabolism ofapple leaves in response to nitrogen limitation [J]. Journal of Horticultural Science &Biotechnology 79(6): 923-929
    
    [48].Ciompi Stefania, Gentici Elisa. 1996. The effect nitrogen deficiency on leaf gas exchange andchlorophyll fluorescence parameters in sunflower [J]. Plant Science 118:177-184
    
    [49]. Zhao Duli, K. Raja. Reddy. 2004. Nitrogen deficiency effects on plant growth, leaf photosynthesis,and hyperspectral reflectance properties of sorghum [J]. European Journal of agronomy. DTD5:1-13
    
    [50].Cechin Ines, Terezinha de Fatima Fumis. 2004. Effect of nitrogen supply on growth andphotosynthesis of sunflower plant grown in the greenhouse [J]. Plant Science 166:1379-1385
    
    [51].Connor D J. et al. 1993. Effect of nitrogen content on the photosynthetic characteristics ofsunflower leaves [J]. Aust. J. plant physiol. 20:251-63
    
    [52].Seemann Jeffrey R., Thomas D. Sharkey et al. 1987. Environment effects on photosynthesis,nitorhen-use efficiency, and metabolite pools in leaves of sun and shade plants [J]. Plantphysiology 84: 796-802
    
    [53].Eichelmann H., Oja V. 2005. Adjustment of leaf photosynthesis to shade in a natural canopy:reallocation of nitrogen [J]. Plant, Cell and Environment 28: 389-401
    
    [54].Lawlor D W., F A. Boyle et al. 1987. Nitrogen nutrition and temperature effects on wheat:photosynthesis and photorespiration of leaves. Journal of experimental botany 38(188): 393-408
    
    [55].Nunes MAntonieta, J D. Cochicho Ramalho, et al. 1993. Effect of nitrogen supply on thephotosynthetic performance of leaves from coffee plants exposed to bright light [J]. Journal ofExperimental Botany. 44(262): 893-899
    
    [56].李伏生,唐绍忠,孙富仓.2003.CO_2浓度,氮和水分对春小麦光合,蒸腾及水分利用率的影 响[J].应用生态学报14(3):387-393
    
    [57].Correia. Carlos M.,Jose M. Moutinho Pereira. 2005. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study [J]. European Journal Agronomy. 22:337-347
    
    [58].郭天财,姚战军,王晨阳,等.2004.水肥运筹对小麦旗叶光合特性及产量的影响[J].西北植 物学报24(10):1786-1791
    
    [59].田永超,曹卫星,王绍华,等.2004.不同水,氮条件下水稻不同叶位水,氮含量及光合速率 的变化特征[J].作物学报30(11):1129-1134
    
    [60].周凌云,李卫民.2003.氮素营养对干旱地区小麦光合生理的影响[J].土壤通报34(3): 195-197
    
    [61].李卫民,周凌云.2004.水肥(氮)对小麦生理生态的影响[J].土壤通报35(2):136-141
    
    [62].李卫民,周凌云.2003.氮素对旱作小麦光合作用与环境调节的关系的调节[J].植物生理学通 讯39(2):119-121
    
    [63]. Sinclair T R., Horie T. 1989. Crop physiology & Metabolism: Leaf nitrogen, photosynthesis andcrop radiation use efficiency: a review [J]. Crop science 29:90-98
    
    [64]. Conner, D J., Hall, A J., V O.1993. Effect of nitrogen content on the photosynthetic characteristicsof sunflower leaves [J]. Aust .J., Plant physiol. 20:251-263
    
    [65].Muchow R.C., T.R.Sinclair. 1994. Nitrogen response of leas photosynthesis and canopy radiationuse efficiency in field-grown Maize and Sorghum [J]. Crop Science 34:721-727
    
    [66]. Field, C, Mooney, H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish,T.J.(Ed), On the Economy of plant Form and Function. Cambridge Univ. Press, Cambridge, pp.25-55
    
    [67].Marshall, B., and Voss, J. 1991. The relation between the nitrogen concentration andphotosynthetic capacity of potato (Solanum tuberosura L.) leaves. Annals of Botany 68:483-488
    
