用户名: 密码: 验证码:
基于分布参数模型线路保护及故障测距
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有高压输电线路故障测距方法存在着一些如原理上有伪根存在的可能、两端数据同步匹配问题和测距精度与测距速度之间存在此消彼长的矛盾等不足,文章在引入参考点与故障点相匹配的思想基础上构建了一新的测距函数。利用该测距函数相位特性可实现对N(N≥2)端输电线路和同杆双回线进行故障定位。
     1、双端线路上该测距函数与双曲正切函数(或双曲正弦函数)具有相同相位特性,利用所选参考点与故障点相匹配时测距函数过零这一特征进行定位。该方法原理上不存在伪根,运算量小,具有良好的快速性。
     2、该测距函数在T型线路的故障支路和正常支路上分别具有不同相位特性,利用正常支路上所选参考点与故障点相匹配时测距函数过零这一特征进行定位。该方法打破了传统先判断故障支路再故障定位的模式,无需事先判别故障支路即可测距。该方法无测距死区,较好的克服了传统方法在T节点附近有测距死区的不足。该方法不存在伪根,对非线性电阻故障具有良好的适用性。
     3、鉴于现有多端故障测距方法存在的缺陷,诸如采用未能真实反映实际情况的线路集中参数模型,在T节点附近高阻短路故障时有测距死区,算法过于复杂不易实现,受系统运行方式的影响等,在T节点附近发生高阻短路故障时,无法正确判别故障支路。针对该缺陷,文章提出一种N端输电线路同步故障测距新算法。首先,由离参考端最远的母线推算离参考端最近的T节点的电压、电流,在该T节点和参考端之间利用双端测距算法求出故障距离:基于该故障距离的分布特点将原N端输电线路的故障测距问题转化为一个T型线路的故障测距问题。然后,利用文章提出的T型线路故障测距新算法进行测距。该方法无测距死区,克服了传统方法在T节点附近有测距死区的不足,测距精度受过渡电阻、故障类型和负荷电流的影响很小
     4、现有同杆双回线非同步故障定位方法存在着需要通过移动数据来同步匹配两侧信息。针对这一不足,文章提出一种基于双曲正切函数相位特性同杆双回线非同步故障定位新原理。根据所取参考点与故障点相匹配时双曲正切函数相位过零这特征进行定位。该方法理论证明了非同步故障时可利用对侧反向正序电流相位来同步校正该侧反向正序电流相位,无需通过数据移动来同步匹配两侧信息。由于只采用双端电流量,在原理上避免了电压互感器传变特性的影响,且理论上证明了该方法测距精度不受电流互感器特性的影响。原理上不存在伪根问题,对非线性电阻故障具有良好的适用性。
     由于故障点与T接点位置关系未知,所以应用于传统双端线路的分布电容电流补偿方法不能直接应用于T型输电线路的全电流差动保护中,因此,目前所提出的工频稳态量差动保护在原理上仍受分布电容电流的影响,为了避免保护误动,定值要躲开分布电容电流,从而降低了保护的抗过渡电阻能力。针对这一问题,文章提出一种基于分布参数模型的T型输电线路电流差动保护新原理,该方法将原为三端线路电流差动保护问题转化为2个原理相似的双端线路电流差动保护问题,并数学分析了这种转化的正确性。与传统T型线路全电流差动保护相比,新保护判据不受分布电容电流的影响,适用于T型高压输电线路。
     采用保护安装处零序电流相位来估算故障支路电流相位的估算误差是零序电抗继电器及其改进型阻抗继电器难以直接应用于特高压交流输电线路上的主要因素。针对该问题,经分析得出观测点处的负序电流可以很好地模拟单相接地短路时故障支路负序电流的相位信息。在此基础上,提出一种可适用于特高压交流输电线路的单相接地阻抗继电器。该保护在特高压交流输电线路单相接地时具有较强的抗过渡电阻能力和稳定的保护范围以及较高的动作灵敏性。
A new fault location function is generated based on the matching idea of selecting a reference point to match the fault position, which phase characteristics is determinated by the phase characteristics of hyperbolic tangent function or by the phase characteristics of hyperbolic sine function. The accurate fault location for N-terminal (N≥2) transmission lines and parallel transmission lines can be achieved by using the phase characteristics of the function.
     (1) The function has different phase characteristics between reference point located at the left of fault position and reference point located at the right of fault position, and the phase of the function equals to zero when the reference point matches the fault position. Based on the phase characteristics of the function, a novel fault location algorithm for two terminals transmission lines is proposed. The presented algorithm has less calculation burden, and the accuracy is independent of fault transition impedance and its property, fault type, fault position. The fault location function has no false root in theory.
