用户名: 密码: 验证码:
医用CT机X射线管W/Mo/石墨阳极靶材的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展以及医疗体制改革的加快,医用CT机已经成为一般医院的常规检测设备之一,对其中主要的部件阳极靶材提出了轻质、高导热、高热容、良好的高温热震性等要求。鉴于钨/钼/石墨复合材料具有良好的高温性能,本研究旨在通过选择适当的工艺路线以及工艺参数制备出满足性能要求同时能够实现工业化生产的阳极靶材。
     本研究首先用粉末冶金技术制备出性能较好的W/Mo双金属层,然后通过扩散焊接将其与三高石墨连接在一起,从而制备出最终的W/Mo/石墨复合阳极靶材。通过扫描电镜、激光导热仪、涡流电导仪等手段研究整体靶材的性能,探讨各工艺参数对复合靶材性能和组织结构的影响,获得的主要成果有:
     1采用铺层设计冷压成型后,在1700℃,保温4h,真空度为1.8×10-2Pa下可制备出组织分布均匀,相对密度为90.61%的钨钼双金属层。其导热系数为121.7 W·m-1·K-1,界面剪切强度为115MPa。
     2采用Ni,Mn,Ag,Cu作为添加剂,在1300℃-1350℃,真空度3.8x10-3Pa,5-10MPa的压力下,扩散焊接20-30min制备的Mo/石墨复合层,界面剪切强度为8.33MPa,低于石墨本身的剪切强度;采用Ni, Ti, Zr作为添加剂,在1300℃-1350℃,真空度3.8x10-3Pa,5-10MPa的压力下,扩散焊接20-30min制备的Mo/石墨复合层,界面剪切强度为10.33MPa,高于石墨本身的剪切强度。
     3 W/Mo双金属层的断裂为解理脆性断裂,且具有一定的抗热震能力;Mo/石墨复合层的断裂为准解理脆性断裂,且发现在结合面处有添加组元或成份的扩散与偏聚现象。
     4本研究制备的W/Mo/石墨复合靶材能满足一定的性能要求,但与国外同类靶材尚有一定的差距。本研究为高性能X射线管用钨/钼/石墨复合靶材的产业化和工业化提供了一定的实验基础和理论依据。
With the development of economy and the reform of the Medicare system medical CT has became a normal detection device in ordinary hospitals. Required the anode target have light weight, high thermal conduction and high performance in thermal shock, etc. The tungsten/molybdenum/graphite composite target has good high temperature behavior. This research aims at preparing the anode target can meet the demand and also can be produced by commercial process with suitable processing.
     The major processing is to connect the tungsten/molybdenum bimetal prepared by powder metallurgy with the graphite through diffusion welding. Then research the target's performance with SEM (scanning electron microscope), Flash Thermal Diffusion Instrument, eddy-current conductivity apparatus, etc. Then discuss each processing parameter's contribution to the capability and histology of the target. The following are the main results obtained:
     1 The tungsten/molybdenum bimetal sintered at 1700℃, holding for 4 h under vacuum condition (1.8×10-2Pa) has fine and dense microstructure,90.61% relative density, a gentle transition layer between tungsten and molybdenum. The thermal conductivity was 121.7 W·m-1·K-1 and the bonding strength was 115MPa (shear).
     2 Utilizing the mixture of Ni, Mn, Ag and Cu as adhesive, the molybdenum/graphite composite layer prepared at 1300℃-1350℃, with press of 5-10MPa holding for 20-30min under vacuum condition (3.8×10-3Pa) has low bonding shear strength (8.33MPa) lower than the nature shear strength of graphite. Utilizing the mixture of Zr, Ni and Ti as adhesive, the molybdenum/graphite composite layer prepared at 1300℃-1350℃, with press of 5-10MPa holding for 20-30min under vacuum condition (3.8×10-3Pa) has large bonding shear strength (10.33 MPa) higher than the nature shear strength of graphite.
     3 The fracture of the tungsten/molybdenum bimetal layer was cleavage brittle fracture. The tungsten/molybdenum bimetal layer has some ability of resisting thermal shock. The fracture of the molybdenum/graphite layer was quasi-cleavage brittle fracture. Adhesive has get diffusion and segregation in the bonding interface.
     4 Though the tungsten/molybdenum/graphite composite target prepared by this research can meet parts of capabilities required, it has some distance from the like products abroad. This research has provides many experimental foundations and bases for the industrialization and widely use of the tungsten/molybdenum/graphite composite target for X-ray tube.
引文
[l]张青来,贺继弘.溅射靶材综述[J].上海钢研,2002,(4):30-41.
