用户名: 密码: 验证码:
贵州喀斯特森林退化对土壤质量的影响及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为给喀斯特脆弱生态系统的植被恢复提供理论依据,对贵州南部喀斯特森林退化过程中土壤理化性质、土壤酶活性及土壤呼吸强度进行了分析,主要得出以下结论:
     喀斯特原始森林生态系统不同小生境类型土壤理化性质、酶活性及土壤呼吸强度变化差异较大。各小生境土壤以壤土为主,土壤团聚体数量较多,石洞和石缝土壤粘粒含量平均相对较高,而石坑土壤砂粒含量较高。在石缝和石坑土壤中的有机质含量较高,分别是石洞土壤的5.54倍和4.87倍。原生林中不同小生境土壤,有机质、全氮、碱解氮、有效磷、速效钾含量变化均有相同的变化趋势,即石缝>石坑>石沟>土面>石洞。除土壤脲酶和蛋白酶之外,石缝土壤呼吸强度、过氧化氢酶活性、碱性磷酸酶活性和蔗糖酶活性都相对其他四类小生境土壤要高。而整体上来讲石沟、石缝和石坑这三种负地形小生境土壤的各种酶活性和土壤呼吸强度要比石洞和土面土壤要高。
     在喀斯特森林由原生林→次生林→灌木林→灌丛草地演替的过程中,每个样地的土面、石沟及石洞三者的面积之和都超过了95%;石沟、石洞和土面土壤砂粒含量没有明显的差异,而粉粒和粘粒含量略有增加,土壤由壤土或粉砂质壤土发展为粘壤土或壤质粘土。石沟、土面土壤有机质、全氮、速效氮、磷、钾含量明显下降,其中灌丛草地和原生林地相比石沟土壤分别下降了28.88%、29.77%、23.80%、31.17%、61.74%和49.21%,土面土壤分别下降了45.12%、37.39%、15.86%、36.24%、69.44%和48.00%。石洞土壤养分含量没有明显的下降趋势。
     在喀斯特森林由原生林→灌丛草地演替过程中,石沟和土面土壤脲酶活性、土壤呼吸强度都逐步下降,灌丛草地和原生林地相比,石沟土壤呼吸强度、脲酶、蛋白酶和碱性磷酸酶活性分别下降了34.49%、52.83%、37.50%和27.80%,土面土壤则分别下降了24.09%、74.71%、63.13和43.20%;而石沟土壤过氧化氢酶和蔗糖酶活性分别增强了5.57%和78.36%,土面土壤则分别增强了19.90%和211.11%。灌丛草地和原生林地相比,石洞土壤呼吸强度、脲酶和蛋白酶活性分别下降了6.87%、35.89%和39.27%,而过氧化氢酶和蔗糖酶活性则分别增强了8.51%和63.40%。
     因子分析表明在喀斯特森林由原生林→灌丛草地演替的过程中,第一主因子主要由磷酸酶活性、土壤呼吸强度、有机质、全氮、全磷、缓效钾、碱解氮、速效磷和速效钟决定,第二主因子主要由脲酶活性和pH值决定,第三主因子主要由蛋白酶活性决定,第四主因子主要由粘粒含量决定。
     进行相应计算表明,原生林地、次生林地、灌木林地和灌丛草地石沟土壤土壤退化指数(DI)分别为0%、-14.32%、-25.59%和-37.72%,石洞土壤土壤退化指数分别为0%、2.16%、7.63%和-9.77%,土面土壤土壤退化指数分别为0%、-28.80%、-41.19%和-45.72%;而石沟土壤质量综合指数(QI)分别为83.48%、63.18%、42.35%和10.64%,石洞土壤质量综合指数分别为42.43%、60.83%、75.30%和27.22%,土面土壤质量综合指数分别为83.97%、38.64%、28.62%和24.70%。
The soil physical and chemical properties, the soil enzyme activities and the soil respiration during the process of forest degradation were studied to provide the theoretical baswas for revegetation in Karst region with the frail ecosystem. And mainly draws following conclusion:
     There was great difference between each micro-habitats for the soil physical and chemical properties, the soil enzyme activities and the soil respiration in the karst virgin forest ecosystem. Most of the texture were loam soil in each micro-habitats, the quantity of the soil aggregate were many, the content of the soil clay particle in the Stone cave and Rocky crevice were high in mean relative, besides the soil sand particle in the Stone pit were high. The content of organic matter were high in the soil of the Rocky crevice and Stone pit, it was 5.54 and 4.87 times of the Stone cave respectively. In the original forest, there was a same trend between the content changes of organic matter, total nitrogen, available nitrogen, Available P and the Available K in each micro-habitats, it was that Rocky crevice > Stone pit > Rocky gully > Soil surface > Stone cave. Except for the soil urease and Proteinase the soil respiration, the soil Catalase activities, alkaline Phosphatase activities and the soil alkaline activities were higher in Rocky crevice than which in other four kind of micro-habitats. In a word the soil respiration and each of the soil enzyme activities in Rocky gully, Rocky crevice and Stone pit which were negative orography micro-habitats were higher than which in Stone cave and Soil surface.