    [68].Bot J Le, Adamowicz S., Robin P. 1998. Modelling plant nutrition of horticultural crops: a review[J]. Scientia Horticulturae 74:47-82
    
    [69]. Evans, J R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) [J].Plant Physiology 72:297-302
    
    [70].许大全.1986.光合产物水平与光合速率[J].植物生理学通讯6:1-8
    
    [71].陈贻竹,李晓萍,夏丽,等.1995.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚 热带植物学报3(4):79-86
    
    [72].林世青,许春辉.1992.叶绿素荧光动力学在植物抗逆性生理学,生态学和农业现代化中的应 用[J].植物学通讯9(1):1-16
    
    [73].Olaf Van. Kootem. 1990. The use of chlorophyll fluorescence nomenclature in plant stress.Physiology [J]. Photosynthesis Research 25:147-150
    
    [74].Maxwell Kate., Giles N. Johnson. 2000. Chlorophyll fluorescence - a practical guide [J]. Journalof Experiment botany 51 (345):659-668
    
    [75].关义新,林葆,林碧莹.2000.光氮互作对玉米叶片光合色素及其叶绿素素荧光与能量转换的 影响[J].植物营养与肥料学报6(21):152-158.
    
    [76].张雷明,上官周平,毛明策,等.2003.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J]. 应用生态学报 14(5):695-1598
    
    [77].上官周平,李世清编著.2004.旱地作物氮素营养生理生态[J].北京:科学出版社.
    
    [78].SHANGGUAN Zhou-ping. 2005. Effect of nitrogen fertilization on leaf chlorophyll fluorescence in field-grown winter wheat under rainfed conditions [J]. Agricultural Sciences in china 4(1): 15-20
    
    [79].NUNES M. ANTONIETA. 1993. Effect of nitrogen supply on the photosynthetic performance ofleaves from coffee plants expose to bright light [J]. Journal of experimental botany 44(262):893-899
    
    [80]. Evans John R. 1987. Effects of nitrogen nutrition on electron transport components andphotosynthesis in spinach [J]. Aust. J. Plant physiol. 14:59-68
    
    [81].Lu Congming, 2000. Photosynthetic CO2 assilation, chlorophyll fluorescence and photoinhibitionas affect by nitrogen deficiency in maize plants [J]. Plant Science 151:135-143.
    
    --Lu, C M,Lu,QT, Zliang, J H., Kuang T.Y. 2000. Characterization of photosynthetic pigmentcomposition, Photosystemll photochemistry and thermal energy dissipation during leaf senescenceof wheat plants grown in the field [J]. J. Exp. Bot.52:1805-1810,
    
    [82].董彩霞,赵世杰,田纪春,等.2002.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参 数的影响[J].作物学报28(1):59-64
    
    [83].范燕萍,余让才,陈建勋,等.2000.氮素营养胁迫对匙叶天南星生长及光合特性的影响[J]. 园艺学报27(4):297-299
    
    [84].Ioslovish I. and Seginer I. 1998. Approximate seasonal optimization of the greenhouse environment for multi-state-variable tomato model [J]. Transactions of the ASAE 41(4): 1139-1149
    
    [85].Edwards Gerald E. & Baker Neil R.1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? [J]. Photosynthesis Research 37: 89-102
    
    [86].He D. and G E. Edwards. 1996. Evaluation of potential to measure photosynthetic rates in C3 plants( Flaveria pringlei and Oryza saliva) by combining chlorophyll fluorescence analysis and stomata conductance model [J]. Plant, Cell and Environment. 19:1272-1280
    
    [87].Willits D H., M M. Peet. 1999. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato [J]. Acta Horticulturae. 507:311-317
    
    [88].Flexas Jaume, José Mariano Escalona, et al. 2002 Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomata] conductance during water-stress in C3 plants [J]. Physiologia Plantarum 1 14:2,231-240
    
    [1].田永超,曹卫星,王绍华,等.2004.不同水,氮条件下水稻不同叶位水,氮含量及光合速率 的变化特征[J].作物学报.30(11):1129-1134
    
    [2]. Eichelmann H., Oja V. 2005. Adjustment of leaf photosynthesis to shade in a natural canopy:reallocation of nitrogen [J]. Plant, Cell and Environment 28:389-401
    
