用户名: 密码: 验证码:
颞叶内侧癫痫患者海马区胶质细胞中GFAP、GLAST及GLT-1的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     研究胶质纤维酸性蛋白(GFAP)、谷氨酸-胱氨酸转运体(GLAST)及神经胶质谷氨酸转运体(GLT-1)在颞叶内侧癫痫患者海马区胶质细胞中的表达情况,探讨难治性癫痫的发病机制;探讨影响颞叶癫痫患者海马组织中神经元丢失的相关因素。
     【方法】
     第一、二部分:取40例难治性颞叶内侧癫痫患者在手术中切除的海马组织,根据在光镜下观察到的神经元丢失情况,分为海马硬化组(A组)23例和海马非硬化组(B组)17例。通过免疫组化法检测两组中GFAP、GLAST、GLT-1蛋白阳性表达的情况;通过逆转录-聚合酶链反应(RT-PCR)方法检测两组中GLASTmRNA及GLT-1mRNA的表达情况。利用quantity one凝胶成像管理系统进行图像分析,检测GLAST基因,GLT-1基因,β-actin条带的灰度值,结果以GLAST/β-actin,GLT-1/β-actin条带的灰度值比进行半定量分析。
     第三部分:对55例颞叶癫痫患儿临床资料进行回顾性病例对照研究,运用单因素及多因素方法分析其海马组织中神经元丢失的发生与临床病理因素间的关系。
     【结果】
     1、硬化组(A组)与非硬化组(B组)相比,A组中胶质细胞明显增生、肥大,突起增多,有些胶质细胞突起交错成网状。
     2、A组中海马总区域、CA1区、CA2区及齿状回中GFAP蛋白的表达量O.D.值为别为:(55.70±26.92)、(102.52±23.55)、(34.46±8.69)、(48.01±6.24 );B组中相应区域中GFAP的表达量为别为: (26.54±7.85)、(36.05±3.71)、(17.03±1.87)、(24.44±2.98)。两组间比较,各区之间差别有统计学意义(P<0.01)。
     3、A组中海马总区域、齿状回中GLAST蛋白的表达量O.D.值分别为:(40.50±6.02)、(36.73±6.50);B组中相应区域中GLAST蛋白的表达量分别为:(41.09±5.92)、(43.29±10.61)。两组间比较差别无统计学意义(P>0.05)。A组中CA1区、CA2区中GLAST蛋白的表达量O.D.值分别为:(45.84±7.23)、(52.67±11.51);B组中相应区域中GLAST蛋白的表达量分别为:(48.56±10.62)、(39.39±9.48)。两组间比较差别有统计学意义(P<0.05)。
     4、A组中海马总区域、CA1区、CA2区中GLT-1蛋白的表达量O.D.值分别为:(102.54±3.78 )、(50.57±28.60)、(114.53±3.84);B组中海马总区域、CA1区、CA2区中GLT-1蛋白的表达量O.D.值分别为:(178.17±61.23)、(123.40±3.58)、(109.27±4.14)。两组间比较差异有统计学意义(P<0.05)。A组B组与中齿状回中GLT-1蛋白的表达量分别为:( 107.41±3.97)、(107.44±4.21)。两组间比较差异无统计学意义(P>0.05)。
     5、A组中GLASTmRNA的相对表达量为(0.665±0.22),与B组(0.703±0.16)比较,两组间差别无显著性(P>0.05)。
     6、A组中GLT-1mRNA的相对表达量为(1.025±0.18),与B组(1.032±0.21)比较,两组间差别无显著性(P>0.05)。
     7、55例颞叶癫痫患儿中,海马神经元丢失47例,总发生率85.45%(47/55) ,单因素分析发现性别、癫痫家族史、有无先兆、有无损伤因子、用药的种类(单药或联合用药)与癫痫患者海马神经元的丢失程度无关,而发病年龄(≤3岁)、发病病程(>2年)、发作频率(≥1次/月)、发作持续时间(≥60s)、发作的类型(全身性发作)等为其影响因素。
     8、多因素Logistic回归结果显示发作频率、发作持续时间、发作的类型为海马神经元丢失发生的独立影响因素。
     【结论】
     1、难治性颞叶内侧癫痫患者海马各区中GFAP表达增加,提示癫痫反复发作后胶质细胞反应性增生。
     2、GLAST、GLT-1在海马CA1区表达减少、CA2区表达量反而增加,提示癫痫反复发作后海马区谷氨酸转运体的重新分布可能是难治性颞叶癫痫发病机制之一。
     3、谷氨酸转运体GLASTmRNA及GLT-1mRNA没有变化,而其蛋白表达减少,提示谷氨酸转运体转录后机制异常可能是难治性颞叶癫痫的发病机制之一。
     4、多因素分析结果证实癫痫患者海马神经元丢失的发生与发病年龄、发病病程、发作频率、发作持续时间、发作的类型等有关,对癫痫患者早期干预治疗十分重要。
【Objective】
     To determine the expression level of glial fibrillary acidic protein (GFAP), Glutamate - cystine transporter (GLAST) and Glial glutamate transporter 1 (GLT-1) in human mesial temporal lobe epilepsy. And to find the independent factors for the neuron loss in hippocampus in human mesial temporal epilepsy.
