用户名: 密码: 验证码:
铜离子对嗜酸氧化亚铁硫杆菌ATCC 23270谷胱甘肽相关酶基因表达水平的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans, A.ferrooxidans)是重要的生物浸出功能菌,它通过氧化亚铁、元素硫和还原性含硫化合物获得生长所需能量,其亚铁和硫氧化活性决定着它的生物浸出能力。谷胱甘肽(GSH)及其相关酶系在A.ferrooxidans硫氧化过程中发挥着重要作用,但易受到重金属离子的影响,目前相关的影响机制仍不清楚。因此,开展重金属离子对A.ferrooxidans ATCC 23270谷胱甘肽相关酶基因表达水平的影响具有重要的理论实践指导意义。
     本文针对铜离子对A.ferrooxidans ATCC 23270谷胱甘肽相关酶基因表达水平的影响开展如下两部分研究工作:
     一,研究铜离子浓度对细菌生长,GSH含量以及相关酶活性变化的影响。结果表明:(1)在设定的铜离子浓度范围内并没有抑制A.ferrooxidans的硫氧化活性;(2)随着铜离子浓度的增高,GSH含量以及相关酶活性都会降低。但是这个降低并不与铜离子浓度呈单纯的线形关系,总体上表现为先下降后上升的趋势;(3)当铜离子浓度低于0.12mol/L时,GSH的含量随之缓慢减少,A.ferrooxidans处于耐受状态,此时清除活性氧基团(ROS)主要是由GSH完成的。但随着铜离子浓度的增高,GSH的清除能力已经不能满足细菌体的需要,此时超氧化物歧化酶(SOD)与过氧化氢酶(CAT)的活性开始上升,直至细菌死亡
     二,用实时荧光定量PCR方法研究铜离子对谷胱甘肽相关酶基因表达的影响。结果表明:(1)铜离子胁迫时所有10个谷胱甘肽相关酶的基因均表达上调,在铜离子0.08 mol/L时表达量达到最大值,特别是编码谷胱甘肽硫转移酶(GST)和谷胱甘肽还原酶(GR)的基因表达上调最为明显。尤其在铜离子为。(2)在铜离子胁迫的60 min内,细菌中的谷胱甘肽相关酶基因先随时间增加呈下调表达,尔后基因表达量迅速上调,说明A.ferrooxidans的相关快速自我调节机制可以使其对铜离子胁迫具有适应性。
     这些结果可能有助于了解A.ferrooxidans应答重金属离子刺激时的细胞保护机制,从而用于指导高抗重金属菌株的分离和选育。
As an important biological leaching bacteria, Acidithiobacillus ferrooxidans grown by oxidation of ferrous, elemental sulfur and reduced sulfur compounds, the oxidation activity of the ferrous and sulfur determines the ability of its bio-leaching.Glutathione (GSH) and related enzymes plays an important role in the A.ferrooxidans sulfur oxidation, but vulnerable to the effects of heavy metal ions, the current impact of the relevant mechanisms remain unclear. Therefore, it is a great theoretical significance to evaluate the effect of heavy metal ions on the gene expression of the GSH-related enzymes in A.ferrooxidans ATCC 23270.
     In order to know the effect of copper exposure on expression of GSH-related genes in A.ferrooxidans ATCC 23270,two parts of works were completed in this study.
     1. Evaluation of the effect of Cu2+ on growth, content of GSH and activity of GSH-related genes encoding enzymes.The results show that:(1) At the setting series of concentrations Cu2+ did not inhibit the growth of the A.ferrooxidans; (2)With the increasing of Cu2+ concentration, the content of GSH and the activity of GSH-related enzymes decrease.(3)With addition of less than 0.12 mol/L of Cu2+,the content of GSH decrease slowly,but maintaining basically the resistance to Cu2+ stress through possible removal of reactive oxygen species (ROS) by GSH. With addition of higher Cu2+, however, the superoxide dismutase(SOD) and catalase (CAT) activity begin to rise,when the scavenging of ROS by GSH can no longer meet the need of cells, and the cells tent to be dying.
     2.Evaluation of the effect of Cu2+ exposure on expression of GSH-related genes by Real-time PCR.The result shows that:(1)The expression of all the 10 GSH-related genes, especially the glutathione-S transferases (GST) encoding gene gst and the glutathione reductase (GR) encoding gr, were up-regulated, and with maximal expression at 0.08 mol/L of Cu2+ exposure.(2) During the exposure of Cu2+in 60 min, the expression of the GSH-related genes down-regulated at the beginning and finally up-regulated, indicating A.ferrooxidans could be adaptive to the Cu2+ stress in a relatively quick self-adjust way.