    [3]. Cechin Ines, Terezinha de Fatima Fumis. 2004. Effect of nitrogen supply on growth andphotosynthesis of sunflower plant grown in the greenhouse [J]. Plant Science. 166:1379-1385
    
    [4]. Sinclair T R., Horie T. 1989. Crop physiology & Metabolism: Leaf nitrogen, photosynthesis andcrop radiation use efficiency: a review [J]. Crop science 29:90-98
    
    [5]. Conner, D J., Hall, A J., V O.1993. Effect of nitrogen content on the photosynthetic characteristicsof sunflower leaves [J]. Aust.J., Plant physiol. 20:251-263
    
    [6]. Muchow R C, T R.Sinclair. 1994. Nitrogen response of leas photosynthesis and canopy radiationuse efficiency in field-grown Maize and Sorghum [J]. Crop Science. 34: 721-727
    
    [7]. Evans, J R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) [J].Plant Physiology. 72:297-302
    
    [8]. Field, C, Mooney, H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish,T.J.(Ed), On the Economy of plant Form and Function [M]. Cambridge Univ. Press, Cambridge, pp.25-55
    
    [9]. Marshall, B., and Vost, J. 1991. The relation between the nitrogen concentration and photosyntheticcapacity of potato (Solarium tuberosum L.) leaves [J]. Annals of Botany 68:483-488
    
    [10].Bot J. Le, Adamowicz S. 1998. Robin P., Modelling plant nutrition of horticultural crops: a review[J]. Scientia Horticulturae. 74:47-82
    
    [11].Kim TH, Chun YT, Kim KY, et al. 2002. Root Zoo temperature effects on nitrate assimilation andxylem transport in hydroponically grown cucumber plants [J]. Acta Horticulturae 588:59-62
    
    [12].Chung SJ, Chun YT, Kim KY, et al. 2002. Root Zooe temperature effect in hydroponically growncucumber plants: Growth and carbohydrate metabolism [J]. Acta Horticulturae 588:53-58
    
    [13].Roohi V, Mohammadi J. 2002. Seasonal changes of mineral nutrients in leaves of two IrovnianAlmond cultivars [J]. Acta Horticulturae 591: 315-319
    
    [14]. Rosa. D, Martinez P.F, Martinez S, et al. 2005. Seasonal carbohydrate and total nitrogen distributionin Rose plants: developmental and growth implications [J]. Acta Horticulturae 697:213-219
    
    [15].罗卫红,汪小旵,戴剑锋,等.2004.南方现代温室黄瓜冬季蒸腾测量与模拟研究[J].植物生 态学报28(1):59-65
    
    [16].Gijzen H. 1992. Simulation of photosynthesis and dry matter production of greenhouse crop, simulation report CABO-TT.nr. 28[R]. Wageningen: centre for Agrobiological research, wageningen university 17-21
    
    [17].曹卫星,罗卫红主编.2003.作物系统模拟与智能管理[M].北京:高等教育出版社.
    
    [18].袁昌梅,罗卫红,邰翔,等.2006.温室网纹甜瓜干物质分配、产量形成与采收期的模拟研究 [J].中国农业科学.39(2):353-363
    
    [19].李永秀.2005.温室黄瓜生长发育模拟模型的研究[D].南京农业大学硕士学位论文.p15-19
    
    [20].Goudriaan J, Van Laar H H. 1994. Modelling potential crop growth processes [M]. The Netherlands: kluwer Academic Publishers. P21-118
    
    [21].盖钧镒主编.2000.试验统计方法[M].北京:中国农业出版社.P100-180
    
    [22].杜永臣,张福墁,刘步洲.1989.不同形态的氮素对温室沙培黄瓜生长发育的影响[J].园艺学 报16:45-50
    
    [23]. Juan Manuel Ruiz, Luis Romero. 1999. Cucumber yield and nitrogen metabolism in response tonitrogen supply [J]. Scientia Horticulturae 82:309-316
    
