用户名: 密码: 验证码:
磁性纳米TiO_2/SiO_2@γ-Fe_2O_3光催化剂制备及对苯酚光催化降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼焦、炼油、合成氨等化工生产过程中的废水常含有苯酚类有机污染物,如果不经处理任意排放会污染地下水源,对人类造成严重危害。目前,在含酚废水的净化处理中,光催化法以其成本较低的特点使具有良好的应用前景。但该法大多采用纳米TiO2的悬浮液相体系,存在催化剂回收困难等问题。近年来,人们对以Fe3O4等磁性材料为载体的光催化剂展开了广泛的研究,但关于磁性光催化剂结构与性能关系的研究相对较少。
     本文以共沉淀法制备的磁性纳米Fe3O4为核,先后以Na2SiO3和TEOS为硅源,通过溶胶-凝胶法制备-核结构的SiO2@Fe3O4纳米颗粒,再以钛酸四丁酯为钛源,通过溶胶-凝胶法将TiO2负载于SiO2@Fe3O4上,经过300-700℃高温焙烧,制得了TiO2/SiO2@γ-Fe2O3磁性纳米光催化剂。采用XRD、TEM、VSM、BET和UV-VIS等对催化剂的结构进行了表征,考察各因素对结构的影响,并以苯酚溶液为模拟废水进行光催化性能评价,考察催化剂制备条件及光催化反应条件对苯酚降解性能的影响。
     经过正交试验优化及考察各制备条件对Fe3O4结晶度的影响得出,在Fe2+和Fe3+摩尔比为5:1,溶液pH=9.0,氨水浓度为0.6mol·L-1,50℃晶化3h条件下制备的Fe3O4结构最好,其粒径约为23nm,比饱和磁化强度为83.0 emu·g-1,比表面积为54.71m2·g-1。经过SiO2包覆后制得的SiO2@Fe3O4为-核结构,SiO2层厚度约为9nm。磁性纳米SiO2@Fe3O4颗粒负载Ti后,经300-700℃高温焙烧,Fe3O4核均转变为γ-Fe2O3。在500℃左右焙烧条件下制备的TiO2/SiO2@y-Fe2O3粒子,TiO2主要以具有较好光催化活性的锐钛矿晶型存在,其粒径范围为37-50nm,比饱和磁化强度为9.5 emu·g-1,具有良好的超顺磁性。
     通过考察TiO2负载量、SiO2含量、催化剂的浓度、苯酚溶液初始浓度及pH值、鼓泡O2等因素对苯酚降解效果的影响得出:室温条件下,当TiO2和SiO2质量分数分别为70%和11%的光催化剂降解0.2 mmol·L-1的苯酚溶液时,催化剂浓度为0.5g·L-1、溶液初始pH值为7.0左右,鼓泡O2条件下,光催化降解苯酚效果最好,其COD去除率可达70.9%。
     在最佳降解苯酚条件下,第1次使用磁性纳米光催化剂降解苯酚溶液时,苯酚COD去除率达到70.9%,催化剂回收率达到97.0%。催化剂经过8次循环使用,COD去除率降低了20.1%,而回收率可达91.0%,表现出了很好的可循环使用性能,这对有机废水的光催化研究有一定的借鉴作用。另外,经过Ni2+或Cu2+掺杂改性的磁性纳米光催化剂,对苯酚的光催化降解效果也有一定影响。
The wastewater discharged by coking, oil refining, ammonia and other chemical production processes usually contain phenol organic contaminants. If it was discharged optionally without any treatment, it would cause serious harm to human health. Currently, photocatalysis technology has a good prospect in all the methods of phenol wastewater purification as it takes a lower cost. But photocatalytic oxidation degradation of phenol is usually tested on nanosized TiO2 suspension in aqueous solutions. So the catalysts are easy to run off and hard to recycle. In recent years, magnetic photocatalysts which were prepared using Fe3O4 magnetic materials as support were widely researched. But there were few reports about photocatalysis activity vs. structure of magnetic photocatalysts.