     【Methods】
     1. Part 1 and 2: The medial temporal cortex and hippocampus from 40 patients with mesial temporal lobe epilepsy were harvested in surgery. The surgically resected hippocampus was classified into two groups. The expression and alteration of GFAP, GLAST, and GLT-1 in the specimens was assessed using immunohistochemical staining. The expression and alteration of GLASTmRNA and GLT-1mRNA in the specimen was assessed using reverse transcription polymerase chain reaction (RT-PCR). The results were observed and compared withβ-acti, quantified and compared by the Software Quantity-One.
     2. Part 3: A case-control study was carried out in 55 cases with temporal lobe epilepsy diagnosed by EEG ,clinic and pathological .Unvaried analysis and multivariate logistic regression analysis were performed to find the correlation between the loss of neuron in hippocampus and clinic pathological factors.
     【Results】
     1. The expression of GFAP increased in various districts of the hippocampus. A change in astrocyte morphology was observed, with astrocyte cell bodies becoming larger and processes becoming more stellate and often longer in length.
     2.The levels of GFAP were(55.70±26.92)(,102.52±23.55)(,34.46±8.69)(,48.01±6.24 )in total hippocampal area,CA1,CA2 and dentate gyrus in the specimens from A, respectively. Compared with group A, levels of GFAP were (26.54±7.85),(36.05±3.71),(17.03±1.87),(24.44±2.98)in the specimens from B, There were significantly difference in the two groups (P both < 0.01 ).
     3.The expressing of GLAST in CA1 and CA2 indicated decreases(P<0.05) from A, whereas, non-significantly change in total hippocampal area and DG compare to group B (P>0.05). the levels of GLAST were(40.50±6.02)(,45.84±7.23)(,52.67±11.51),(36.73±6.50)in total hippocampal area,CA1,CA2 and DG in the specimens from A while(41.09±5.92),(48.56±10.62),(39.39±9.48),(43.29±10.61)in group B.
     4.The expression of GLT-1 in the sclerotic hippocampus (CA1) decreases (P<0.05), however, the there were up regulation of them in the CA2 (P<0.05) in the specimens from A. the total expression of GLT-1 in the sclerotic hippocampus showed (150.57±28.60), with (50.57±28.60), (114.53±3.84) in CA1 and CA2 respectively; In group B, the total expression showed (178.17±61.23), with (123.40±3.58), (109.27±4.14) in CA1 and CA2 respectively.
     5. The expression of GLASTmRNA were (0.665±0.22),(0.703±0.16)in group A and group B respectively. There was non-significant change in the two groups.
     6. the expression of GLT-1mRNA were(1.025±0.18), (1.032±0.21) in group A and group B respectively. There was also non-significant change in the two groups.
     7. The incidence of the loss of neuron in hippocampus in temporal lobe epilepsy was 47 (85%). Single variable analysis showed that sex, familial history of epilepsy , aura, damage factor and Medication are not concerned with the loss of neuron in hippocampus, however ,age of onset (≤3 years) , course of disease(>2 years) , seizure frequency(≥1moth) , persistence time(≥60s), generalized seizure all associated with the incidence of the loss of neuron in hippocampus.
     8. Multivariate logistic regression analysis showed that the independent influencing factors for the loss of neuron in hippocampus in children with temporal epilepsy Included seizure frequency, persistence time and the tape of seizure.