    [2]吴丽君.发展中的溅射靶材[J].真空科学与技术,2001,(4):342-347.
    [3]李珍照.国外大坝监测几项新技术[J].大坝观测与土工测试,1997,21(1):16-18.
    [4]杨文采,李幼铭.应用地震层析成像[M].北京:地质出版社,1993:142-160.
    [5]Kalender WA.计算机体层成像[M].北京:人民卫生出版社,2003.
    [6]沈剑明.旋转阳极X射线管几个设计问题的讨论[D].中国电子学会真空电子学年会论文,1980.
    [7]李新.X射线及其医学应用[J].技术物理教学,2003,(3):48-49.
    [8]石春顺.X射线在医学中的新应用[J].光机电信息,1996,(12):6-7.
    [9]Fulrath R M et al. Manganese glass-molybdenum metal ceramics [J]. Am Ceram Sos Bull,1968, 47(5):493-497.
    [10]李美亚,张之翔.X射线的发现及其对现代科学技术的影响—纪念伦琴发现X射线100周年[J].物理,1995,(8):474-482.
    [11]张春兰.谈伦琴与X射线[J].赤峰学院学报(自然科学版),2005,(4):104-105.
    [12]肖进.论X线发现100年的历史经验[J].医学与哲学,1995,16(11):571-573.
    [13]郑新灵,黄姝,朱莉.伦琴射线的性质及应用[J].松辽学刊(自然科学版).1998,(10):96-97.
    [14]赵宗彦.X射线与特质结构[M].合肥:安徽大学出版社,2004.
    [15]马延洪.特征X线,X线物理与防护[M].北京:人民卫生出版社,1996:27.
    [16]范雄.金属X射线学[M].北京:机械工业出版社,1988:4-6.
    [17]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003:11-15.
    [18]中国金属学会,中国有色金属学会编.金属材料物理性能手册[M].北京:冶金工业出版社,1987.
    [19]彭志辉.国外X射线管用旋转阳极靶概况[J].稀有金属与硬质合金,1987,Z1:121-129.
    [20]汤美朗.旋转阳极X射线管轴承固体润滑与真空技术的研究[J].真空电子技术,2000,(6):34-36.
    [21]Dietz H, Geldner E. Temperature Distribution in X-ray Rotating Anodes Part.1.Physical Principles [M]. Siemens Forsch,1978:18-23.
    [22]G.Zental, et al. Electro component Science and Technology [M]. Siemens Forsch,1984:209.
    [23]骆培正.旋转阳极X射线管的进展[J].真空电子技术,1990,(4):24-28.
    [24]骆培正.旋转阳极X射线管的新进展[J].真空电子技术,1991,(6):14-17.
    [25]Hartl W., Peter D, Reiber K. A metal/ceramic diagnostic X-ray tube [J]. Philips Tech. Rev.,41(4), 1983:126-134.
    [26]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003.
    [27]美国金属学会主编.金属手册案头卷[M].北京:机械工业出版社,1985.
    [28]高晓晴,郭全贵,刘朗,宋进仁.高导热炭材料的研究进展[J].新型炭碳材料2006,37(2):173-177.
    [29]Mikhail Gubarev, Ewa Ciszak, Igor Ponomarev, Walter Gibson and Marshall Joyb. First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator, Space Technology and Applications International Forum [C].1999:685.
    [30]徐庆元,肖李鹏,熊国刚,李恩平.医用X射线高速靶钼基体黑化涂层材料及其组成的研究[J].表面技术,2000(8):51-52.
    [31]陈书林.谈CT机冷却系统的进展[J].医疗设备,2007(4):24-25.
    [32]陈西和.如何提高GE CT-9000管球的使用寿命[J].医疗设备信息,1999(2):31-32.
    [33]李付茝,张偁还,何梅.X光管用旋转阳极钨钼复合靶的研究[J].稀有金属材料与工程,1995,(2):114-119.
    [34]王福贞,马文存.气相沉积应用技术[M].机械工业出版社:北京,2006,10.
    [35]刘向阳.我国医疗器械面临的市场机遇和竞争压力[J].中国医药技术与市场,2007,(3):37-39.
    [36]秦永清,王晓庆,朱晓伟.医疗器械产业现状及发展趋势[J].中国医疗器械信息,2007,13(1):14.
    [37]刘宇静,张长虹,秦晓刚.我国医疗器械产业现状与技术发展[J].中国医学装备,2007,4(6):60-62.
    [38]胡晓民.数字说话:中国CT状况[J].现代医学仪器与应用,2006,(2):12-13.