    [24].Eun-Young Choi, Young-Beom Lee. 2001. Nutrient uptake, growth and yield of cucumbercultivated with different growing substrates under a close and an open system [J]. ScientiaHorticulturae 545: 543-547
    
    [25].Guler S, Ibrikci H. 2002. yield and Elemental composition of cucumber as affect by drip andfurrow irrigation [J]. Acta Horticulturae 571:51-57
    
    [26].Yasutaka kano, Hideyuki Goto. 2003. Relationship between the occurrence of bitter fruit incucumber (Cucumis Sativus L.) and the contents of total nitrogen amino acid nitrogen, protein andHMG-COA reductase activity [J]. Acta Horticulturae 98:1-8
    
    [27].张彦娥,李民赞,张喜杰,等.2005.基于计算机视觉技术的温室黄瓜叶片营养信息检测[J]. 农业工程学报21(8):102-105
    
    [28]. Stocking CR, ongun A. 1962. The intracellular distribution of some metallic elements in leaves [J].American Journal of Botany 49:284-289
    
    [29].Evans J R. 1989. Photosynthesis and nitrogen relationship of C3 plants [J]. Oecologia 78:9-19
    
    [30].郭盛磊,阎秀峰,白冰,等.2005.供氮水平对落叶松幼苗光合作用的影响[J].生态学报25(6): 1291-1298
    
    [31].王永健,姜亦巍.1998.黄瓜光补偿点与低温弱光耐受性关系初探[J].园艺学报25(2): 199-200
    
    [32].李长缨,朱其杰.1997.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报24(1): 97-99
    
    [33].张振贤,周绪元.1997.主要蔬菜作物光合与蒸腾特性研究.园艺学报[J].24(2):155-160
    
    [34].许大全.1994.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理学通讯(2):81-87
    
    [35].Medyn B E, Loustau D, Delzon S. 2002. Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime Pine (Pinus Pimaster Ait) [J]. Plant, Cell and environment 25:1155-1165
    
    [36].徐克章,史跃林,王绍辉,等.1993.保护地黄瓜光合作用温度特性的研究[J].园艺学报.20(1): 51
    
    [37].艾希珍,张振贤,王绍辉,等.1998.生姜不同叶位光合特性的研究[J].西北农业学报.7(2): 101-103
    
    [38].史为民,陈青云,乔晓军.2005.日光温室黄瓜叶片光合速率模型及其参数确定的初步研究[J]. 农业工程学报25(5):113-117
    
    [39].裴孝伯,张福墁,王柳.2002.不同光温条件对日光温室黄瓜氮磷钾吸收分配的影响[J].中国 农业科学35(12):1510-1513
    
    [1]. Kautsky H and Hirsch A. 1931. Neue Versuche zur KohlenStoff assimilation [J].Naturwissenschaften 19:964
    
    [2]. Kooten Olaf van & Jan F.H.Snel. 1990. The use of chlorophyll fluorescence nomenclature in plantstress physiology [J]. Photosynthesis Research 25:147-150
    
    [3]. Krause GH. 1991. Chlorophyll fluorescence and photosynthesis: The basics [J]. Annual reviewPlant physiology. Plant Molecule biology 42:313-349
    
    [4]. Maxwell Kate and Johnson Geils N. Johnson. 2000. Chlorophyll fluorescence - a practical guide[J]. Journal of Experimental Botany 51(345): 659-668
    
    [5]. Lu Congming, Jianhua Zhang. 2000. Photosynthetic CO_2 assimilation , chlorophyll fluorescenceand photoinhibition as affected by nitrogen deficiency in Maize plants [J]. Plant Science 151:135-143
    
    [6].范燕萍,余让才,陈建勋,等.2000.氮素营养胁迫对匙叶天南星生长及光合特性的影响[J]. 园艺学报27(4):297-299
    
    [7].董彩霞,赵世杰,田纪春,等.2002.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参 数的影响[J].作物学报28(1):59-64
    
    [8]. Shangguan Zhou-ping, Zheng Shu-xia. 2005. Effect of nitrogen fertilization on leaf chlorophyll fluorescence in field-grown winter wheat under rainfed condition [J]. Agricultural Sciences in??China 4(1): 15-20
    