     In this paper, the Fe3O4 magnetic nanosized particles were prepared by co-precipitation first, and then the core-shell SiO2@Fe3O4 magnetic nanosized particles were synthesized by sol-gel technique using Fe3O4 as the cores and the Na2SiO3 and TEOS as silica sources successively. In the end, the TiO2/SiO2@γ-Fe2O3 magnetic nanosized photocatalysts were prepared by sol-gel technique using SiO2@Fe3O4 particles as supported, the tetrabutyl titanate as Ti sources, and calcined at 300-700℃. The structure of the photocatalyst was characterized by XRD, TEM, VSM, BET and UV-VIS, and the influence of some factors on the structure of photocatalyst was also studied. The photocatalysis performances of TiO2/SiO2@y-Fe2O3 were evaluated under UV irradiation using phenol solution as stimulant wastewater. The influence of the calcinations temperature of the photocatalysts, TiO2 and SiO2 conten in the photocatalysts, photocatalysts dosage, initial concentration of phenol, solution pH value and aeration on the photocatalytic oxidation degradation of phenol, as well as the activity of the photocatalyst recycling and recovery rate were investigated.
     The best preparation condition of Fe3O4 particles was educed through orthogonal experimental design and the influence of some preparation conditions on the crystallinity of Fe3O4 particles. The condition was that the Fe2+/Fe3+molar ratio was 5:1, solution pH value was 9.0, aging temperature was 50℃, aging time was 3 h and ammonia concentration was 0.6 mol·L-1. The size of Fe3O4 particles prepared under this preparation conditions was about 23 nm, the saturation magnetization was 83.0 emu·g-1, and the surface area was 54.71 m2·g-1. The SiO2@Fe3O4 particles taken on core-shell structure, and the thickness of SiO2 layer was about 9 nm. Fe3O4 core of the TiO2/SiO2@y-Fe2O3 were transformed intoγ-Fe2O3 when they were calcined at 300-700℃. The activity phase of the TiO2/SiO2@γ-Fe2O3 magnetic nanosized photocatalysts calcined at 500℃was the anatase TiO2 which had exhibited the best photocatalytic activity for the photocatalytic oxidation degradation of phenol. The size of TiO2/SiO2@γ-Fe2O3 particles was about 37-50 nm, and the saturation magnetization was 9.5 emu·g-1. It had a good superparamagnetism.
     The best photocatalytic oxidation degradation condition of phenol was educed through the study of the influence of TiO2 and SiO2 conten, photocatalyst dosage, initial concentration of phenol, solution pH value and aeration on the activity. The COD removal efficiency of phenol could achieve up to 70.9% when the mass fraction of TiO2 and SiO2 was 70% and 11% respectively, the initial concentration of phenol was 0.2 mmol·L-1, the concentration of photocatalysts was 0.5 g·L-1, the pH value was about 7.0, bubble oxygen, the reaction temperature was room temperature and the UV irradiation time was 180 min.
     When the photocatalysts were used in the first time under the best photocatalytic oxidation degradation condition of phenol, the COD removal efficiency of phenol could achieve up to 70.9%, and the recovery rate could achieve up to 97.0%. After used eight cycles, the COD removal efficiency of the phenol was decreased by 20.1%, and however, the recovery rate could achieve up to 91.0%. It showed a good recyclable performance to photocatalytic oxidation degradation of phenol, which afforded us reference for the photocatalytic treatment of organic wastewater. In other respects, the TiO2/SiO2@γ-Fe2O3 magnetic nanosized photocatalysts doped by Ni2+ or Cu2+ exhibitioned a certain influence on the photocatalytic degradation of phenol.
