用户名: 密码: 验证码:
净化空气矿棉板的制备及其净化甲醛性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气的污染已经成为世界各国广泛关注的环境问题之一,甲醛作为一种常见的空气污染物,已经被世界卫生组织确定为致癌和致畸物质,对其进行有效处理受到了国内外普遍的关注。光催化技术作为提高室内空气质量的高科技前沿净化技术,由于其具有广泛性、彻底性、安全性和持久性等特点而世界瞩目。光催化技术的应用与光触媒的固载技术是目前研究的热点,如何提高光催化降解效率,降解室内较低浓度有害气体一直是改善室内空气品质的前沿课题。本课题主要针对光触媒的应用和固载技术,开发出一种能直接净化室内有害气体的新型建筑材料-净化空气矿棉板,该产品可提高光催化净化效率,对改善室内空气质量具有十分重要的意义。本文研究内容及结论总结如下:
     (1)采用静态方法,以甲醛为降解对象,对多种市售光触媒产品进行筛选实验,并对筛选出的光触媒进行XRD、EDS、TEM、SEM、BET等表征分析,结果表明该催化剂为Cu掺杂改性的TiO_2,TiO_2的晶型包括锐钛型和金红石型。
     (2)采用激光粒度仪法、流变法和机械搅拌—沉降法对该光触媒进行分散研究,挑选出H5040作为分散剂,对光触媒进行预分散。
     (3)把预分散的光触媒浆液添加到基础涂料—苯丙乳液内墙涂料中,搅拌分散后得光催化涂料。该涂料中光触媒最佳添加量为4%。该光催化涂料,对甲醛有较高的降解效率,且涂料的基本性能符合GB/T9756-2001《合成树脂乳液内墙涂料》的标准。
     (4)本文对净化空气矿棉板净化甲醛效率的影响因素进行了研究。结果表明:保持温度21℃,相对湿度60%,净化空气矿棉板对甲醛的去除率随着甲醛溶液注入量的增加迅速增加,至某一浓度后,增加趋于缓慢,基本保持不变;保持温度21℃,甲醛溶液注入量为10μL,净化空气矿棉板对甲醛的去除率随相对湿度的增加先升高后降低,当湿度为60%时,去除效率最高;保持湿度60%,甲醛溶液注入量为10μL,在室温范围内,净化空气矿棉板对甲醛的去除率随着温度的升高缓慢增加。
     (5)所制备的净化空气矿棉板与普通矿棉板、光催化涂料相比,对甲醛的净化性能显著提高。净化空气矿棉板经过四天饱和实验后,对甲醛的净化效率仍能达到85%,净化效果显著。
At present, the pollution of indoor air has considerably been taken attention abroad as an important environmental problem. Formaldehyde as ubiquitous pollution species in the air is considered to cause cancer and abnormality by WHO. The effective treationg process for decomposing formaldehyde have been increasingly concerned. The photocatalysis technology, as an advanced high-tech purification technology, is paid great attention in the world due to the fact that it can degrade a broad range of volatile organic compounds(VOC_s) to H_2O and CO_2 at room temperature and atmos pheric pressure. The application and loaded techniques of photocatalysis are hot spots at present. How to improve the photocatalytic degradation efficiency of low-contamination volatile organic compounds is the forward study in improved the air quality field. This study has prepared a kind of new building materials-air purification mineral wool board, aiming at application and loaded techniques of photocatalysis, which can purify of indoor volatile organic compounds directly. The mineral wool board can improve the purifying efficiency, which has a vital significance for improving indoor air quality. The contents and conclusions are as follows:
     (1) Photocatalysis were selected using static method, among which show the best merit to photodegrade of formaldehyde. The seleted photocatalysis was characterized by XRD, EDS, TEM, SEM and BET. The results indicated that the photocatalysis was Cu doped anatase titanium dioxide and rutile titanium dioxide.