    [9]. Netto Alena Torres, Elimar Campostrini. 2005. Photosynthetic pigments, nitrogen, chlorophyll afluorescence and SPAD-502 readings in coffee leaves [J]. Scientia Horticulturae. 104:199-209
    
    [10]. Evans John R. 1987. Effects of nitrogen nutrition on electron transport components andphotosynthesis in spinach [J]. Aust J. Plant physiol. 14:59-68
    
    [11].NUNES M. ANTONIETA. 1993. Effect of nitrogen supply on the photosynthetic performance ofleaves from coffee plants expose to bright light [J]. Journal of experimental botany 44(262):893-899
    
    [12].Xua-Xin Chen, Wei-Jun Li. 2004. Charactization of PSII photochemistry and thermostability insalt-treated Rumex leaves [J]. Journal of plant physiology 161:257-264
    
    [13].慈敦伟,姜东,戴廷波,等.2005.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类 作物学报25(5):88-91
    
    [14].南京农业大学主编,1986.土壤农化分析[M],北京:农业出版社.
    
    [15].罗卫红,汪小函,戴剑锋,等.2004.南方现代温室黄瓜冬季蒸腾测量与模拟研究[J].植物生 态学报28(1):59-65
    
    [16].武维华主编.2003.植物生理学[M],北京:科学出版社.P172
    
    [17].沈允钢主编.2000.地球上最重要的化学反应:光合作用[M],北京:清华大学出版社.P83
    
    [18].许大全主编.2002.光合作用效率[M],上海:上海科学技术出版社.P40
    
    [19].Gijzen H. 1992. simulation of photosynthesis and dry matter production of greenhouse crop [A], simulation report CABO-TT.nr. 28[R]. Wageningen: centre for Agrobiological research, wageningen university 17-21
    
    [20].张振贤,艾希珍,赵世杰,等.2003.黄瓜叶片光合作用的温度补偿点与光合启动时间[J].园 艺学报30(2):157-162
    
    [21].庞金安,马德华,李淑菊.1997.黄瓜光合作用的研究[J].天津农业科学3(4):8-15
    
    [22].Evans J R, Terashima I. 1987. Effects of nitrogen nutrition on electron transport components andphotosynthesis in spinach [J]. Aust J. Plant Physiol. 14:281-292
    
    [23].Berges J A, Charlebois D O, Mauzer D C, et al. 1996. Differential effects of nitrogen limitation onphotosynthetic efficiency of photosystems I and II in microalgae [J]. Plant Physiology 110:689-696
    
    [24].魏爱丽,王志敏.2004.高等植物PSII的光抑制与光破坏研究进展[J].西北植物学报24(7): 1342-1347
    
    [25].Krause G H, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics [J]. AnnualReview of Plant Physiology and Plant Molecular Biology 42: 313-349
    
    [26].Hong S S, Xu D Q. 1997. Light-induced increase in initial fluorescence parameters to strong light??between wheat and soybean leaves[J].Chinese Science Bulletin 42:684-1588
    
    [27].张雷明,上官周平,毛明策,等.2003.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J]. 应用生态学报14:695-698
    
    [28].张旺峰,勾玲,王振林,等.2003.氮素对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J]. 中国农业科学36:893-898
    
    [29].Khamis S, Lamaze T, Lemoine Y, et al. 1990. Adaptation of the photosynthetic apparatus in maizeleaves as a result of nitrogen limitation. Relationships between electron transport and carbonassimilation [J]. Plant Physiology 94:1436-1443
    
    [30].Cimopi S, Gentili E, Guidi L, et al. 1996. The effect of nitrogen deficiency on leaf gas exchangeand chlorophyll fluorescence parameters in sunflowers. Plant Science 118:177-184
    
    [31].Cechin I.1998. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum underdifferent nitrogen and water regimes [J]. Photosynthetica 35:233-240
    
    [32].Lima J D, Mosquim P R, Da matta F M. 1999. Leaf gas exchange and chlorophyll fluorescenceparameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency [J].Photosynthetica 37:113-121
    