     【Conclusions】
     1. The expression of GFAP increased in various districts of the hippocampus.
     2. While GLAST and GLT-1 reduction in the hippocampus CA1 area but increased in CA2 area in mesial temporal lobe epilepsy. It suggesting that the redistribution of gial glutamate transporter in hippocampus after seizures may be associated with the pathogenesis of intractable temporal lobe epilepsy.
     3. These data suggest that the post-transcription Modification of GLT-1mRNA and GLASTmRNA in hippocampus may be associated with the pathogenesis of intractable temporal lobe epilepsy.
     4. The development of the loss of neuron in hippocampus may be associated with many factors including age of onset, course of disease, seizure frequency, persistence time and generalized seizure. In order to lower the incidence of the loss of neuron, early intervening treatment is very important.
引文
[1].Yuen AW, Thompson PJ, Flugel D, et al. Mortality and morbidity rates are increased in People with epilepsy: Is stress part of the equation? [J]. Epilepsy Behav, 2007, 10(1): 1-7.
    [2].周永,刘民,梁万年.癫痫流行病学研究进展.[J].中华流行病学杂志,2007,28 (1):92-94.
    [3].Montgomer DL. Astrocytes: Form, Funtions, and Roles in Disease. [J]. Vet Pathol, 1994, 31(2): 145-167.
    [4].Tian G,Azmi H,Takano T,et al.An astrocytic basis of epilepsy.[J].Nat Med,2005,11 (9):937-981.
    [5].Oberheim NA, Tian GF, Han XN, et al. Loss of astrocytic domain organization in the epileptic brain. [J]. J Neurosci, 2008, 28(13): 3264-3276.
    [6].Kirischuk S, Kettenmann H, Verkhratsky A. Membrane currents and cytoplasmic Sodium transients generated by glutamate transport in Bergmann glial cells. [J]. Pflugers Arch, 2007, 454(2): 245-252.
    [7].Beneyto M, Kristiansen LV, McCullumsmith RE, et al. Glutamatergic mechanisms in Schizophrenia: current concepts. [J].Current Psychosis & Therapeutics Reports, 2006, 4: 27-33.
    [8].Bridges RJ, Esslinger CS. The excitatory amino acid transporters: pharmacological insights on subst rate and inhibitor specificity of the EAAT subtypes. [J]. Pharmacol Ther, 2005, 107(3): 271-285.
    [9].Tanaka K, Watase K, Manabe T, et al.Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. [J]. Science, 1997, 276(5319): 1699- 1702.
    [10].Kanai Y, Smith CP, Hediger MA. The elusive transporters with a high-affinity for glutamate. [J]. Trends Neurosci, 1993, 16(9): 365-730.
    [11].Kawakami H, Tanaka K, Nakayama T, et al. Cloning and expression of a human gluatamate transpoter . [J]. Biochem Biophys Res Commun, 1994, 199(1): 171- 176.
    [12].Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1:molecular, physiological and pharmacological aspects. [J]. Pflugers Arch, 2004, 447 (5): 469-479.
    [13]. Kanai Y, Smith CP, Hediger MA. The elusive transporters with a high-affinity for glutamate. [J]. Trends Neurosci, 1993, 16(9): 365-730.
    [14].Takai S, Kawakami H, Nakayama T, et al. Localization of the gene encoding the human L-glutamate transporter (GLT-1) to 11p11.2-p13 by fluorescence in situ hybridization. [J]. Hum Gent, 1996, 97, (3): 387-389.
    [15].Kosugi T, Kawahara K, Yamada T, et al. Functional significance of the preconditiong induced down regulation of glutamate transporter GLT-1 in Neuron/ astrocyte co- cultures. [J]. Neurochemical Research, 2005, 30(9):1109-1116.
    [16].Takatsuru Y, Iion M, Tanaka K, et al. Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-purkinje cell synapses. [J].Neuroscience Letters, 2007, 420(1): 85-89.
    [17].Matsugmi TR, Tanemura K, Mieda M, et al. Development from the cover: Indispen- Sability of the glutamate transporters GLAST and GLT-1 to brain. [J].PNAS, 2006, 103(32): 12161-12166.
    [18].Tsuru N, Ueda Y, Doi T. Amygdaloid kindling in glutamate transport (GLAST) knockout mice. [J]. Epilepsia, 2002, 43(8): 805-811.