     (2) Adopting laser particle analyzer, rheology and mechanical agitation to select dispersion agent which can improve dispersion of photocatalysis. The results indicated that H5040 as dispersion agent can disperse photocatalysis better.
     (3) Dispersed photocatalysis was added to a kind of styrene-acrylic interior wall coationg to perpare a kind of photocatalytic coating. Photocatalytic coating was obtained after mechanical agitating. Addition quantity of photocatalysis was 4%. This photocatalytic coating has better degradation efficiency of formaldehyde, and also meet GB/T9756-2001 criterion.
     (4) In this study, the influence on purifying formaldehyde by the air purification mineral wool was discussed. The result indicated that temperature at 21℃, humidity at 60%, the purifying efficiency of formaldehyde has increased rapidly first, then slowly to fixed value with the enhance of formaledehyde concentration; temperature at 21℃, humidity at 60%, formaledehyde concentration of 10μL, the purifying efficiency of formaldehyde increased at first and then decreased, when humidity at 60%, has the best efficiency; humidity at 60%, formaledehyde concentration of 10μL, at the range of room temperature, the purifying efficiency of formaldehyde slowly increasedwith temperature.
     (5) Air purification mineral wool board compared with ordinary mineral wool board and photocatalytic coatings, has improve purifying efficiency of formaldehyde.After four days saturated experiment , the purifying efficiency of formaldehyde by air purification mineral wool board still reached at 85%.
引文
[1]朱天乐.室内空气污染控制[M].北京:化学工业出版社,2003.1-10
    [2]周中平,赵寿堂,朱立,等.室内污染检测与控制[M].北京:化学工业出版社,2002.391-395
    [3]Sundell J.On the history of indoor air quality and health[J].Indoor Air,2004,14:51-58
    [4]Weschler C J.Ozone in the indoor environment:concentration and chemistry[J].Indoor Air,2000,10:269-288
    [5]杨莉萍.集中空调系统中光催化降解室内甲醛的研究[D].上海:上海交通大学,2007
    [6]National Research Council.Indoor Pollutants[M].National Academy Press:Washington D C,1981.23-24
    [7]Hays S M,Gobbell R V,Ganick N R.Indoor air quality:solutions and strategies[M].McGraw-Hill:New York,1995.74-75
    [8]胡洪营,张旭,黄霞.环境工程原理[M].北京:高等教育出版社,2005
    [9]Saarela K,Tirkkonen K,Laine-Ylijoki J,et al.Exposure of population and microenvironmental distributions of volatile organic compound concentrations in the EXPOLIS study[J].Atmospheric Environment,2003,37:5563-5575
    [10]杨瑞.纳米材料光催化降解VOCs的研究[D].北京:清华大学,2006
    [11]陈清,余刚,张彭义.室内空气中挥发性有机物的污染及控制措施[J].上海环境科学,2001,20(12):616-620
    [12]张林,戴树桂,宋丽香.室内空气中芳香烃的测定与污染源模拟[J].环境科学,1998,19(5):63-65
    [13]Koppmann R.Volatile Organic Compounds in the Atmosphere[M].Blachwell Ltd:Oxford,U K,2007.40-55
    [14]曹守仁.室内空气污染与测定方法[M].北京:中国建筑工业出版社,1988
    [15]Ao C H,Lee S C.Indoor air purification by photocatalyst TiO_2 immobilized on an activated carbon filter installed in an air cleaner[J].Chemical Engineering Science,2005,60:103-109
    [16]丁云飞,丁静.室内挥发性有机化合物及其炭吸附净化[J].现代化工,2004,(增刊):60-62
    [17]庞成勇,李玉平.用活性炭吸附法脱除氮氧化物的研究[J].能源环境保护,2006,20(6):38-41
    [18]蔡健,胡将军,张雁.改性活性炭纤维对甲醛吸附性能的研究[J].环境科学与技术,2004,27(3):16-19
    [19]刘守新.活性炭光再生技术与TiO_2-活性炭协同作用机制研究[D].哈尔滨:东北林业大学,2002
    [20]许钟麟.空气洁净技术原理(第三版)[M].北京:科学出版社,2003.