    [33].张守仁.1999.叶绿素荧光动力学参数的意义及讨论[J].植物学通报16(4):444-448
    
    [34].陈青君,张福墁,王永健等.2003.临界低温弱光对黄瓜光合特性及其酶变化的影响[J].华北 农学报.18(4):31-34
    
    [35].周艳虹,黄黎锋,喻景权.2004.持续低温弱光对黄瓜叶片气体交换,叶绿素荧光猝灭和吸收 光能分配的影响[J].植物生理与分子生物学报.30(2):153-160
    
    [36].吴韩英,寿森辉,朱祝军,等.2001.高温胁迫对甜椒光合作用和叶绿素荧光的影响[J].园艺 学报.28(6):517-521
    
    [37].胡文海,喻景权.2001.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响[J].园艺学报. 28(1):41-46
    
    [38].Oquist G, Chow W S, Anderson J. 1992. Photoinhibition of photosynthesis represents a mechanismfor long term regulation of photosystem II [J]. Planta 186:450-460
    
    [39].Ottander C. 1993. Photosystem II reaction centers stay in intact during low temperaturephotoinhibition [J]. Photosynthesis Research 35:171-200
    
    [40].Abdul K, Hiroshi F, Tetsushi H. 2003. Photosynthetic performance of vigna radiat L. Leafdeveloped at different temperature and irradiance leavels [J]. Plant Science 164:451-458
    
    [41].Du5an Laza T, Petr Ilik. 1997. High-temperature induced chlorophyll fluorescence changes inbarley leaves. Comparison of the critical temperatures determined from florescence induction andfrom florescence temperature curve [J]. Plant science 124:159-164
    
    [1].田永超,曹卫星,王绍华,等.2004.不同水,氮条件下水稻不同叶位水,氮含量及光合速率 的变化特征[J].作物学报30(11):1129-1134
    
    [2]. Eichelmann H., Oja V. 2005. Adjustment of leaf photosynthesis to shade in a natural canopy:reallocation of nitrogen [J]. Plant, Cell and Environment 28:389-401
    
    [3]. Cechin Ines, Terezinha de Fatima Fumis. 2004. Effect of nitrogen supply on growth andphotosynthesis of sunflower plant grown in the greenhouse [J]. Plant Science 166: 1379-1385
    
    [4]. Kooten Olaf van & Jan F.H.Snel. 1990. The use of chlorophyll fluorescence nomenclature in plantstress physiology [J]. Photosynthesis Research 25:147-150
    
    [5]. Krause GH. 1991. Chlorophyll fluorescence and photosynthesis: The basics [J]. Annual reviewPlant physiology. Plant Molecule biology 42:313-349
    
    [6]. Maxwell Kate and Johnson Geils N. Johnson. 2000. Chlorophyll fluorescence - a practical guide[J]. Journal of Experimental Botany 51(345): 659-668
    
    [7]. Edwards Gerald E. & Baker Neil R. 1993. Can CO_2 assimilation in maize leaves be predictedaccurately from chlorophyll fluorescence analysis? [J]. Photosynthesis Research. 37:89-102
    
    [8]. He D. and GE. Edwards. 1996. Evaluation of potential to measure photosynthetic rates in C3plants( Flaveria pringlei and Oryza sativa) by combining chlorophyll fluorescence analysis andstomata conductance model [J]. Plant, Cell and Environment 19:1272-1280
    
    [9]. Willits D.H., M.M. Peet 1999. using chlorophyll fluorescence to model leaf photosynthesis ingreenhouse pepper and tomato [J]. Acta Horticulturae 507:311-317
    
    [10].Flexas Jaume, José Mariano Escalona, et al. 2002. Steady-state chlorophyll fluorescence(Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductanceduring water-stress in C_3 plants [J]. Physiologia Plantarum 114:2, 231-240
    
    [11].Xua-Xin Chen, Wei-Jun Li. 2004. Charactization of PSII photochemistry and thermostability insalt-treated Rumex leaves [J]. Journal of plant physiology 161:257-264
    
    [12].慈敦伟,姜东,戴廷波,等.2005.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类 作物学报25(5):88-91
    
    [13].南京农业大学主编,1986.土壤农化分析[M],北京:农业出版社.
    