    [19].吴伟,迟兆富,王慧煜等.海人酸致痫大鼠海马CA3区神经元线粒体超微结构损伤及caspase-3的表达变化.[J].临床神经病学杂志,2005,18(1):28-30.
    [20].Bernardinelli Y, Chatton JY. Differential effects of glutamate transporter inhibitors on thglobal electrophysiological response of astrocytes to neuronal stimulation. [J]. Brain Res, 2008, 13(1240):47-53.
    [21].Bj?rnsen LP, Eid T, Holmseth S, et al. Changes in glial glutamate transporters in human epieptogenic hippocampus: inadequate explanation for high extracelluar glutamate during seizures. [J]. Neurobiology of Disease, 2007, 25(2): 329-330.
    [22].Paur H, Chazot PL. The anatomy of epilepsy. [J]. Current Anesthesia & Critical Care , 2007(18): 3–7.
    [23].Stringer JL. Repeated seizures increase GFAP and vimentin in the hippocampus. [J]. Brain Res, 1996, 717(1-2): 147-153.
    [24].Silchenko AN, Tass PA. Computational modeling of paroxysmal depolarization shifts in neuros induced by the glutamate release from astrocytes. [J]. Biol Cybern, 2008, (98): 61-74.
    [25].Takatsuru Y, Iino M, Tanaka K, et al. Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses. [J].Neuroscience Letters, 2007, 420(1): 85–89.
    [26].Yamada T, Kawahara K, Kosugi T, et al. Nitric oxide produced during sublethal ischemia is crucial for the pre conditioning-Induced Down-Regulation of Glutamate Transporter GLT-1 in Neuron/Astrocyte Co-Cultures. [J]. Neurochemical Research, 2006, 31(1): 49–56.
    [27].Escartin C, Brouillet E, Gubellini P, et al. Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo. [J]. J Neuroscience, 2006, 26(22):5978–5989.
    [28].Reagan LP, Rosell DR, Wood GE, et al. Chronic restraint stress up regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine.[J]. PNAS, 2004, 101(7):2179-2184.
    [29].Miller HP, Levery AI, Rothstein JD, et al. Alterations in glutamate transpoter protein levels in kindling induced epilepsy. [J].Neurochem, 1997, 68(4): 1564-1570.
    [30].Akbar MT, Trop R, Danbolt NC, et al. Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. [J]. Neuroscience, 1997, 78(2): 351-359.
    [31].Proper EA, Hoogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco resistant temporal lobe epilepsy. [J]. Brain, 2002, 125(Pt1): 32-43.
    [32].Mather GW, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. [J]. American Academy of Neurology, 2009, 453-472.
    [33].Hoogland G, VanOort RJ, Proper EA, et al. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy.[J]. Epilepsy Res, 2004, 59(2-3): 75-82.
    [34].Sullivan SM, Lee A, Bjorkam ST, et al. Cytoskeletal anchoring of GLAST detemines Susceptibility to brian damage. [J]. J Biol Chem,2007, 282(40):29414–29423.
    [35].Pow DV, Naidoo T, Lingwood BE, et al. Loss of glial glutamate transporters and induction of neuronal expression of GLT-1B in the hypoxic neonatal pig brain. [J]. Brain Res. Dev. Brain Res, 2004, 153(3):1–11.
    [36].Zagami CJ, O'Shea RD, Lau CL, et al. Regulation of glutamate transporters in astrocytes: evidence for a relationship betweentransporter expression and astrocytic phenotype. [J]. Neurotoxicity Res, 2005, 7(1, 2): 143-149.
    [37].Sattler R, Rothstein JD. Regulation and dysregulation of glutamate transporters. [J]. Handb Exp Pharmacol, 2006, (175): 277-303.
    [38].Masliah E, Alford M, Mallory M, et al. Abnormal glutamate transport function inmutant amyloid precursor protein transgenicmice. [J]. Exp Neurol, 2000 163(2): 381-387.
    [39].Sasaki S, Komori T, Iwata M. Excitatory amino acid transporter 1 and 2 immuno- reactivity in the spinal cord in amyotrophic lateral sclerosis. [J]. Acta Neuropathol, 2000, 100(2): 138-44.