     (2) The function has different phase characteristics between the fault branch and the healthy branches, and phase of the function equals to zero when the reference point matches the fault position on the fault section. Based on the phase characteristics of the function, a novel fault location algorithm for three-terminal tranimission lines is proposed. The method breaks the mold of traditional methods that it must identify the fault section before locating the fault. The method can locate the fault without identifying the fault section first. And the method doesn't have dead zone of fault location, it can accurately locate the fault occurring near the teed node. Therefore, the method perfectly solves the disadvantage of currently used methods that there is a dead zone of fault location near the teed node. Th·e presented algorithm has less calculation burden, and the accuracy is slightly affected by transition resistance and its property, fault types and load current.
     (3) Due to the defects of existing synchronized phasor measurement (SPM) based fault location methods for multi-terminal transmission lines, such as the adopted lumped parameter models of transmission line cannot reflect correctly actual condition, there is dead zone of fault location while the high resistance fault occurred near the teed node, or the algorithm is too complex to implement, the adopted algorithms are affected by operation modes of power system, etc., the faulty branch cannot be correctly judged when high resistance fault occurred near the teed node. For this reason, a new fault location algorithm for multi-terminal transmission lines using SPM is proposed. Firstly, the voltage and current of the teed node that is the nearest to the reference bus are calculated by the voltage and current data of the bus that is the farthest to the reference bus, and by use of two-terminal fault location algorithm the fault location between the teed node and reference bus is solved; then based on the distribution characteristic of this fault location, the fault location problem of original N-terminal transmission lines is changed into the fault location of a teed transmission line; finally, a new fault location algorithm without dead zone for teed transmission line is given. The given algorithm remedies the defect of traditional fault location methods in which dead zone of fault location exist. The accuracy of the given algorithm is slightly affected by transition resistance, fault types and load current.
     (4) A new fault location algorithm for parallel transmission lines using two terminals unsynchronized data is proposed based on the phase characteristics of the function. The synchronization is achieved by using one terminal current's phase to adjust the other terminal current's phase in the differential component net. Since voltages are not be used in this algorithm, the measurement error of PT and CT will not affect on location accuracy. The presented algorithm has less calculation burden, and the accuracy is independent of fault transition impedance and its property, fault type, fault position and load current. The fault location function has no false root in theory.
     Due to the fact that the distributed capacitive current in three-terminal transmission lines significantly influences the protection performance of current differential protection, such influence should be taken into account in the protection principle. On the basis of new research findings of current differential protection for two-terminal transmission lines, a new distributed parameter model based principle of current differential protection for three-terminal transmission lines is proposed. Translating original current differential protection for three-terminal transmission line into two current differential protections for two-terminal transmission lines, which are similar in principle, the correctness of such a translation is strictly proved by distributed parameter model. Comparing with traditional post-fault current differential protection for three-terminal transmission lines, new protection criterion is not influenced by distributed capacitive current, so it is suitable to three-terminal high voltage transmission lines.
     The estimation error in the fault current phase angle based on the zero sequence current at the relay installed location is the key influential factor for the zero-sequence reactance relay and its improved ground reactance relay to be applicated in Ultra-high-voltage long AC transmission lines. To tackle the problem, an improvement of zero sequence reactance relay with applications in Ultra-High-Voltage long AC Transmission Lines is proposed. It is based on the principle that the negative current phase angle in fault path can be precisely estimated by the negative sequence current phase angle at the relay installed location with single-phase-to-ground faults.The protection has very strong ability against transient resistance and stability protective zone and high operation sensitivity with single-phase-to-ground faults.
引文
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1994.
    [2]高中德.超高压电网继电保护专题分析[M].北京水利电力出版社,1990.
    [3]全玉生,杨敏中,王晓蓉,等.高压架空输电线路的故障测距方法[J].电网技术,2000,24(4):27-33.
    [4]Kezunovic M, Mrkic J, Perunicic B. An accurate fault location algorithm using synchronized sampling[J]. Electric Power System Research,1994,29 (1):161-169(in chinese).
    [5]杜召满,赵 舫.一种新的超高压输电线路双端测距算法[J].高电压技术,2003,29(11):11-12.
    [6]刘涤尘,杜新伟,李媛,等.基于遗传算法的高压长线路双端故障测距研究[J].高电压技术,2007,33(3):21-25.