引文
[1]Mu J, Zhuang F J, Yin Z, et al. Acidibility established as a characteristic of high strength organic wastewater quality [J]. J. Environ. Sci. Suppl.,2009,21:S80-S83
    [2]Watanabe T, Masaki K, Iwashita K, et al. Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA [J]. Bioresour. Technol.,2009,100:1781-1785
    [3]边蔚,王路光,李洪波.高盐度有机废水处理技术研究进展[J].河北工业科技,2009,26(3):195-199
    [4]童志权.大气污染控制工程[M].北京,机械工业出版社:2006.321-323
    [5]邵荣,钱晓荣,冒爱荣.萃取置换法回收处理氟苯生产废水中的苯酚[J].化工进展,2008,27(11):1821-1824
    [6]Romo A, Penas F J, Isasi J R, et al. Extraction of phenols from aqueous solutions by β-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents [J]. React. Funct. Polym.,2008,68:406-413
    [7]Shen S F, Chang Z D, Liu H Z. Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater [J]. Sep. Purif. Technol.,2006,49:217-222
    [8]王代芝.活性炭对苯酚废水的处理[J].化学工业与工程技术,2006,27(5):28-31
    [9]Qu X F, Zheng J T, Zhang Y Z. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor [J]. J. Colloid Interface Sci.,2007,309:429-434
    [10]Beutel T, Su B L. Behavior of phenol (phenol-d5) on NaX zeolite as studied by 1H NMR and FT-IR techniques [J]. Chem. Phys. Lett.,2005,416:51-55
    [11]Kuleyin A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite [J]. J. Hazard. Mater.,2007,144:307-315
    [12]熊春华,吕建.大孔树脂对有机废水中苯酚的吸附性能[J].水处理技术,2008,34(2):24-27
    [13]Senturk H B, Ozdes D, Gundogdu A, et al. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite:Equilibrium, kinetic and thermodynamic study [J]. J. Hazard. Mater.,2009,172:353-362
    [14]Rengaraj S, Moon S H, Sivabalan R, et al. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste:rubber seed coat [J]. J. Hazard. Mater. B,2002,89:185-196
    [15]郑宾国,牛俊玲,刘军坛等.膨润土-聚糖复合吸附剂处理苯酚有机废水的研究[J].非金属矿,2008,31(6):55-57
    [16]Kujawski W, Warszawski A, Ratajczak W, et al. Removal of phenol from wastewater by different separation techniques [J]. Desalination,2004,163:287-296
    [17]Christoskova S T, Stoyanova M. Degradation of phenolic wastewater solver Ni-Oxide [J]. Water Res.,2001,35(8):2073-2077
    [18]Esplugas S, Gmbnez, J, Contreras S, et al. Comparison of different advanced oxidation processes for phenol degradation [J]. Water Res.,2002,36:1034-1042
    [19]Levee J, Pintar A. Catalytic wet-air oxidation processes:a review [J]. Catal. Today,2007,124: 172-184
    [20]Akolekar D B, Bhargava S K, Shirgoankar I, et al. Catalytic wet oxidation:an environmental solution for organic pollutant removal from paper and pulp industrial waste liquor [J]. Appl. Catal., A:General,2002,236:255-262
    [21]鞠美庭,冯成武.连续式超临界水氧化装置处理苯酚溶液的试验研究[J].石油大学学报:自然科学版,1999,23(6):79-81
    [22]丁军委,冯成武.超临界水氧化方法处理含酚废水[J].环境污染与防治,2000,22(1):1-3
    [23]Merouani S, Hamdaoui O, Saoudi F, et al. Sonochemical degradation of Rhodamine B in aqueous phase:Effects of additives [J]. Chem. Eng. J.,2010,158:550-557
    [24]Singla R, Grieser F, Ashokkumar M. Sonochemical degradation of martius yellow dye in aqueous solution [J]. Ultrason. Sonochem.,2009,16:28-34
    [25]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38
    [26]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. Am. Chem. Soc.,1977,99(1):303-304
    [27]Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound [J]. Chemosphere,2003,51:855-860
    [28]Sunada K, Kikuchi Y, Hashimoto K. Bactericidal and detoxification effects of TiO2 thin film photocatalysts [J]. Environ. Sci. Technol.,1998,32:726-728