     These results could contribute the evaluation of cellular protection mechanisms of A.ferrooxidans from the stress of some heavy metals, and thus useful to guide the isolation and breeding of bacterial strains with high-resistance to heavy metals.
引文
[1]李一夫,刘红湘,戴永年.生物技术在湿法冶金中的应用[J].湿法冶金,2006,25(4):169-171.
    [2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003:9-12.
    [3]裘荣庆.微生物冶金的研究和应用现状[J].微生物学通报,1995,22(3):180-183.
    [4]Natarajan K A, Kumari A. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules[J].Minerals Engineering,2002,15:103-106.
    [5]Brierley C L.Research to Commercial Development and Beyond[A].In:Springer Verlag and Landes Bioscience. Mining Biotechnology[M].New York,1997:13-15.
    [6]冯树,张忠泽.混合类—一类值得重视的微生物资源[J].世界科技研究与发展.2000,22(3):44-47.
    [7]魏以和,王军,钟康年.矿物生物技术的微生物学的基本方法[J].国外金属矿选矿,1996,14(1):14-27.
    [8]乐长高,姜国芳,刘云海.氧化亚铁硫杆菌生物冶金的新进展[J].生物技术,2003,13(3):45-47.
    [9]张英杰,杨显万.硫化矿细菌浸出机理[J].有色金属,1997,49(4):39-44.
    [10]刘清,徐伟昌,聂春龙,等.我国浸矿微生物研究的发展概况[J].南华大学学报(理工版),2002,17(1):21-24.
    [11]耿冰,郑宇,邸进申.氧化亚铁硫杆菌的生物学特性研究进展[J].生物技术,2004,14(2):71-74.
    [12]童雄,孙永贵.微生物浸出难浸黄铜矿的研究[J].矿产综合利用,1999,4(6):10.
    [13]邓恩建,杨朝晖,曾光明,等.氧化亚铁硫杆菌的研究概况[J].黄金科学技术,2005,13(5):8-12.
    [14]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology,2003,149:1699-1709.
    [15]Prange A, Engelhardt H, Truper H G,et al.The role of the sulfur globule proteins of Allochromatium vinosum:mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR[J].Arch Microbiol,2004,182:165-174.
    [16]郑云郎.谷胱甘肽的生物学功能[J].生物学通报,1995,30(5):22-24.
    [17]沈亚领,李爽,迟莉丽,等.谷胱甘肽的应用与生产[J].工业微生物,2000,30(2): 41-45.
    [18]程时.生物膜与疾病[M].北京:北京医科大学出版社,2000:44-79.
    [19]Rotruck J T, Pope A L, Ganther H E, et al. Prevention of oxidative dam age to rat erythrocytes by dietary selenium[J].J.Nutr,1972,102:689-696.
    [20]Ladenstein R, Marchesini A, Palmieri S.Preliminary crystallographic study of ascorbic acid oxidase from green zucchini squash[J].FEBS Letters,1979, 107:407-408.
    [21]Kleinman W A, John P, Richie J R. Determination of thiols and disfides using high-performance liquid chromatography with electrochemical detection[J]. Chromatography B,1995,672:73-80.
    [22]刘慧,王晓蓉,王为木,等.低浓度锌及其EDTA配合物长期暴露对鲫鱼肝脏锌富集及抗氧化系统的影响[J].环境科学,2005,26(1):173-176.
    [23]徐镜波,郎佩珍.过氧化氢酶活性及活性抑制的测定[J].环境化学,1994,13(3):279-282.
    [24]Sugio T, Katagiri T, Moriyama M, et al.Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans[J]. Appl Environ Microbiol.1988,54(1):153-157.
    [25]王夔.生命科学中的微量元素(第二版)[M].北京:中国计量出版社,1996:195-196.
    [26]孙存普.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999:15-17.
    [27]Haffeman D G, Sunde R A, Hoekstraw G, et al.Effect of dietary selenium an erythrocyte and liver glutathione peroxidase in the rat[J].Nutrition.1974, 104:580-587.
    [28]李铁,张席锦.氧自由基在应激性胃溃疡中的发病学意义[J].生理学报,1993,45(3):286-291.
    [29]刘振玉.谷胱甘肽的研究与应用[J].生命的化学,1995,15(1):19-21.
    [30]Zamorano P L, Mahesh V B,Brann D W. Quantitative Real-time PCR for neuroendocrine studies[J].Neuroendocrinology,1996,63:397.