    [14].罗卫红,汪小显,戴剑锋,等.2004.南方现代温室黄瓜冬季蒸腾测量与模拟研究[J].植物生 态学报28(1):59-65
    
    [15].Gijzen H. 1992. simulation of photosynthesis and dry matter production of greenhouse crop [A], simulation report CABO-TT.nr. 28[R]. Wageningen: centre for Agrobiological research, wageningen university 17-21
    
    [16].赵世杰,邹琦,于振文.2000.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河 南农业大学学报34(3):248-251
    
    [17].Genty B, Briantais J-M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta 990: 87-92
    
    [18]. Flexas J, Escalona J M, Medrano H. 1999a. Water stress induces different levels of photosynthesis and electron transport rate regulations in grapevines [J]. Plant, Cell Environment 22:39-48
    
    [1]. Sinclair T R., Hone T. 1989. Crop physiology & Metabolism: Leaf nitrogen, photosynthesis andcrop radiation use efficiency: a review [J]. Crop science 29:90-98
    
    [2]. Conner, D J., Hall, A J., V.O. 1993. Effect of nitrogen content on the photosynthetic characteristicsof sunflower leaves [J]. Aust.J., Plant physiol. 20:251-263
    
    [3]. Muchow R C, T R.Sinclair. 1994. Nitrogen response of leas photosynthesis and canopy radiationuse efficiency in field-grown Maize and Sorghum [J]. Crop Science 34:721-727
    
    [4]. Evans, J.R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) [J].Plant Physiology 72:297-302
    
    [5]. Wong, S.C. 1979. Elevated atmospheric partial pressure of CC_2 and plant growth. I. Interaction ofnitrogen nutrition and photosynthetic capacity in C_3 and C_4 species [J]. Oecologia. 44:68-74
    
    [6].王绍华,曹卫星.2002.水稻叶色分布特点与氮素营养诊断[J].中国农业科学25(2): 1461-1466
    
    [7]. Yang Woon-Ho, Peng Shaobing, Huang Jianliang, et al. 2003. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal 95:212-217
    
    [8].薛利红,罗卫红,曹卫星,等.2003.植物水分和氮素光谱诊断研究进展[J].遥感学报1:73-80
    
    [9].刘洪见,郑丽敏.2005.计算机视觉技术在农业作物氮素营养诊断上的应用研究进展[J].麦类 作物学报25(5):117-121
    
    [10].Lu Congming, Jianhua Zhang. 2000. Photosynthetic CO_2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in Maize plants [J]. Plant Science 151: 135-143
    
    [11].范燕萍,余让才,陈建勋,等.2000.氮素营养胁迫对匙叶天南星生长及光合特性的影响[J]. 园艺学报27(4):297-299
    
    [12].董彩霞,赵世杰,田纪春,等.2002.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参 数的影响[J].作物学报28(1):59-64
    
    [13].Shangguan Zhou-ping, Zheng Shu-xia. 2005. Effect of nitrogen fertilization on leaf chlorophyllfluorescence in field-grown winter wheat under rainfed condition [J]. Agricultural Sciences inChina 4(1): 15-20
    
    [14].Netto Alena Torres, Elimar Campostrini. 2005. Photosynthetic pigments, nitrogen, chlorophyll afluorescence and SPAD-502 readings in coffee leaves [J]. Scientia Horticulturae. 104:199-209
    
    [15].Edwards Gerald E. & Baker Neil R. 1993. Can CO_2 assimilation in maize leaves be predictedaccurately from chlorophyll fluorescence analysis? [J]. Photosynthesis Research. 37:89-102
    
    [16].He D. and GE. Edwards. 1996. Evaluation of potential to measure photosynthetic rates in C_3 plants( Flaveria pringlei and Oryza sativa) by combining chlorophyll fluorescence analysis and stomata conductance model [J]. Plant, Cell and Environment 19:1272-1280
    
    [17].Willits D.H., M.M. Peet. 1999. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato [J]. Acta Horticulturae 507:311-317
    
    [18].Flexas Jaume, José Mariano Escalona, et al. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomata] conductance during water-stress in C3 plants [J]. Physiologia Plantanm 114:2,231-240