    [7]苏进喜,罗承沐,解子风,等.利用双端电气量的高压长线故障测距算法[J].清华大学学报(自然科学版),2000,40(7):27-30.
    [8]毛鹏,张兆宁,苗友忠,等.基于双端电气量的输电线路故障测距的新方法[J].继电器,2000,28(5):24-27,46.
    [9]蒋春芳,王克英.基于参数估计的双端不同步故障测距算法[J].继电器,2008,36(1):1-4,8.
    [10]施世鸿,何奔腾.不受TA饱和影响的高压输电线路故障测距算法[J].电力系统自动化,2008,32(2):67-71.
    [11]束洪春,司大军,陈学允,等.基于分布参数模型的串补线路故障测距方法研究[J].中国电机工程学报,2002,22(4):72-76.
    [12]滕林,刘万顺,李营,等.一种实用的新型高压输电线路故障双端测距精确算法[J].电力系统自动化,2001,25(9):24-27.
    [13]辛振涛,尚德基,尹项根.一种双端测距算法的伪根问题与改进[J].继电器,2005,33(6):36-38,45.
    [14]周大敏,冯璞乔,易良廷.一种使用两端电气量的高压输电线路故障测距的新算法[J].电网技术,1997,21(7):47-51.
    [15]全玉生,王晓蓉,杨敏中,等.工频双端故障测距算法的鲁棒性问题和新算法研究[J].电力系统自动化,2000,24(10):28-32.
    [16]周大敏.一种实用的三端高压输电线路故障测距方法[J].电力自动化设备, 1998,65(1):17-20.
    [17]高厚磊,安艳秋,江世芳.超高压T接线路高精度故障测距算法研究[J].电力系统自动化,2001,20(10):51-53.
    [18]束洪春,高峰,陈学允,等.T型输电系统故障测距算法研究[J].中国电机工程学报,1998,18(6):416-420.
    [19]李胜芳,范春菊,郁惟镛.T型支接线路的自适应故障测距算法[J].电工技术学报,2004,19(10):59-64.
    [20]Gong Qingwu, Chen Yunping, Zhang Chengxue, et al. A study of the accurate fault location system for transmission line using multi-terminal signals[C]. IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA,2000.
    [21]束洪春,司大军,葛耀中,等.T型输电线路电弧故障测距时域方法研究[J].电工技术学报,2002,17(4):99-103.
    [22]韦钢,唐斌,肖鸿杰.输电线路不对称故障点定位的新方法[J].电力系统自动化,2001,25(9):29-32.
    [23]Tziouvaras D A, Roberts J B, Benmouyal G. New multi-ended fault location design for two-or three-terminal lines[C]. IEE Conference on Developments in Power System Protection, Amsterdam, Netherlands,2001.
    [24]Sukumar M. Brahma. Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements[J]. IEEE Transactions on Power Delivery, 2005,20(2):1325-1331.
    [25]施世鸿,何奔腾.T型输电线路非同步数据故障测距新算法[J].电力自动化设备,2008,28(10):63-67.
    [26]Lin Yinghong, Liu Chihwen, Yu Chishan. A new fault locator for three-terminal transmission lines using two-terminal synchronized voltage and current phasors[J]. IEEE Transactions on Power Delivery,2002,17(2):452-459.
    [27]Yu Chishan, Liu Chihwen, Jiang JoeAir. Three-terminal transmission line protection using synchronized voltage and current phasor measurements[C]. Proceedings of Transmission and Distribution Conference and Exhibition 2002:Asia Pacific, Yokohama, Japan,2002.
    [28]Lien Kaiping, Liu Chihwen, Jiang JoeAir.. A novel fault location algorithm for multi-terminal lines using phasor measurement units[C]. Proceedings of the 37th Annual North American, Ames, USA,2005.
    [29]施世鸿,何奔腾.一种T形高压输电线路故障测距新方法[J].电力系统自动化,2008,32(11):49-52,76.
    [30]施世鸿,何奔腾,张武军.T型高压输电线路故障测距[J].中国电机工程学报,2008,28(25):105-110.
    [31]束洪春,陈学允,许承斌.多端辐射状输电线路故障测距的一种实用算法[J].电力系统自动化,1998,22(2):21-25,45.
    [32]Nagasawa T, Abe M, Otsuzuki N, et al. Development of a new fault location algorithm for multi-terminal two parallel transmission lines[J]. IEEE Trans. on Power Delivery,1992,7 (3):1516-1532.