    [21]Chen Z M,Sarowm A F.Mercury oxidation in coal-fired utility boilers:Validation of gas-phase kinetic models[A].Proceedings of the Air & Waste Management Association'S 95th Annual Conference & Exhibition[C].Baltimore M D,2002,23-27
    [22]刘刚,艾庆文.静电净化器内电场的设计与实验研究[J].东华大学学报(自然科学版),2005,31(5):81-84
    [23]Chih C W,Lee G W M.Oxidation of volatile organic compounds by negative air ions[J].Atmospheric Environment,2004,38(37):6287-6295
    [24]丁云飞,王高飞,陈延东,等.负离子分解室内有机化合物的测试[J].涂料工业,2006,36(2)
    [25]苍风波.负离子添加剂在涂料中的应用[J].涂料工业,2004,34(10):60-61
    [26]薄拯.滑动弧放电等离子体处理挥发性有机化合物基础研究[D].杭州:浙江大学,2008.
    [27]Dors M,Mizeraczyk J.NOx removal from a flue gas in a corona discharge-catalyst hybrid system[J].Catalysis Today,2004,89(1-2):127-133
    [28]郭玉芳,叶代启.废气治理的低温等离子体-催化协同净化技术[J].环境污染治理技术与设备,2003,4(7):41-46
    [29]吴江霞,蔡忆昔,赵卫东,等.低温等离子体处理柴油机有害排放试验[J].江苏大学学报(自然科学版),2006,27(3):225-228
    [30]Penetrante,Brusasco,Merritt,et al.Plasma-assisted catalytic storage reduction system[P].US,6038853.2000-03-21
    [31]Fujishima A,Honda K.Electrochemical photolysis of water at semiconductor electrode[J].Nature,1972,238:37-38
    [32]Nonami T,Hase H,Funakoshi K.Apatite-coated titanium dioxide photocatalyst for air purification[J].Catalysis Today,2004,96:113-118
    [33]Wang H,Zeng L K,Huang L H,et al.Preparation of TiO_2 photocatalytic coatings[J].Journal of south China University of Technology:Natural Science Edition,2005,33(3):28-30
    [34]Mills A,Wang J,Mcgrady M.Method of rapid assessment of photocatalytic activities of self-cleaning films[J].The Journal of Physical Chemistry B,2006,110(37):18324-18331
    [35]严春芳,李翔,魏刚.纳米二氧化钛光催化剂的涂料固载及光催化性能[J].北京化工大学学报,2008,35(2):50-54
    [36]Cao S,Yeung K L,Yue P L.Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase,photocatalytic oxidation of VOCs[J].Applied Catalysis B:Environmenta,2006,68(3/4):99-108
    [37]左国民,徐敏,程振兴,等.挥发性有机物的气相光降解及光催化降解研究[J].分子催化,2001,15(6):463-466
    [38]徐安武,刘汉卿,李玉光.NOx气相光催化氧化降解研究[J].高等学校化学学报,2000,21(8):1252-1256
    [39]周宇松,陈良灯,王群利,等.不同工艺参数下纳米光催化分解甲醛试验研究[J].环境科学与技术,2003,26(4):6-10
    [40]Yoshika S,Atsushi N.Oxidative decomposition of formaldehyde by metal oxides at room temperature[J].Atmospheric Environment,2002,36:5543-5547
    [41]Saadoun L,Ayllon J A.Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites[J].Materials Research Bulletin,2000,35:193-202
    [42]Ao C H,Lee S C,Yu J Z,et al.Photodegradation of Formaldehyde by Photocatalyst TiO_2:Effects on the Presences of NO,SO_2 And VOCs[J].Applied Catalysis B:Environmental,2004,54:41-50
    [43]Brusa M A,Dilorio Y,Churio M S,et al.Photocatalytic air oxidation of cyclohexane in CH_2C_(12)-C_6H_(12) mixtures over TiO_2 particles:an attempt to rationalize the Positive Effect of Dichloromethane on the Yields of Valuable Oxygenates[J].Journal of Molecular Catalysis A:Chemical,2007,268(1-2):29-35