     During the process degradation of Karst forest from original forest to secondary forest to bush forest to bush-grass land, the werea sum for the three of the Rocky gully, Stone cave and Soil surface was more than 95% in every type place. There were no obvious difference of the soil sand particle content between the Rocky gully, Stone cave and the Soil surface, but there was a little increased of the soil silt particle and the soil clay particle. There was a trend of the albic soils from silty loam or loam to clay loam or loamy clay. The content of the organic matter, total nitrogen, alkalyswas N, available P, active K were obviously decreased during the process degradation. Among of them the content of the soil Rocky gully in bush-grass land decreased respectively by 28.88%, 29.77%, 23.80%, 31.17%, 61.74% and 49.21%,and the soil surfaced decreased respectively by 37.39%, 15.86%, 36.24%, 69.44% and 48.00%, Compared to which in original forest .There was no obviously decreased of the soil nutrient content in Stone cave.
     During the process degradation of Karst forest from original forest to bush-grass land, the soil urease activities and the soil respiration were gradually decreasing in the soils Rocky gully and Soil surface. Compared to which in original forest, the soil respiration, the soil urease activities, the Proteinase activities and the alkaline Phosphatase activities of the soil Rocky gully in bush-grass land decreased respectively by 34.49%,52.83%,37.50% and 27.80%, while the soil respiration and the three soil enzyme activity of the soil surface in bush-grass land decreased respectively by 24.09%,74.71%,63.13 and 43.20%. Contrast with the soil Catalase activities and the Invertase activities of the Rocky gully in bush-grass land increased respectively by 5.57% and 78.36%, Compared to 19.90% and 211.11% of the Soil surface. Compared to which in original forest, the soil respiration, the soil urease activities and the Proteinase activities of the soil Stone cave in bush-grass land decreased respectively by 6.87%,35.89% and 39.27%,oppositely the soil Catalase activities and the Invertase activities increased respectively by 8.51% and 63.40%.
     The result of the principal factor analysis demonstrates that: during the process degradation of Karst forest from original forest to bush-grass land, the first principal factor determined by Phosphatase activities, the soil respiration, organic matter, total nitrogen, total phosphorus, slowly available K, available nitrogen, Available P , the Available K; the second principal factor determined by the soil urease activities and pH; the third principal factor determined by Proteinase activities; the forth principal factor determined by soil clay particle content.