    [31]Yuan A,Yu C J.Quantification of VEGF mRNA expression in non-small cell lung cancer using a Real-time quantitative reverse transcription-PCR assay and a comparison with quantitative competitive reverse transcription-PCR[J].Lab Invest, 2000,80(11):1671.
    [32]韩俊英,曾瑞萍.荧光定量PCR技术及其应用[J].国外医学遗传学分册,2000,23(3):1771.
    [33]Ramachandran C, Melnick S J. Multidrug resistance in human tumorsmolecular diagnosis and clinical significance[J].Molecular Diagnosis,1999,4:81.
    [34]罗超权.基因诊断与基因治疗进展[M].郑州:河南医科大学出版社,2000:13-25.
    [35]Marino J H, Cook P, Miller K S.Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR[J]. J.Im-munol Methods,2003,283:291-306.
    [36]阳成波,印遇龙,黄瑞林,等.实时定量Real time-PCR的原理及方法[J].免疫学杂志,2003,19(3):145-150.
    [37]Siegling A, Lehmann M, Platzer C, et al.A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rat[J].J Immunol Methods,1994,177(1-2):23-28.
    [38]Bustin S A, Dorudi S.Molecular assessment of tumour stage and disease recurrence using PCR-based assays[J].Molecular Medicine Today,1998,4:389.
    [39]蔡霞.定量PCR技术及其应用现状[J].现代诊断与治疗,2005,16(2):112-115.
    [40]马立人.生物芯片[M].北京:化学工业出版社,2000:12-122.
    [41]Girard B M, May V, Bora S H, et al.Regulation of neurotrophic peptide expression in sympathetic neurons:quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction[J].Regul Peptides,2002,109(1-3):89-101.
    [42]Wickert L, Steinkrljger S,Abiaka M, et al.Quantitative monitoring of the mRNA expression pattern of the TGF-p-isoforms(β1,β2,β3)during transdifferentiation of hepatic stellate cells using a newly developed real-time SYBR Green PCR[J]. Biochemical and Biophysical Research Communications,2002,295(2):330-335.
    [43]Hiroshi S,Kazue O, Yonemura K, et al.Quantitafive PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells:implication of equimolar target and competitor end products[J].Clinica Chimica Acta,2003,328(1-2):147-153.
    [44]Alexandra G,Gilles F, Christians C,et al.Tracking T cell clonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarily-determining region-3-specific probes[J].Journal of Immunological Methods,2002,270(2):269-280.
    [45]Deng X, Li H, Tang Y. Cytokine expression in respiratory syncytial virus-infected mice as measured by quantitafive reversetranscriptase PCR[J].Journal of Virological Methods,2003,107(2):141-146.
    [46]White T M, Mahalingam R, Traina V, et al.Persistence of simian varicella virus DNA in CD4+ and CD8+ blood mononuclear cells for years after intratracheal inoculation of African green monkeys[J].Virology,2002,303(1):192-198.
    [47]Maeda S,Miyauchi T, Iemttsu M, et al. Effects of exercise training on expression of endothelin-1 mRNA in the aorta of aged rats [J].Clin Sci,2002,103:118-123.
    [48]Mitas M,Cole D J, Hoover L, et al. Real-time reverse transcription-PCR detects KS1/4 mRNA in mediastinal lymph nodes from patients with non-small cell lung cancer[J].J Clin Chem,2003,49:312-315.
    [49]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Res,2001,29:45.
    [50]Gibson U E, Heid C A, Williams P M. A novel method for real time quantita-tive RT-PCR[J].Genome Res,1996,6:995-1001.
    [51]Rohwerder T, Gehrke T, Kinzler K, et al.Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterialmetal sulfide oxidation[J]. App Microbiol Biotechnol,2003,63:239-248.
    [52]Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J].App 1 EnvironMicrobiol,1999,65:319-321.
    [53]Schippers A, Sand W. Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur[J].Appl Environ Microbiol,1999,65:319-321.
    [54]Schippers A, Jozsa P G, Sand W. Sulfur Chemistry in Bacterial Leaching of Pyrite[J]. Appl Environ Microbiol,1996,62:3424-3431.
    [55]夏金兰,张成桂,彭安安等.嗜酸硫氧化细菌消解元素硫的研究进展[J].中国生物工程杂志,2006,26(9):91-95.
    [56]Rawlings D E.Characteristics and adap tability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J].Microbial Cell Factories,2005,4:13.
    [57]Umbreit W W, Vogel H R, Vogler K G. The Significance of Fat in Sulfur Oxidation by Thiobacillus Thiooxidans[J].J Bacteriol,1942,43(2):141-148.