    [39]袁钦辉,李胜,张焕庭.CT机“X线管”的结构原理[J].医疗设备信息,2002,(4):13-15.
    [40]云庆辉,崔亮,田越,黄殿忠,王政.CT技术的新进展[J].医疗卫生装备,2004,(9):85-86.
    [41]Bokros J C. Chemistry and Physics of Carbon [M]. New York:Marcel Dekker Inc,1969,5.
    [42]Fitzer E, Gkogkidis A, Heine M. Carbon Fibers and Fiber Composites [M]. High temp-High press, 1984:92.
    [43]吴彩虹,李廷举,金俊泽.双金属复层材料制备现状及研究进展[J].铸造,2005,02:103-107.
    [44]Xia Changqing, Jin Zhanpeng. Interfacial reaction in the tantalum-steel explosion weld composite at 1053 K [J]. Journal of Central South University of Technology,1997,4(1):5-8.
    [45]Rogab M S. Kurt Lange Handbook of Metal Forming[M]. New York:Me Graw-Hill book company, 1995.
    [46]程家林.层压复合材料连接接头设计及在大飞机中的应用研究[A].大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集,2007.
    [47]阳喜元,袁晓俭,胡望宇.难熔金属热学性能的研究现状[J].稀有金属材料与工程,2005,(9):1349-1351.
    [48]曹运宏,胡朝勃.国外飞航导弹的新材料新工艺[J].飞航导弹,2000,3(4):51-54.
    [49]彭大暑,刘浪费,朱旭霞.金属层状复合材料的研究状况与展望[J].材料导报,2000,(4): 23-24.
    [50]Murata Y. Sodeyama K. Review in Research and Development of Clad Metal Sheets [J]. Adv Tech Plasticity,1993,(3):1605.
    [51]Dorph P, De Chiffre L, Bay N. Experimental analysis of cut welding in aluminium[J].Annals of CIRP,1993,(1):357.
    [52]Seeling R. P., Wulff J. The pressing operation in the fabrication of articles by powder metallurgy [J]. Trans. AIME,1964,166:492-504.
    [53]刘振岗,郭健,杨建民.扩散焊技术的应用[J].航空科学技术,2004,(2):38-40.
    [54]曲文卿,董峰,齐志刚.异种材料的连接[J].航天制造技术,2006,3(6):44-49.
    [55]张彦华,刘家奇,段小雪.异种材料连接中的界面力学问题[J].电焊机,2007,37(7):15-17.
    [56]刘中青.异种金属的焊接,第十讲:异种材料的焊接缺陷及防止措施[J].金属加工,1994,(11):24-26.
    [57]曲文卿,董峰,齐志刚.异种材料的先进连接技术[J].航空制造技术,2006,3(12):32-34.
    [58]吴爱萍,邹贵生,马雪梅,任家烈.钼与石墨的扩散焊接[J].稀有金属材料与工程,2006,35(9):1492-1496.
    [59]Queisser H J. X-Ray Optics Applications to Solids [M]. Beijing:Beijing Science Press,1985.
    [60]熊国刚.石墨与钼合金钎焊材料与钎焊工艺的研究[D].四川大学硕士论文,‘2005.
    [61]Vieider G, Harrson M. NET plasma facing components [M]. New York:plenum Press,1999: 112-115.
    [62]Kneringer G, Reheis N. Brazing of bulk graphite to metal-substrates [M]. Austria:Proc.11th plansee seminar, Reutte, May., V3,1989:323.
    [63]Donnelly R G, Slaughter G M. The brazing of graphite [J]. Welding journal. V41,1998:461-469.
    [64]Hammond J P, Slaughter G. Bonding Graphite to Metals with Transition Pieces [J]. Welding Journal. V5011.1991:33-40.
    [65]于明涛,李付国,薛治国.层状金属复合材料金相试样的侵蚀方法[J].理化检验(物理分册),2007,43(9):449-451.
    [66]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.
    [67]Magic K D. Compendium of thermophysical property measurement methods [M]. New York: Plenum Press,1984:201-212.
    [68]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,第三版,1998:20-32.
    [69]J.P.霍尔曼.传热学[M].北京:人民教育出版社,1979:52-68.
    [70]陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1998.
    [7l]余宗森,田中卓.金属物理[M].北京:冶金工业出版社,1981.
    [72]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2004.
    [73]王崇琳.相图理论及其应用[M].北京:高等教育出版社,2008.
    [74]Brandes E A, Brook G B. Smithells Metals Reference Book [M]. Seventh edition, Butterworth Heinemann,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700