用户名: 密码: 验证码:
转炉钢渣回收铁试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢渣主要来自炼钢过程元素氧化形成的氧化物,炉料带入的杂质,以及氧化剂、脱硫产物和炉衬侵蚀,含有丰富的钙、铁、硅、镁、铝、锰、磷。太钢集团临汾钢铁有限公司年排转炉钢渣量30万吨,粒度小于25mm,含铁品位17%~28%。这些转炉钢渣部分在钢铁公司内部自行循环使用,部分堆放在渣场,造成了极大地资源浪费和环境污染。本文对太钢集团临汾钢铁有限公司钢渣回收铁技术进行研究。
     以临钢转炉钢渣为原料,采用反光显微镜、显微照相、薄片显微镜、电子探针和光谱半定量全分析钢渣的物化和矿物特性。结果表明:转炉钢渣主要物相是硅酸二钙、硅酸三钙和熟石灰,钙含量较高。金属铁、磁铁矿含量可达16%,钢渣中还存在一定的玻璃相。钢渣中铁的主要存在形式有金属态(Fe)、简单化合态(Fe2O3、Fe3O4、Fe2O3·nH2O和FeCO3等)和复合化合物(2CaO·Fe2O3、MgO·2FeO等)。金属铁粒度分布极不均匀,磁铁矿、赤、褐铁矿结晶粒度细微,与硅钙质固溶体嵌布关系密切,较难单体解离。通过选矿可直接回收的金属矿物主要有金属铁、磁铁矿、赤、褐铁矿。对磨矿实验原渣的粒度分析和金属分布率进行测定表明该钢渣比较难磨,在磨矿过程中具有选择性破碎的特性。
     通过对临钢钢渣湿式弱磁选、湿式强磁选、干式磁选和风力分选回收铁试验,结果表明:湿式弱磁选是最佳选铁工艺。分别采用湿式磁选磨矿细度试验、磁场强度试验、干式磁选试验、风力分选试验和试验结果对比,确定其工艺参数为:原渣磨矿细度-200目占60%,磁场强度0.175特斯拉,所产生的铁精矿产率为31.00%,选矿比3.23,品位为60.60%,全铁回收率为66.99%。
     研究结果为钢铁企业实现循环生产、节约资源、降低环境污染、增加企业经济效益提供了有价值的参考依据。
Steel slag is a kind of inclusion which comes from the oxidation of elements, the impurities in the charging, oxidant and desulfurization and corrosion of the refractory in steelmaking process, and the slag is rich in Ca, Fe, Si, Mg and Al etc. It was exhausted 30 million tons of steel slag a year in Taigang Group Linfen Iron & steel Co.. In the slag, the particle size is less than 25mm, an sinter iron content about 17%-28%. A proportion of the converter steel slag was used for smelting flux, construction material, etc. The other part was pilinged in slag field which caused pollution and resources wasting. Reconcentration recovery of steel slag was studied in order to comprehensive recovery the iron.
     The reflecting microscope, microphotography, thin section microscopic electron probe and spectral methods was used to analyse and identification the slag. The results shows that main minerals of steel slag in LinSteel were dicalcium silicate, tricalcium silicate and slaked lime. The content of Ca is very high. The content of metallic and magnetite is up to 16%. The steel slag also has some glass phase. The main presence form of iron in steel slag were metal (Fe), combined form (Fe2O3,Fe3CO4, Fe2O3-nH2O and FeCO3,etc.) and compounds (2CaOFe22O3、MgO·2Fe0).The results of process mineralogy study show that the metallic iron is very uneven size distribution, the crystal grain size is remoteness of magnetite and hematite-limonite. It disseminated closely related with casi solid solution and difficult to monomer dissociation. The main metallic mineral which can be direct recoveried by mineral processing were metallic iron, magnetite and hematite-limonite. Grain size analysis and metal distribution determination were used for raw cinder of grinding. It showed that the steel slag is hard to grinding and it has character of selectivity spalling in grinding process.
     The technology of retrieving iron has been researched through comparing wet low-intensity magnetic separation, wet high-intensity magnetic separation, dry magnetic separation and pneumatic separating. It showed that the wet low-intensity magnetic separation was the best process of iron separation. Grinding fineness test of wet magnetic separation, test of magnetic field intensity, test of dry magnetic separation, test of pneumatic separating and contrast of test results have been used in the research. The mineral processing circuit and process conditions is:primary slag grinding fineness-200 bearings 60%, magnetic field intensity is 0.175t. (In order to guaranteeing iron concentrate grade, one choiceness can be increased when necessary. Magnetic field intensity is 0.15T), and iron content is 31.00%, concentration ratio is 3.23, grade is 60.60%, total iron recovery is 66.99%.
     The results provided a valuable reference for realizing circular economy, saving resources, reducing environmental pollution, increasing economic benefit enterprise.
