用户名: 密码: 验证码:
高速列车制动力再分配方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,动力分散方式是世界高速列车动力配置方式的发展趋势,动力分散与动力集中相比,在速度提升、节能环保等方面具有明显优势,我国高速列车也采用了该方式。CRH2A动车组是由多辆动车共同提供牵引\制动力,当某节动车发生滑行时,只在制动单元内进行制动力分配,将发生滑行的动车降低的制动力分配给制动单元内的其他车厢,这可能导致制动单元内的拖车承担部分制动力,而其他制动单元的动车再生制动力并没有得到充分利用。制动力分配的发展趋势是在整车范围内进行制动力合理分配,现在国外已有多种车型采用这种分配方式,但是具体的分配方法并未公开。本文正是对整车范围内制动力分配方法进行探讨,并满足制动力分配后各车运行状态良好的条件。
     本文采用CRH2A动车组实际参数进行滑行再粘着控制仿真,发生滑行后,各车制动力的分配比例设置是本研究的重点及难点。本文采用的方法是根据各车蠕滑速度判断车辆轨道条件,按各车轨道条件分配制动力。在此基本思路下,本文提出了四种制动力分配方法,并在各种轮轨条件下对四种分配方法进行比较,最后根据基本分配方法组合成一个方法,它适用于各种运行条件。本文搭建了MATLAB仿真平台,仿真验证了整车制动力分配策略的可行性。
At present, separate power is the development trend of high-speed train power allocation. Compare with Centralized Power, it has obvious advantages in speed increasing, energy saving and environmental protection. So it is used in our high-speed trains. Power cars provide traction\braking force in CRH2A EMU. If a power car slides, the brake force distribute to other cars in the braking unit, which may lead to trailer car providing the brake force, while the regeneration braking force of other power car is not fully utilized. The trend of braking force distribution is reasonable distribution in the whole train. There are many trains using this distribution, but the specific method does not making public.This paper discusses the distribution method of braking force in the whole train and then ensures every car working well.
     This paper establishes anti-slip re-adhesion control simulation, which uses actual parameters of CRH2A EMU. How to distribute the vehicle braking force after sliding is the keystone and difficulty of this study. The method is based on the vehicle creep speed to estimating the vehicle track conditions, and then the brake force is distributed according to the vehicle track conditions. This paper proposes four braking force distribution methods under the basic thread and compares them in various kinds of vehicle track conditions. Finally, the basic allocation methods are combined into a method which can be applied to various track conditions. The model is built based on MATLAB to validate the feasibility of control strategy of brake force distribute in this paper.
引文
[1]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展.2001,31(1):33-46.
    [2]张曙光.CRH2型动车组[M].北京:中国铁道出版社,2008.
    [3]张曙光.京沪高速铁路系统优化研究[M].北京:中国铁道出版社,2009.
    [4]杨中平.漫画高速列车[M].北京:中国铁道出版社,2009.
    [5]Masashi Takagi, Takashi Sano, and Shinobu Yasukawa. "Antislip Readhesion Control Based on Speed-Sensorless Vector Control and Disturbance Observer for Electric Commuter Train—Series 205-5000 of the East Japan Railway Company, " IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.54, NO.4, AUGUST 2007.
    [6]A. Bouscayrol et al, "Weight control of traction drives with parallel-connected AC machines," IEEE Trans. Ind. Electron., vol.53, no.6, pp.1799-1805, Dec.2006.
    [7]C. S. Staines et al., "Sensorless control of induction machines at zero and low frequency using zero sequence currents," IEEE Trans. Ind. Electron., vol.53, no.1, pp.195-206, Feb.2006.
    [8]K. Ohyama, G. M. Asher, and M. Sumner, "Comparative analysis of experimental performance and stability of sensorless induction motor drives," IEEE Trans. Ind. Electron., vol.53, no.1, pp. 178-186, Feb.2006.
    [9]C. Caruana, G. M. Asher, and M. Sumner, "Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions," IEEE Trans. Ind. Electron., vol.53, no.1, pp.225-238, Feb.2006.
    [10]Jingchun Huang. WEISS Helmut and Jian Xiao, "Simulation Study on Adhesion Control of Electric Locomotives Based on Multidisciplinary Virtual Prototyping, " IEEE Trans. Ind. Electron.,2008
    [11]Xiaoxing Liu, Takashi Koike, Yoichi, "HoriSkid Prevention for EVs based on Back-EMF Observer and its Implementation to IPM Motor Driven EV," AMC'06-Istanbul, Turkey.
    [12]Y.Shimizu, K.Ohishi, T.Sano, S.Yasukawa, and T.Koseki:"Anti-slip/skid Re-adhesion Control Based on Disturbance Observer Considering Bogie Vibration", Proc. of PCC Nagoya 2007-The Fourth Power Conversion Conference, Nagoya, Japan, pp.1376-1381 (2007-4)
    [13]Wenli Lin, Zhigang Liu, Lijun Diao, Gang Zhang, Dan Chen and Zhefeng Li, "Maximum Adhesion Force Control Simulated Model of Electric Locomotive," Proceedings of the IEEE International Conference on Automation and Logistics, August 18-21,2007, Jinan, China
    [14]Satoshi Kadowaki, Kiyoshi Ohishi,Tadashi Hata, Takashi Sano and Shfinobu Yasukawa, "Advanced Anti-slip and Anti-skid Re-adhesion Control Considering Air Brake for Electric Train," Power Electronics and Applications,2005 European Conference.