    [58]Stegeman J J, Brouwer M, Di Giulio R T, et al.Molecular responses to environmental contamination:enzyme and protein synthesis as indicators of chemical exposure and effects[A].In:Huggett R J, Kimerle R A, Mehrle P M. Biomarkers, biochemical,physiological and histological markers of anthropogenic stress[M].Boca Raton Florida:Lewis Publishers,1992,235-335.
    [59]郭红岩,陈亮,王晓蓉等.浓度镱暴露对鲫鱼肝脏多种酶活性的影响[J].南京大学学报(自然科学),2001,37(6):665-669.
    [60]刘慧,王晓蓉,张景飞等.铜及其配合物对鲫鱼肝脏谷胱甘肽的影响[J].南京大学学报(自然科学),2004,40(3):356-361.
    [61]Knorzer 0 C, Burner J, Boger P. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress[J].Physiol Plantarum,1996,97(2):388-396.
    [62]Acan N L, Tezcan E F.Inhibition kinetics of sheep brain glutathione reductase by cadmium ion[J].Biochem and Mol Med,1995,54:33-37.
    [63]Ferreira R R, Fornazier R F, Vitoria A P, et al.Changes in antioxidant enzyme activities in soybean under cadmium stress[J].J Plant Nutr,2002,25(2):327-342.
    [64]Lee M Y, Shin H W. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata[J].J Appli Phyco,2003,15:13-19.
    [65]Alvarez S,Jerez C A. Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans[J].Appl Environ Microb,2004, 70:5177-518.
    [66]Ding Y, Miao J L, Li G Y, et al.Effect of Cd on GSH and GSH-related enzymes of Chlamydomonas sp.ICE-L existing in Antarctic ice[J].J Environ Sci-China,2005, 17:667-671.
    [67]Boyer T D.The glutathione S-transferase:An update[J].Hepatology,1989, 9:486-496.
    [68]Batist G, Tulpule A, Sinha B K et al.Overexpression of a novel anionic glutathione transferase in multidrugresistant human breast cancer cells[J].J Biol Chem,1986, 33:15544-15549.
    [69]Sheweita S A. Heavy metal-induced changes in the glutathione levels and glutathione reductase/glutathione s-transferase activities in the liver of male mice[J]. Int J Toxicol,1998,17:383-392.
    [70]Hegedus A, Erdei S,Horvath G.Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress[J].Plant Sci,2001, 160:1085-1093.
    [71]Khynriam D,Prasad S B.Changes in glutathione-related enzymes in tumor-bearing mice after cisplatin treaTment[J].Cell Biolo Toxicol,2002,18:349-358.
    [72]Natarajan K A, Sudeesha K, Rao G R. Stability of copper tolerance in Thiobacillus ferrooxidans[J].Anton Leeuw Int J G,1994,66:303-306.
    [73]Schmittgen T D.Real-time quantitative PCR[J].Methods,2001,25(4):383-5.
    [74]Willard M, Stephen J W, Kent E V.Quantitative RT-PCR Pitfall and Potential[J]. Bio Techniques,1999,26(1):112-125.
    [75]Morgan U M, Thompson R C A. Molecular detection of parasitic protozoa[J]. Parasitology,1998,117:73-85.
    [76]McKeand J B.Molecular diagnosis of parasitic nematodes[J].Parasitology,1998, 117:87-96.
    [77]Ueno H,Yoshida K,Hirai T. Quantitative detection of carcinoembryonic antigen messenger RNA in the peritoneal cavity of gastric cancer patients by real-time quantitative reverse transcrip tion polymerase chain reactionl[J].Anticancer Res, 2003,23(2):1701-1708.
    [78]Nieuwenhuis E J,Jaspars L H,Castelijns J A,et al.Quantitative molecular detection of minimal residual head and neck cancer in lymph node aspirates[J].Clin Cancer Res,2003,9(2):755-761.
    [79]Liew M, Pryor R, Palais R, et al.Genotyp ing of single nucleotide polymorphisms by high2resolution melting of small amplicons[J].Clin Chem,2004, 50(7):1156-1164.
    [80]Neil J, Gibson. The use of real-time PCR methods in DNA sequence variation analysis.Clinica Chimica Acta,2006,363:32-47.[81]Andersen C L, Jensen J L, Orntoft T F. Normalisation of real-time quantitative reverse transcription PCR data: a model based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets[J].Cancer Res,2004, 64:5245-5250.