    [40].Bauer D, Gupta D, Harotunian V,et al. Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. [J]. Schizophr Res, 2008, 104(1-3): 108-20.
    [41].Vallejo-Illarramendi A, Domercq M, Matute C. Anovel alternative splicing formof ex-citatory amino acid transporter is a negative regulator of glutamate uptake. [J]. Neurochem, 2005, 95(2): 341-348.
    [42].Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. [J]. Neurology, 2005,65 (4) : 529– 534.
    [43].Hoogland G, van Oort RJ, Proper EA, et al. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. [J]. Epilepsy Res, 2004, 59(2-3): 75-82.
    [44].Kugler P, Beyer A. Expression of glutamate transporters in human and rat retina and rat optic nerve. [J]. Histochem Cell Biol, 2003, 120(3): 199–212.
    [45].Lin CI, Orlov I, Ruggiero AM, et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3– 18. [J]. Nature, 2001, 410(6824): 84-88.
    [46].Jackson M, Song W, Liu MY, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. [J]. Nature, 2001, 410 (6824): 89 -93.
    [47].Münch C, Zhu BG, Leven A, et al. Differential regulation of 5' splice variants of the glutamate transporter EAAT2 in an in vivo model of chemical hypoxia induced by 3-nitropropionic acid. [J]. J Virol, 2003, 71(6): 819-25.
    [48].Macnab LT, Pow DV. Expression of the exon 9-skipping from of EAAT2 in astrocytes of rats. [J].Neuroscience, 2007, 150(3):705-711.
    [49].Reagan LP, Rosell DR, Wood GE, et al. Chronic restraint stress bup-regulates GLT-1 mRNA and protein expression in the rat hippocampus: Reversal by tianeptine. [J]. PNAS, 2004, 101(7): 2179–2184.
    [50].Pow DV, Cook DG. Neuronal expression of splice variants of“Glial”glutamate Transporters in brains afflicted by Alzheimer’s disease: unmasking an intrinsic neuronal property. [J]. Neurochem Res, 2009, 34(10): 1748-1757.
    [51].Sonders MS, Quick M, Javitch JA. How did the neurotransmitter cross the bilayer? A closer view. [J]. Curr Opin Neurobiol, 2005, 15(3): 296–304.
    [52].Conradt M, Stoffel W. Inhibition of the high affinity brain glutamate transpoter GLAST-1 via direct phosphorylation. [J]. Neurochem, 1997, 68(3): 1244–1251.
    [53].Raunser S, Haase W, Bostina M, et al.High-yield expression, reconstitution and structure of the recombinant, fully functional glutamate transporter GLT-1 from Rattus norvegicus. [J]. Mol Biol 2005, 351(3): 598–613.
    [54].Cross JH, Connolly A, Jackson GD, et al. Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. [J]. Ann Neural, 1996, 36(1): 107-113.
    [55].林庆.小儿癫痫发作的分类及最新进展. [J].中华儿科杂志,2002,40(5): 313-315.
    [56].Chernov MF, Kubo O, Hayashi M, et al. Proton MRS of the peritumoral brain. [J]. J Neurol Sci, 2005, 228(2):137– 142.
    [57].Holshouser BA, Ashwal S, Luh GY, et al. Proton MR spectroscopy after acute centralnervous system injury: outcome prediction in neonates, infants, and children. [J]. Radiolotty, 1997, 202(2): 487-496.
    [58].Connelly A, Jackson GD, Duncan JS, et al. Proton magneticresonance spectroscopy in temporal lobe epilepsy. [J]. Neurology, 1994, 44(8):1411-1417.
    [59].何慧瑾,沈天真,陈星荣,等.1H-MRS在颞叶癫痫定侧诊断中的价值.[J].中国医学计算机成像杂志,2000,6(6):361-366.
    [60].Park SA, Kim GS, Lee SK, et al. Interictal Epileptiform Discharges Relate to 1H-MRS–detected Metabolic Abnormalities in Mesial Temporal Lobe Epilepsy [J].Epilepsia, 2002, 43(11):1385–1389.
    [61].富建华,于一兵,陈丽英,等.磁共振波谱测定癫患儿脑内代谢变化及其临床意义的研究. [J].中华儿科杂志, 2000, 38(4):231-233.
    [62].Gilliam FG, Maton BM. Hippocampal 1H-MRSI correlates with severity of depression symptoms in temporal lobe epilepsy.[J]. Neurology, 2007, 68, 364-368.