    [29]Cai R, Hashimoto K, Kubota Y, et al. Increment of photocatlytic killing of cancer cells using TiO2 with the aid of superoxide dismutase [J]. Chem. Lett.,1992,427-430
    [30]Ohno T, Tanigawa F, Fujihara K. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder [J]. J. Photochem. Photobiol. A:Chem.,1999,127: 107-110
    [31]Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2 [J]. Catal. Today,2003,84:191-196
    [32]周武艺,唐绍裘,万隆等.纳米TiO2光催化降解有机物的机理及其影响因素的研究[J].中国陶瓷工业,2003,10(5):26-29
    [33]刘琼玉,李太友,樊洁等.苯酚废水的光氧化降解研究[J].江汉大学学报:自然科学版,2003,31(1):34-37
    [34]张乃东,黄君礼,郑威.强化UV/Fenton法降解水中苯酚的研究[J].环境污染治理技术与设备,2002,3(2):20-22
    [35]李天成,朱慎林.电催化氧化技术处理苯酚废水研究[J].电化学,2005,11(1):101-104
    [36]张芳,李光明,盛怡等.三维电解法处理苯酚废水的粒子电极研究[J].环境科学,2007,28(8):1715-1719
    [37]Adav S S, Chen M Y, Lee D J, et al. Degradation of phenol by Acinetobacter strain isolated from aerobic granules [J]. Chemosphere,2007,67:1566-1572
    [38]许庆清,周作明.微生物降解苯酚废水的特性研究[J].环境科学与管理,2006,31(4):136-138
    [39]Li L S, Zhu W P, Zhang P Y, et al. Comparison of AC/O3-BAC and O3-BAC processes for removing organic pollutants in secondary effluent [J]. Chemosphere,2006,62:1514-1522
    [40]Li L S, Zhu W P, Zhang P Y, et al. AC/O3-BAC processes for removing refractory and hazardous pollutants in raw water [J]. J. Hazard. Mater. B,2006,135:129-133
    [41]Sanchez-Polo M, Rivera-Utrilla J, Mendez-Diaz J D, et al. Photooxidation of naphthalenesulfonic acids:Comparison between processer based on O3, O3/activated carbon and UV/H2O2 [J]. Chemosphere,2007,68:1814-1820
    [42]Carpio E, Zuniga P, Ponce S, et al. Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon [J]. J. Mol. Catal. A:Chem.,2005,228:293-298
    [43]Matos J, Laine J, Herrmann J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl. Catal., B:Environ.,1998,18: 281-291
    [44]Jain S, Yamgar R, Jayaram R V. Photolytic and photocatalytic degradation of atrazine in the presence of activated carbon [J]. Chem. Eng. J.,2009,148:342-347
    [45]Zhang L H, Jia J P, Zhu Y C, et al. Electro-chemically improved bio-degradation of municipal sewage [J]. Biochem. Eng. J.,2005,22:239-244
    [46]Tiehm A, Lohner S T, Augenstein T. Effects of direct electric current and electrode reactions on vinyl chloride degrading microorganisms [J]. Electrochim. Acta.,2009,54:3453-3459
    [47]班福忱,刘炯天,程琳等.不同类型填料的三维电极/Fenton试剂法处理苯酚废水[J].环境污染与防治,2009,31(4):24-27
    [48]Hoffmann M R, Martin S T, Bahnemann D W. Environmental application of semiconductor photocatalysis [J]. Chem. Rev.,1995,95(1):69-96
    [49]Szczepankiewicz S H, Colussi A J, Hoffmann M R. Infrared spectra of photoinduced species on hydroxylated titania surfaces [J]. J. Phys. Chem. B,2000,104(42):9842-9850
    [50]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京,化学工业出版社:2005.51-58
    [51]Behnajady M A, Modirshahla N, Daneshvar N, et al. Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates [J]. Chem. Eng. J.,2007,127:167-176
    [52]Khataee A R, Pons M N, Zahraa O. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure [J]. J. Hazard. Mater.,2009,168:451-457
    [53]Zainal Z, Hui L K, Hussein M Z, et al. Characterization of TiO2-Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process [J]. J. Hazard. Mater.,2009,164:138-145
    [54]Aphesteguy J C, Jacobo S E. Composite of polyaniline containing iron oxides [J]. Physica B, 2004,354:224-227