    [82]Pont K G, Lyon E.Direct molecular haplotyping by melting curve analysis of hybridisation probes:beta 2-adrenergic receptor hapotypes as an example[J]. Nucleic Acids Res,2005,33:89.
    [83]Barletta J. Applications of real-time immuno-polymerase chain reaction(rt-IPCR) for the rapid diagnoses of viral antigens and pathologic proteins[J].Molecular Aspects of Medicine,2006,27:224-253.
    [84]Boojar M M A, Goodarzi F. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine[J].Chemosphere, 2007,67:2138-2147.
    [85]Habig W H, Pabst M J, Jakoby W B.Glutathione S-Transferases:the first enzymatic step in mercapturic acid formation[J].J.Biol.Chem,1974,249(22):7130-7139.
    [86]Yamada T, Hiraoka Y, Gupta T K. Rusticyanin, a Bacterial Electron Transfer Protein, Causes G1 Arrest in J774 and Apoptosis in Human Cancer Cells[J].Cell Cycle, 2004,3:1182-1187.
    [87]Kim S J, Kim H G,Kim B C, et al.Transcriptional regulation of glutathione synthetase in the fission yeast Schizosaccharomyces pombe[J].Mol Cells,2004, 18:242-248.
    [88]Kim S J, Kim H G, Kim B C, et al.Regulation of the gene encoding glutathione synthetase from the fission yeast[J].J. Biochem. Mol.Biol,2003,36:326-331
    [89]Creissen G P, Edwards E A, Mullineaux P M.Glutathione reductase and ascorbate peroxidase[A].In:Foyer CH, Mulineaux P M, et al.Causes of Photooxidative Stress and Amelioration of Defence Systems in plants[M],Florida:CRC Press, Boca Raton, 1994:343-364.
    [90]Foyer C H, Lelandas M, Galap C,et al.Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress condition[J].Plant Physio,1991,97:863-872.
    [91]Iannelli M A, Pietrini F, Fiore L, et al.Antioxidant response to cadmium in Phragmites australis plants[J].Plant Physiol Biochem,2002,40:977-982.
    [92]Paulino L C, Mello de M P, Ottoboni L M M. Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction[J].Electrophoresis,2002,23:520-527.
    [93]Boyer A, Magnin J P, Ozil P. Copper ion removal by Thiobacillus ferrooxidans biomass[J].Biotechnol.Lett,1998,20:187-190.
    [94]Das A, Modak J M, Natarajan K A.Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance[J].Antonie van Leeuwenhoek,1998, 73:215-222.
    [95]Luo Y J, Liu Y D, Zhang C G, et al.Insights into Two High Homogenous Genes Involved in Copper Homeostasis in Acidithiobacillus ferrooxidans[J].Curr Microbiol,2008,57:274-280.
    [96]Prasad M N V, Strzalka K. Impact of heavy metals on photosynthesis [A].In:Prasad M N V, Hagemeyer J. Heavy metal stress in plants:from molecules to ecosystems[M].Berlin:Springer Verlag,1999:117-138.
    [97]Dahl N, Pigg M, Ristoff E, et al.Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis,5-oxoprolinuria, hemolytic anemia and neurological dysfunction[J].Hum.Mol.Genet,1997,6:1147-1152.
    [98]Kramer R A, Zakher J, Kim G. Role of glutathione redox cycle in acquired and de novo multidrug resistance[J].Science,1988,241:694-697.
    [99]Polekhina G, Board P G, Gali R R. Molecular basis of glutathione synthetase deficiency and a rare gene permutation event[J].The EMBO Journal,1999, 18:3204-3213.
    [100]Xiang C B, David J.Oliver glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in arabidopsis[J].The Plant Cell,1998, 10:1539-1550.
    [101]Rennenberg H. Glutathione metabolism and possible biological roles in higher plants[J].Phytochemistry,1982,21:2771-2781.
    [102]StadTman E R, Oliver C N. Metal-catalyzed oxidation of proteins[J].J. Biol.Chem, 1991,266:2005-2008.
    [103]Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea(Pisum sativum L cv Azad)[J].J Experi Bot,2001, 52(358):1101-1109.
    [104]Dopson M, Baker-Austin C,Koppineedi P R, et al.Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic microorganisms[J]. Microbiology,2003,149:1959-970.
    [105]Flohe L,Gunzler W A. Assays of glutathione peroxidase[J].Methods Enzymol, 1984,105:114-121.
    [106]Ngledew W J.Thiobacillus ferrooxidans:the bioenergetics of an acidophilic chemolithotroph[J].Biochim Biophys Acta,1982,683:89-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700