引文
[1]隋智通等.2003年全国矿产资源高效开发和固体废弃物处置技术交流会论文集.金属矿山,2003,增刊:356-358.
    [2]韩永孝.浅谈钢渣的综合利用[J].再生资源研究,2007,(6):39-42.
    [3]谭策衡,刘闯.热泼渣技术及其应用[J].上海宝钢工程设计,2001,(1):29-34.
    [4]杨华明,张广业.钢渣资源化的现状与前景[J].矿产综合利用,1999,(3):35-36.
    [5]张雷,王飞,陈霞.钢铁渣资源开发利用现状和发展途径初探[J].中国废钢铁,2006,2(1):42-44.
    [6]韩剑宏.钢铁工业环保技术手册[M].北京:化学工业出版社,2006.
    [7]刘守平.重钢转炉渣性能测试及铁资源选别方法的探讨[J].炼钢,2002,(2):48-51.
    [8]孙树杉,朱桂林,张宇.中国钢铁渣处理利用现状及“零排放”的途径[J].中国废钢铁,2007,(2):21-28.
    [9]武运生.临钢钢铁渣资源化综合利用现状与发展方向[J].中国冶金,2006,16(12):42-44.
    [10]钱强.攀钢转炉渣选矿工艺实践[J].中国矿业,2008,17(2):69-71.
    [11]张秦岭等.冶金环保基本知识[M].北京:冶金工业出版社,1988.
    [12]赵沛等.钢铁节能技术分析[M].北京:冶金工业出版社,1999.
    [13]张爱辉.冶金炉渣梯级利用技术研究[D].西安:西安建筑科技大学学位论文,2005.
    [14]姜从盛,丁庆军,王发洲,李春.钢渣的理化性能及其综合利用发展趋势[J].国外建材科技,2002,23(3):3-5.
    [15]李家瑞等.钢铁工业环境保护[M].北京:科学出版社,1990.
    [16]李光强,朱诚意.钢铁冶金的环保与节能[M].北京:冶金工业出版社,2006.
    [17]黄志芳,周永强,杨钊.谈谈钢渣综合利用的有效途径[J].有色金属设计,2005,32(2):50-53.
    [18]舒型武.钢渣特性及其综合利用技术[J].钢铁技术,2007,(6):48-51.
    [19]朱友益,王化军,张强.钢渣综合利用试验研究[A].矿产综合利用,1997,(1):8-12.
    [20]丁明.非金属矿物加工工程[M].北京:化学工业出版社,2003.
    [21]曾晶,李辽沙,苏世怀等.转炉钢渣的弱磁选研究[J].冶金资源综合利用, 2006,24(9):33-36.
    [22]吴启兵.钢渣热态资源化利用新技术[J].工业安全与环保,2001,27(9):4-6.
    [23]李光强,等.日本钢铁厂的少渣冶炼工艺和钢渣再利用.2003年冶金能源环保生产技术会议论文集.中国金属学会,2003,10:252-257.
    [24]伍贤益.炉渣淤泥多孔砖生产工艺及其质量管理[J].新型建筑材,2008,(2):33-35.
    [25]魏莹,陆栋,李兆锋,李丙明.转炉钢渣磁选综合利用试验研究[J].硅酸盐通报.2009,28(1):152-155.
    [26]叶平,陈广言,刘玉兰,等.钢渣处理工艺及综合利用途径选择、分析与实践[A].全国冶金环保与资源综合利用技术交流会论文集[C].冶金信息情报网、四川省金属学会、华西冶金,2007,384.
    [27]黄晓燕,王芳群.钢渣的湿法处理与综合利用述评[J].中国锰业,2001,(8):39.
    [28]HJ. Li, et al. Thermodynamic Analysis of Slag Recycling Using a Slag Regenerator. ISIJInt,1995,35(9):1079-1088。
    [29]沈建中.钢渣综合利用和处理方法的述评与探索[J].中国冶金,2008,18(5):12-15.
    [30]T. Fujita, et al. Phosphorus removal from steelmaking slags slow-cooled in a non-oxidizing atmosphere by magnetic separation/flotation. Transactions of the ISS, 1989, (1)47-48.
    [31]K. Morita, et al. Resurrection of Iron and Phosphorus Resource in Steelmaking Slags. Journal of Material Cycles and Waste Management,2002, Vol.4:93-101.
    [32]李光强,等.高温碳热还原进行转炉渣资源化的研究[J].材料与冶金学报,2003,2(3):167-172.
    [33]HJ. Li, et al. Thermodynamic Analysis of Slag Recycling Using a Slag Regenerator. ISIJ Int.,1995,35(9):1079-1088.
    [34]Qasrawi Hisham, Shalabi Faisal; Asi Ibrahim. Use of low CaO unprocessed steel slag in concrete as fine aggregate.2009,2(23):1118-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700