    [55]钱济国,杨志伊.磁性液体轴封的密封能力分析[J].机械设计与制造,2009,2:208-209
    [56]Satarkar N S, Hilt Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release [J]. J. Controlled Release,2008,6:1-6
    [57]Li X A, Han X J, Tan Y J, et al. Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles [J]. J. Alloys Compd.,2007,9:1-5
    [58]陈捷,薛博,白姝.新型磁性亲和载体的制备及其对溶菌酶的吸附[J].天津大学学报,2001,34(1):103-106
    [59]Thomas J M, Simpson E T, Kasama T, et al. Electron holography for the study of magnetic nanomaterials [J]. Acc. Chem. Res.2008,41(5):665-674
    [60]Ghasemi E, Mirhabibi A, Edrissi M. Synthesis and rheological properties of an iron oxide ferrofluid [J]. J. Magn. Magn. Mater.,2008,320:2635-2639
    [61]Martinez-Mera I, Espinosa-Pesqueira M E, Perez-Hernandez R, et al. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature [J]. Mater. Lett.,2007,61: 4447-4451
    [62]Iida H, Takayanagi K, Nakanishi T, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis [J]. J. Colloid Interface Sci.,2007,314: 274-280
    [63]Hong R Y, Li J H, Li H Z, et al. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids [J]. J. Magn. Magn. Mater.,2008,320:1605-1614
    [64]孟哲.磁性纳米级Fe3O4的氧气诱导、空气氧化液相合成与表征[J].光谱实验室,2003,20(7):489-491
    [65]陈雷,杨文军,黄程.以高分子材料为介质制备纳米氧化铁颗粒[J].高分子材料科学与工程,1998,14(4):53-55
    [66]Mukh-Qasem R A, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles [J]. J. Colloid Interface Sci.,2005,284:489-494
    [67]Kim E H, Lee H S, Kwak B K, et al. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent [J]. J. Magn. Magn. Mater.,2005,289:328-330
    [68]Wang C Y, Zhu G M, Chen Z Y, et al. The preparation of magnetite Fe3O4 and its morphology control by a novel arcelectrodeposition method [J]. Mater. Res. Bull.,2002,37:2525-2529
    [69]钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J].化工新型材料,2001,29(7):1-5
    [70]Sugimoto T, Itoh H, Mochida T. Shape control of monodisperse hematite particles by organic additives in the gel-sol system [J]. J. Colloid Interface Sci.,1998,205:42-52
    [71]Xu J, Yang H B, Fu W Y, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method [J]. J. Magn. Magn. Mater.,2007,309:307-311
    [72]崔升,沈晓冬,林本兰.四氧化三铁纳米粉的制备方法及应用[J].无机盐工业,2005,37(2):4-6
    [73]Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions [J]. J. Mater. Chem.,2001,11:1704-1709
    [74]柴波.微乳法制备Fe3O4磁性纳米粒子的研究[J].武汉工业学院学报,2006,25(1):65-67
    [75]Fan R, Chen X H, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4 [J]. Mater. Res. Bull.,2001,36(3):497
    [76]Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.,2005,44:2782-2785
    [77]王海燕,李新建.微乳-水热法制备粒径均匀的纯相纳米Fe3O4[J].科学技术与工程,2004,4(4):266
    [78]Hai Y B, Yuan H Y, Xiao D. Preparation of Fe3O4 nanoparticles by mocrowave method [J]. Chem. Res. Appl.,2006,18:744-746
    [79]Hong R Y, Pan T T, Li H Z. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids [J]. J. Magn. Magn. Mater.,2006,303:60-68
    [80]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanopaticles for biomedical applications [J]. Biomaterials,2005,26:3995-4021
    [81]Chang C F, Lin P H, Holl W. Aluminum-type superparamagnetic adsorbents:Synthesis and application on fluoride removal [J]. Colloids Surf., A,2006,280:194-202
    [82]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. J. Am. Chem. Soc.,2008,130:28-29
    [83]Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core [J]. J. Photochem. Photobiol., A: Chem.,2002,148:303-313