     The result of the corresponding calculation analysis demonstrates that: The Soil Deterioration Index of soils rocky gully in original forest land, secondary forest land, bush forest land and the bush-grass land were 0%, -14.32%, -25.59% and 37.72% respectively. While the Soil Deterioration Index of Stone cave soils respectively were 0%, 2.16%, 7.63% and -9.77%, the Soil Deterioration Index of Soil surface respectively were 0%、-28.80%、-41.19% and -45.72%. Compared with this, the Soil Quantity Index of rocky gully soils in original forest land, secondary forest land, bush forest land, bush-grass land were 83.48%, 63.18%, 42.35% and 10.64% respectively. The Soil Quantity Index of Stone cave soils were 42.43%, 60.83%, 75.30% and 27.22% respectively. The Soil Quantity Index of Soil surface were 83.97%, 38.64%, 28.62% and 24.70% respectively.
引文
[1]万洪富,何江华.广州市白云山风景名胜区土壤及其质量评价.生态科学,1995(1):62-65.
    [2]马强,宇万太,赵少华等.黑土农田土壤肥力质量综合评价.应用生态学报,2004,15(10):1916-1920.
    [3]王世杰,卢红梅,周运超等.茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法[J].土壤学报.2007,44(3):475-484.
    [4]王世杰,季宏军,欧阳自远等.碳酸盐岩风化成土的初步研究[J].中国科学(D辑),1999,29(5):441-449.
    [5]王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101-105.
    [6]王效举,龚子同.亚热带小区域水平上土壤质量时空变化的定量化评价[J].热带亚热带土壤科学,1996,5(4):229-231.
    [7]王效举,龚子同.红壤丘陵区小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-149.
    [8]王博文,陈立新.土壤质量评价方法述评[J].中国水土保持科学,2006,4(2):120-126.
    [9]王德炉,朱守谦,黄宝龙.石漠化的概念及其内涵[J].南京林业大学学报,2004,28(6):87-90.
    [10]王德炉,喻理飞.喀斯特环境生态脆弱性数量评价[J].南京林业大学学报(自然科学版),2005,29(6):23-26.
    [11]邓集余.洞庭湖地区地球化学土壤质量分区及评价[J].湖南地质,1997,16(3):193-196.
    [12]付强,王志良,梁川.基于RAGA的PPC模型在土壤质量变化评价中的应用研究[J].水土保持学报,2002,16(5):108-111.
    [13]冯贵颖,朱明莪,呼世斌.土壤粘粒吸附脲酶量的影响因子研究[J].西北农业大学学报,1999,27(4):48-52.
    [14]卢红梅.喀斯特石漠化过程中的土壤生物地球化学特征—以贵州花江查耳岩小流域为例[D].中国科学院研究生院博士学位论文,2006,6.
    [15]卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报,2003,34(1):56-59.
    [16]龙健,李娟,江新荣.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004,41(4):598-602.
    [17]龙健,李娟,江新荣等.喀斯特石漠化地区不同恢复和重建措施对土壤质量的影响[J].应用生态学报,2006,17(4):615-619.
    [18]龙健,李娟,汪境仁等.典型喀斯特地区石漠化演变过程对土壤质量性状的影响[J].水土保持学报,2006,20(2):77-81.
    [19]龙健,李娟,黄昌勇.我国西南地区的喀斯特环境与土壤退化及其恢复[J].水土保持学报,2002,16(5):5-8.
    [20]龙健,邓启琼,江新荣等.西南喀斯特地区退耕还林(草)模式对土壤肥力质量演变的影响.应用生态学报,2005,16(7):1279-1284.
    [21]龙健,黄昌勇,李娟.喀斯特山区土地利用方式对土壤质量演变的影响[J].水土保持学报,2002,16(1):76-79.
    [22]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [23]刘方,王世杰,罗海波,等.喀斯特森林生态系统的小生境及其土壤异质性[J].土壤学报,2008,45(6):1055-1062.
    [24]刘方,王世杰,刘元生等.喀斯特石漠化过程土壤质量变化及生态环境影响评价[J].生态学报,2005,25(3):639-644.
    [25]刘世梁,傅伯杰,陈利顶等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境,2003,12(5):422-426.
    [26]刘占锋,傅伯杰,刘国华等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913.
    [27]刘崇洪.几种土壤质量评价方法的比较[J].干旱环境监测,1995,10(1):26-29.