    [44]耿启金.纳米TiO_2改性多功能建筑涂料的制备与性能研究[J].新型建筑材料,2005(12):30-33
    [45]訾学红.纳米光催化建筑材料降解室内外有害气体的应用研究[D].北京:北京工业大学,2003
    [46]Obuchi E,Sakamoto T,Nakano K.Photocatalytic decomposition of acetaldehyde over TiO_2/S-TiO_2[J].Atmospheric Environment,2008,42:4101-4112
    [47]Tsoukleris D S,Maggos T,Vassilakos C,et al.Photocatalytic degradation of volatile organics on TiO_2 embedded glass spherules[J].Catalysis Today,2007,129:96-101
    [48]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997.113-116
    [49]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [50]庞成勇,李玉平.用活性炭吸附法脱除氮氧化物的研究[J].能源环境保护,2006,20(6):38-41
    [51]Srivastava R,Hutson N,Princiotta F.Reduction of mercury emission from coal-fired electric utility boilers[C].The DOE/NETL's Mercury Control Technology R&D Program Review,Pittsburgh,P A,Julyl2,2005
    [52]许绿丝.改性处理活性炭纤维吸附氧化脱除SO_2/NOx/Hg的研究[D].武汉:华中科技大学,2007
    [53]Zhu Z P,Liu Z Y,Liu S J,et al.NO reduction with NH_3 over an activated carbon-supported copper oxide catalysts at low temperatures[J].Applied Catalysis B:Enviromental,2000,26:25-35
    [54]Tang Q,Zhang Z G,Zhu W P,et al.SO_2 and NO selective adsorption properties of coal-based activated carbons[J].Fuel,2005,84:461-465
    [55]Li Y H,Lee C W,Gullett B K.Importance of activated carbon oxygen surface functional groups on elemental mercury adsorption[J].Fuel,2003,82:451-457
    [56]Wilde J D,Das A K,Heynderickx G H,et al.Development of a Transient Kinetic Model for the Simultaneous Adsorption of SO_2-NOx over Na/γ-Al_2O_3 Sorbent[J].Industrial & Engineering Chemistry Research,2001,40(1):119-130
    [57]Ao C H,Lee S C,Yu J Z,et al.Photodegradation of formaldehyde by photocatalyst TiO_2:effects on the presences of NO,SO_2 and VOCs[J].Applied Catalysis B:Environmental,2004,54:41-50
    [58]Esterkin C R,Negro A C,Alfano O M,et al.Airpollution remediation in a fixed bed photocatalytic reactor coated with TiO_2[J].AIChEJ,2005,51(8):2298-2310
    [59]Yu H L.Study on photocatalytic oxidation of VOCs using nano-TiO_2 photocatalyst[D].Shang Hai:Tong Ji University,2005
    [60]Yu H L,Zhang K L,Rossi C.Theoretical study on photocatalytic oxidation of VOCs using nano-TiO_2 photocatalyst[J].Journal of Photochemistry and Photobiology A:Chemistry,2007,188:65-73
    [61]Guan L,Suenaga K,Okazaki T,et al.Coalescence of C_(60) molecules assisted by doped Iodine inside carbon[J].Joumal of the American Chemical Society,2007,129:8954-8955
    [62]Eckhard F,Vanderwerf A J,Veneri R,et al.Removal of organic trace contaminants using a biological air filter(BAF)[P].SAE Technical Paper Series,2000,No.2000-01-2471
    [63]Hogan J A,Qiao F,Strom P E Air biofilter design and integration in ALS systems:effect of inlet gas carbon andnitrogen properties[P].SAE Technical Paper Series,2003,No.2003-01-2562,
    [64]Tomkiewicz M.Scaling properties in photocatalysis[J].Catalysis Today,2000,58:115-123