    [84]李仁宏,王晟,王驹等.铁磁性Fe3O4负载TiO2纳米粒子的制备表征及光催化活性[J].浙江理工大学学报,2009,26(2):198-202
    [85]Gad-Allah T A, Fujimura K, Kato S, et al. Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4):Effect of carbon coating and calcination temperature [J]. J. Hazard. Mater.,2008,154:572-577
    [86]Gad-Allah T A, Kato S, Satokawa S, et al. Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite [J]. Solid State Sci.,2007,9:737-743
    [87]崔进,赵景联,李厚宝等.磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及光催化性能研究[J].工业催化,2009,17(5):27-31
    [88]廖振华,陈建军,姚可夫等.磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征[J].无机材料学报,2004,19(4):749-754
    [89]黄河,蒋展鹏,杨宏伟等.溶胶凝胶法制备磁载光催化剂[J].环境污染治理技术与设备,2004,5(1):65-68
    [90]姜炜.纳米磁性粒子和磁性复合粒子的制备及其应用研究[D].南京:南京工业大学,2005
    [91]郑兰香,彭国新.超细四氧化三铁微粉的制备[J].精细化工,1995,12:11-14
    [92]张朝平,王彦卿,申德君.Fe3O4纳米微粒的制备及特性[J].功能材料,2006增刊,37:118-121
    [93]Sai Y L, Chun C H, Ou J L, et al. Magnetic Fe3O4 nanoparticles synthesized for preparations of silica-coated composites [J]. Desalination,2006,200:97-99
    [94]Wu J H, Ko S P, Liu H L, et al. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method [J]. Colloids Surf., A:Physicochem. Eng. Aspects,2008,313-314:268-272
    [95]Guo H F, Zhu H, Lin H Y, et al. Polyaniline/Fe3O4 nanocomposites synthesized under the direction of cationic surfactant [J]. Mater. Lett.,2008,62:2196-2199
    [96]Beydoun D, Amal R, Low G, et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide [J]. J. Mol. Catal. A:Chem.,2002,180:193-200
    [97]Beydoun D, Amal R. Novel photocatalyst:Titania-coated magnetite, activity and photodissolution [J]. J. Phys. Chem. B,2000,104(18):4387-4396
    [98]Jelinek L, Dong P, Rojas-Pazos C, et al. Study of the Stober reaction.1. properties of colloidal silica spheres prepared via alkoxide hydrolysis [J]. Langmuir,1992,8:2152-2164
    [99]Her R K. The chemistry of silica solubility, polymerization, colloid and surface properties [M]. John Wiley & Sons:1979
    [100]陈令允,李凤生,姜炜等.强磁性纳米Fe3O4/SiO2复合粒子的制备及其性能研究[J].材料科学与工程学报,2005,23(5):556-559
    [101]刘冰,王德平,黄文旵等.溶胶-凝胶法制备核SiO2/Fe3O4复合纳米粒子的研究[J].无机材料学报,2008,23(1):33-38
    [102]Lei Z, Pang X, Li N, et al. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres [J]. J. Mater. Process. Tech.,2008,44 (7):1-8
    [103]赵宝顺,肖新颜,张会平.纳米二氧化钛光催化降解苯酚水溶液[J].精细化工,2005,22(5):339-241
    [104]Ye F X, Tsumura T, Nakata K, et al. Dependence of photocatalytic activity on the compositions and photo-absorption of functional TiO2-Fe3O4 coatings deposited by plasma spray [J]. Mater. Sci. Eng., B,2008,148:154-161
    [105]罗伍文.溶胶-凝胶法简介第二讲用于溶胶-凝胶法的主要原料-金属醇盐[J].硅酸盐通报, 1993,6(4):60-68
    [106]都有为,张毓昌,陆怀先.超细Fe3O4的氧化过程[J].物理学报,1981,30(3):424-427
    [107]李和平,王宙东,邹贵荣.磁性二氧化钛纳米粒子的制备及其光催化性能[J].分子催化,2008,22(6):555-560
    [108]Silva C G, Faria J L. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO2 under UV irradiation [J]. J. Mol. Catal. A:Chem.,2009, 305:147-154
    [109]He Q, Zhang Z, Xiong J, et al. A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity [J]. Opt. Mater.,2008,31: 380-384
    [110]Xu J, Ao Y, Fu D, et al. Low-temperature preparation of anatase titania-coated magnetite [J]. J. Phys. Chem. Solids,2008,69:1980-1984
    [111]Chiou C, Wu C, Juang R. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process [J]. Chem. Eng. J.,2008,139:322-329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700