    [28]孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-368.
    [29]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    [30]朱守谦.喀斯特森林生态研究(Ⅰ)[M].贵阳:贵州科技出版社,1993:52-62.
    [31]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [32]齐伟,张凤荣,牛振国等.土壤质量时空变化一体化评价方法及其应用[J].土壤通报,2003,34(1):1-5.
    [33]吴志峰,文雅,张坚.广州市长虹苗圃的土壤质量评价[J].中国园林,2001(5):69-70.
    [34]张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,36(4):598-603.
    [35]张伟华,武永智,苏晓东.草原土壤质量评价及其应用研究初探[J].内蒙古农业科技,2000(增刊):115-118.
    [36]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,6:298-305.
    [37]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    [38]张贞,魏朝富,高明等.土壤质量评价方法进展[J].土壤通报,2006,37(5):1000-1005.
    [39]张邦琨,张萍,赵云龙.喀斯特地貌不同演替阶段植被小气候特征研究[J].贵州气象,2000,24(3):17-21.
    [40]张学雷,张甘霖,龚子同.SOTER数据库支持下的土壤质量综合评价[J].山地学报,2001,19(4):377-380.
    [41]张焱华,吴敏,何鹏,等.土壤酶活性与土壤肥力关系的研究进展[J].安徽农业科学,2007,35(34):11139-11142
    [42]张殿发,王世杰.贵州喀斯特山区生态环境脆弱性的研究[J].地理学与国土研究,2002,18(1):77-79.
    [43]李阳兵,高明,魏朝富等.土地利用对岩溶山地土壤质量形状的影响[J].山地学报,2003,21(1):40-49
    [44]李阳兵,谢德体,魏朝富.岩溶生态系统土壤及表生植被某些特性变异与石漠化的相关性[J].土壤学报,2004,41(2):196-202.
    [45]李阳兵.岩溶生态系统基础理论与恢复重建实践研究[R].中国科学院地球化学研究所博士后研究工作报告,2004.
    [46]李瑞玲.贵州岩溶地区土地石漠化形成的自然背景及其空间地域分异[D].中国科学院研究生院博士学位论文,2004.
    [47]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-160.
    [48]杨娟,李静,宋永昌等.受损常绿阔叶林生态系统退化评价指标体系和模型[J].生态学报,2006,26(11):3749-3756.
    [49]邱莉萍.培肥土壤酶的空间变异规律.西北农林科技大学硕士论文[D],2004.
    [50]陈松林.福州海岛耕作土壤质量的定量评价[J].福建师范大学学报:自然科学版,1996,12(3):84-88.
    [51]陈思凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价明[J].土壤学报,2001,38(1):49-53
    [52]周礼恺.土壤酶学[M].科学出版社,1987,5.
    [53]周礼恺.土壤酶的活性[J].土壤学进展,1980,8(4):9-15.
    [54]周政贤.茂兰喀斯特森林科学考察集[M].贵阳:贵州科学技术出版社,1987:1-23.
    [55]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [56]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131-134.
    [57]侯文广,江聪世,熊庆文等.基于GIS的土壤质量评价研究.武汉大学学报:信息科学版,2003,28(1):60-64.
    [58]胡月明,吴谷丰,江华等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报:自然科学版,2001,29(4):39-42.
    [59]胡建忠.山杨混交类型生产力及土壤质量综合评价[J].水土保持研究,1995,2(1):44-50.
    [60]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417-421.
    [61]贵州省土壤普查办公室.贵州省土壤[M].贵阳:贵州科学技术出版社[J],1994
    [62]赵中秋,后立胜,蔡运龙.西南喀斯特地区土壤退化过程与机理探讨[J].地学前缘,2006,13(3):185-189.
    [63]赵世伟,苏静,杨永辉等.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究,2005,12(3):27-29.
    [64]赵其国,孙波,张桃林.土壤质量与持续环境-土壤质量定义与评价方法[J].土壤,1997,29(3):113-120.