    [63].Tuunanen J, Lukasiuk K, Halonen T, et a1 . Status epilepticus induced neuronaldamage in the rat amygdaloid complex:distribution, time-course and mechanisms [J].Neuroscience, 1999, 94 (2):473-495.
    [64].肖波.整理.第四届全国癫痫学术会议纪要.[J].中华神经科杂志.1998, 31 (1):57-58.
    [1].Yernool D, Boudker OJ, Iny J, et al. Structure of a glutamate transporter homologue from pyrococcus horikoshii. [J]. Natrure, 2004, 431(7010): 811-818.
    [2].Bauer D, Gupta D, Harotunian V, et al. Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. [J]. Schizophrenia Res, 2008, 104(13):108-120.
    [3].Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. [J]. Science, 1997, 276(5319):1699–1702.
    [4].Han F, Shioda N, Moriguchi S, et al. Downregulation of glutamate concentration following rat microsphere embolism. [J]. Neuroscience Letters, 2008 , 430(3):275–280.
    [5].Forman MS, Lal D, Zhang B, et al. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. [J].Neur osci, 2005, 25(41): 9434-9443.
    [6].Tsuru N, Ueda Y, Doi T, et al. Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. [J]. Epilepsia, 2002, 43(8): 805-811.
    [7].Ferrie CD, Bird S, Tilling K, et al. Plasma amino acids in childhood epileptic encepha- lopathies. [J]. Epilepsy Res, 1999, 34:221-229
    [8].Watase k, Hashimoto K, Kano M, et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. [J]. Eur J Neurerosci, 1998, 10(3): 976-988.
    [9].Furness DN, Dehnes Y, Akhtar AQ, et al. A quantitative assessment of glutamateuptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). [J] .Neuroscience, 2008, 11, 157(1): 80-94.
    [10].吴伟,迟兆富,王慧煜等海藻氨酸致癫痫大鼠中海马谷氨酸转运体功能的研究[J].临床神经病学杂志2005,18(1):28-30.
    [11].Akbar MT, Levery AI, Rothstein JD, et al. Exepression of glial glutamate transporters GlT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. [J]. Neuroscience, 1997, 78(2): 351-359.
    [12].Miller HP, Levey AI, Rothstein JD, et al. Alterations in glutamate transporter protein levels in kindling-induced epilepsy. [J]. Neurochem, 1997, 68(4): 1564-1570.
    [13]. Bj?rnsen LP, Holmseth T, Danbolt NC, et al. Changes in glial glutamate transporters in human epileptogenic hippocampus: Inadequate explanation for high extracellular glutamate during seizures. [J]. Neurobiology of Disease,2007, 25(2): 319–330.
    [14]. Proper EA, Hoogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. [J]. Brain, 2002, 125(Pt1): 32–43.
    [15].Tessler S, Danbolt NC, Faull RL, et al. Expression of the glutamate transporters in human temporal lobe pilepsy.[J]. Neuroscience, 1998, 88:1083–1091.
    [16]. Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures .[J]. Neurology, 2005, 65 (4):529 - 534.
    [17]. Hoogland G, vanOort RJ, Proper EA, et al. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. [J]. Epilepsy Res, 2004, 59: 75–82.
    [18]. Eleore L, Vassias I, Vidal PP, et al. Modulation of the glutamatergic receptors (AMPA and NMDA) and of glutamateve cuvesicular transporter 2 in the rat facial nucleus after axotomy .[J]. Neuroscience 136 (2005) 147–160.
    [19]. Ganel R, Ho T, Maragakis NJ, et al. Selective up-regulation of the glial Na+-dependent glutamate transporter GLT-1 by a neuroimmunophilin ligand results in neuroprotection. [J]. Neurobiology of Disease, 2006, 21(3): 556-567.
    [20]. Su ZZ, Leszczyniecka M, Kang DC, et al. Insights into glutamate transport regulationin human astrocytes: cloning of the promoter for excitatory amino acid transporter2 (EAAT2). [J]. Proc. Natl. Acad. Sci , 2003, 100:955– 1960.
    [21].Fumagalli E, Funicello M, Rauen T, et al. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1 [J]. European Journal of Pharmacology, 2008, 14, 578(2-3): 171-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700