    [65]Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95:69-76
    [66]Matsushita S,Miwa T,Fujishima A.Preparation of a new nanostructured TiO_2 surface using a two-dimensional array-based template[J].Chemistry Letters,1996,925
    [67]Matsushita S,Miwa T,Tryk D A,et al.New mesostructured porous TiO_2 surface prepared using a two-dimensional array-based template of silica particles[J].Langrnuir,1998,14:6441-6447
    [68]Ohko Y,Hashimoto K,Fujishima A.Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films[J].The Journal of Physical Chemistry A,1997,101:8057-8062
    [69]Semenikhin O A,Kazarinov V E,Jiang L,et al.Suppression of surface recombination on TiO_2anatase photocatalysts in aqueous solutions containing alcohol[J].Langmuir,1999,15:731-3737
    [70]Ishibashi K,Fujishima A,Watanabe T,et al.Quantum yields of active oxidative species formed on TiO_2 photocatalyst[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,134:139-142
    [71]Zhang Y H,Zhang H X,Xu Y X,et al.Europium dopednanocrystalline titanium dioxide:Preparation,phase transformation and photocatalytic properties[J].Journal of Materials Chemistry,2003,13(9):2261-2265
    [72]Sawunyama P,Fujishima A,Hashimoto K.Photocatalysis on TiO_2 surfaces investigated by atomic force microscopy:photodegradation of partial and full monolayers of stearic acid on TiO_2(110)[J].Langmuir,1999,15:3551-3556
    [73]Liu H Y,Gao L.(Sulfur,Nitrogen)-Codoped Rutile-Titanium Dioxide as a Visible-Light-Activated Photocatalyst[J].Journal of the American Ceramic Society,2004,87(8):1582-1584
    [74]赵地顺,张娟,孙增涛,等.活性炭负载TiO_2光催化氧化二苯并噻吩的研究[J].燃料化学学报,2008,36(3):322-325
    [75]孟宪谦,薛友祥,等.TiO_2光触媒担载多孔陶瓷室内空气净化元件的研究[J].现代技术陶瓷,2004,4:16-18
    [76]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995
    [77]Bear J.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983
    [78]W M Kays and M E Crawford.Heat and Mass Transfer[M].Moscow:Mir Publishers,1980
    [79]年洪恩,李金洪,刘同义.矿棉吸声板的生产发展现状和展望[J].中国建材科技,2006,15(1):13-19
    [80]姜继圣,罗玉萍,兰翔.新型建筑绝热、吸声材料[M].北京:化学工业出版社,2002
    [81]唐晓雪,余忠.矿棉装饰吸声板的性能与应用[J].山东建材,2003,24(6):32-34
    [82]杨建军,李东旭,李庆霖,等.甲醛光催化氧化的反应机理[J].物理化学学报,2001,17(3):278-281
    [83]张宜恒,陈琦,张橘,等.甲醛光催化的ESR研究[J].化学物理学报,1998,11(5):461-464
    [84]任成军.TiO_2薄膜光催化剂的制备及结构与性能研究[D].成都:四川大学,2004
    [85]L.J.Calbo.涂料助剂大全[M].上海:上海科学技术文献出版社,2000
    [86]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997
    [87]Auvinen J,Wirtanen L.The influence of photocatalytic interior paints on indoor air quality[J].Atmospheric Environment,2008,42:4101-4112
    [88]Yang J J,Li D X,Zhang Z J,et al.A study of the photocatalytic oxidation of formaldehyde on Pt/Fe_2O_3/TiO_2[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,137:197-202
    [89]魏刚,黄海燕,熊蓉春.纳米二氧化钛的光催化性能及其在有机污染物降解中的应用[J].现代化工,2003,23(1):20-23
    [90]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700