    [65]徐秋芳,朱志建,俞益斌.不同森林植被下土壤酶活性研究[J].浙江林业科技,2003,23(4):9-11
    [66]秦明周,赵杰.城乡结合部土壤质量变化特点与可持续性利用对策:以开封市为例[J].地理学报,2000,55(5):545-554.
    [67]聂跃平.碳酸盐岩性因素控制下喀斯特发育特征一以黔中南为例[J].中国岩溶,1994,13(1):31-36.
    [68]高晓晶.北京市房山区土壤质量评价研究[J].首都师范大学硕士学位论文.2007.6.
    [69]屠玉麟.贵州喀斯特灌丛群落类型研究[J].贵州师范大学学报,1995,13(5):8-9.
    [70]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(3):37-44.
    [71]曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [72]黄宇,汪思龙,冯宗炜.不同人工林生态系统林地土壤质量评价[J].应用生态学报,2004,15(12):2199-2205.
    [73]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-496.
    [74]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,200323(10):2176-2183.
    [75]鲁如坤.土壤农业化学分析法[M].北京:中困农业科技出版社,1998.
    [76]蔡红,沈仁芳.改良茚三酮比色法测定土壤蛋白酶活性的研究[J].土壤学报,2005,42(2):306-313.99.
    [77]潘峰,梁川,付强.基于层次分析法的物元模型在土壤质量评价中的应用[J].农业现代化研究,2002,23(2):93-96.
    [78]戴礼洪,闫立金,周莉.贵州喀斯特生态脆弱区植被退化对土壤质量的影响及生态环境评价[J].安徽农业科学,2008,36(9):3850-3852.
    [79]Anderson T.H.,K.H.Domsch.Application of eco-physiological quotients(qCO_2and qO)on microbial biomass from soils of different cropping histories.Soil Biology and Biochemis try,1990,22:251-255.
    [80] Craig AD, Arlene JT. Soil QualityFieldTools: Experiences of USDA-NRCS Soil Quality Institute. Agron J, 2002, 94:33-38.
    [81] Dick R.P.,Breakwill D.,Turco R.Soil enzyme activities and biodiversity measurements as integrating biological indicators.In: Doran J.W.and Jones A.J.Editors,Handbook of Methods for Assessment of soil quality,SSSA,Madison USA,1996: 247-272.
    [82] Doran J W M.Sarrantonio,M.A.Liebig.Soil health and sustainability[J]. Adv.Agric. 1996, (56): 1-54.
    
    [83] Duxbury J.M.,S.V.Nkambule.in: Defining Soil Quality for a Sustainable Environment. 125-146.SSSA, Inc.,Madis on, Wisconsin USA,1994.
    [84] Ericksen P J, Ardon M. Similarities and differences between farmer and scientist views on soil quality issues in central Honduras[J]. Geoderma, 2003, 111: 233-248.
    [85] Karlen D L, Ditzler C A, Andrews S S.Soil quality: why and how? [J]. Geoderma, 2003, 114:145-156.
    [86] Kennedy,A.C.,R.J.Papendick,Microbial characteristics of soil quality.Journal of Soil and Water Conservation, 1995,50: 243-248.
    
    [87] Larson W.E,F.J.Pierce.in: Defining Soil Quality for a Sustainable Environment.37-52.Soil Science Society of America,Inc,Madison,Wisconsin USA, 1994.
    [88] Pulido J S, Bocco G. The traditional farming system of a Mexican indigenous community: the case of Nuevo San Juan Parangaricutiro, Michoacan, Mexico[J]. Geoderma, 2003, 111:249-265.
    [89] Raich J W and Schelesinger W H .The global carbon dioxide flux in soil respiration and it's relationship to vegetation and climate Tellu .1992,448,81-99.
    [90] Soil and Water Conservation Society.Farming for a better environment-A white paper[N]. Soil Water Conservation.Society.Ankeny.Iowa, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700