    [15]SUNG HWAN PARK, JONG SHIK KIM, JEONG JU CHOI, and HIRO-O YAMAZAKI, "Modeling and Control of Adhesion Force in Railway Rolling Stocks," IEEE Control Systems Society, vol.28, pp.44-58,2008
    [16]L. Li, F.Y. Wang, and Q. Zhou, "Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control," IEEE Trans. Intell. Transport. Syst., vol.7, no.1, pp.1-19,2006.
    [17]Hanmin Lee, Gildong Kim, and Sunghwan Park, "A Study on Optimal Braking Control Using Adhesion Coefficient," The 7th International Conference on Power Electronics October 22-26, 2007/Exeo, Daegu, Korea
    [18]Yeun-Sub Byun, Min-Sao Kim, Jai-Kyun Mok, and Young-Chol Kim, "Slip and Slide Simulator using Induction Motors," International Conference on Control, Automation and Systems 2007 Oct.17-20,2007 in COEX, Seoul, Korea
    [19]Matteo Amodeo, Antonella Ferrara, Riccardo Terzaghi, and Claudio Vecchio, "Wheel Slip Control via Second-Order Sliding-Mode Generation," IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.11, NO.1, MARCH 2010
    [20]Xu Peng, Hou Zhe, Guo Guifang, Zhang Liping, Cao Binggang, Long Hongyu,and Chen Xi, "Anti-slip Regulation of Electric Vehicle Without Speed Sensor," IEEE International Symposium on Industrial Electronics (IS1E 2009) Seoul Olympic Parktel, Seoul, Korea July 5-8, 2009
    [21]Binggang Cao; Zhifeng Bai; Wei Zhang,Research on control for regenerative braking of electric vehicle.2005 IEEE International Conference on Vehicular Electronics and Safety Proeeedings,Shan xi China.2005
    [22]Dan Bonta, Rodica Festila, and Vasile Tulbure, "The Problem of Speed Measurements in the Slip-Slide Control for Electric Railway Traction," Automation, Quality and Testing, Robotics, 2006 IEEE International Conference
    [23]Daniel Foito, Manuel Guerreiro, and Armando Cordeiro, "Anti-Slip Wheel Controller Drive for EV using Speed and Torque Observers," Proceedings of the 2008 International Conference on Electrical Machines
    [24]Satoshi Kadowaki, Kiyoshi Ohishi, Shinobu Yasukawa, and Takashi Sano, "Anti-skid Re-adhesion Control Based on Disturbance Observer Considering Air Brake for Electric Commuter Train," AMC 2004-Kawasaki, Japan
    [25]Satoshi Kadowaki, Kiyoshi Ohishi, Shinobu Yasukawa, and Takashi Sano, "Anti-skid Re-adhesion Control Using Tangential Force Estimator Based on Disturbance Observer for Electric Commuter Train," Proceedings of the 2004 EEE Intemationd Conference on Control Applications Taipei, Taiwan, September 24,2004
    [26]邱存勇,廖双晴.电力机车粘着控制现状与展望[J].信息与电子工程,2008,6(4):301-306.
    [27]宋小齐.交直型电力机车粘着控制装置的设计[J].铁道技术监督.2009,37(6):53-56.
    [28]邱存勇,廖双晴.电力机车粘着控制现状与展望[J].信息与电子工程,2008,6(4):301-306.
    [29]李江红,陈华国,胡照文.国产化北京地铁车辆的粘着控制[J].机车电传动.2005,6:40-42.
    [30]汪进军.列车粘着控制系统的滑行检测及控制方法研究[J].中国科技信息.2006,7:144-146.
    [31]黄景春,肖建,蒋林,陈爽.利用小波分析和云模型实现机车优化粘着控制[J].计算机应用研究.2009,26(2):634-636.
    [32]徐宗祥.牵引电机转矩脉动对机车粘着利用的影响分析[J].机车电传动.2009,3:14-16.
    [33]徐志根,白裔峰,王辉,肖建.电力机车模糊间接自适应粘着控制[J].系统仿真学 报.2006,18(11):3192-3195.
    [34]杨义克,许仲兵.交直电力机车粘着控制系统现状及改进后对山区铁路运输的影响[J].成铁科计.2007,1:2-4.
    [35]叶斌.电力电子应用技术[M].北京.清华大学出版社.2006
    [36]汤蕴缪,史乃.电机学[M].北京.机械工业出版社.1994
    [37]刘和平.TMS320LF240xDSP结构、原理及应用[M].北京.北京航空航天大学出版社.2006
    [38]王晓明,王玲.电动机的DSP控制——TI公司DSP应用[M].北京.北京航空航天大学出版社.2004
    [39]王成,叶天晓,张峰.基于DSPs的SPWM波调制方法的实现[J].机电工程技术.2005.(4).43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700