    [33]Funabashi T, Otoguro H, Mizuma Y, et al. Digital fault location algorithm for parallel double-circuit multi-terminal transmission lines[J]. IEEE Trans on Power Delivery,2000,15 (2):531-537.
    [34]Sanderson J.V.R, Santana R.G.R, AlFakri B. Improved directional comparison based algorithm for protection of multi-terminal transmission lines[C]. Fifth International Conference on Developments in Power System Protection,1993:153-156.
    [35]Sukumar M.Brahma. New fault location method for a single multi-terminal transmission line using synchronized phasor measurements [J]. IEEE Trans. on Power Delivery,2006,21(3):1148-1153.
    [36]Chih-Wen Liu, Kai-Ping Lien, Ching-Shan Chen, JoeAir Jiang. A universal fault location technique for N-terminal(N≥3) transmission lines[J]. IEEE Trans on Power Delivery,2008,23(3):1366-1373.
    [37]Sukumar M.Brahma. Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements[J]. IEEE Trans. on Power Delivery,2005, 20(2):1325-1331.
    [38]Yuan Liao. Fault location using sparse current measurements[C].39th North American Power Symposium, IOWA State University, USA,2007.
    [39]Yuan Liao. Fault location using sparse voltage measurements[C].39th North American Power Symposium, IOWA State University, USA,2007.
    [40]Yong-Jin Ahn, Myeon-Song Choi, Sang-Hee Kang. An accurate fault location algorithm for double-circuit transmission systems[C]. IEEE, Power Engineering Society Summer Meeting,2000:1344-1349, vol.3
    [41]刘千宽,李永斌,黄少锋.基于双端电气量的同杆平行双回线单线故障测距[J].电网技术,2008,32(3):27-30.
    [42]龚震东,范春菊,郁惟镛,等.一种基于六序网图的同杆双回线故障测距算法[J].电力系统自动化,2007,31(17):58-60,82.
    [43]李胜芳,范春菊,郁惟镛.基于相量测量的输电线路故障测距新算法[J].电网 技术,2004,28(17):28-32.
    [44]范春菊,蔡华嵘,郁惟镛.基于六序分量法的同杆双回线精确故障测距[J].上海交通大学学报,2004,38(8):1278-1282.
    [45]宋国兵,索南加乐,许庆强,等.基于双回线环流的时域法故障定位[J].中国电机工程学报,2004,24(3):24-29.
    [46]高淑萍,宋国兵,焦在滨,等.双端电流时域故障定位法[J].西安交通大学学报,2009,43(4):101-105.
    [47]Saha M.M., Wikstrom K., Izykowski J, et al. New accurate fault location algorithm for parallel lines[C]. IEE, Developments in Power System Protection on Seventh International Conference,2001:407-410.
    [48]Ching-Shan Chen, Chih-Wen Liu, Joe-Air Jiang. A new a daptive PMU based protection scheme for transposed/untransposed parallel transmission lines[J]. IEEE Trans. on Power Delivery,2002,17(2):395-404.
    [49]束洪春,高峰,陈学允等. 双端不同步采样的高压输电线路故障测距算法研究[J].电工技术学报,1997,12(6):99-103.
    [50]杨博,卫志农,王华芳,等.基于不对称分布参数的同杆双回线双端故障测距算法[J].继电器,2005,33(5):8-11.
    [51]索南加乐,宋国兵,许庆强,等.利用两端非同步电流的同杆双回线故障定位研究[J].电工技术学报,2004,19(18):99-106.
    [52]Suonan Jiale, Song Guobing, Xu Qingqiang, et al. Time-domain fault location algorithm for parallel transmission lines using unsynchronized currents[J]. Electrical Power and Energy Systems,2009,28(4):253-260.
    [53]廖泽友,鲍伟廉,杨维那,等.高压线路电流差动保护的现状及其前景展望[J].继电器,1999,27(1):4-7.
    [54]刘静,邰能灵,李砷.T型线路电流差动保护研究[J].电力自动化设备,2008,28(10): 58-63.
    [55]安建锋.T接线路差动保护的应用[J].电力系统保护与控制,2008,36(21):93-96.
    [56]王亚强.关于T接线路继电保护若干问题的研究[D].北京:华北电力大学,2004.
    [57]郭征,贺家李.三端线路光纤保护的研究[J].电力系统自动化,2003,27(10):57-59.
    [58]葛耀中.电流差动保护动作判据的分析和研究[J].西安交通大学学报,1980,14(2): 93-107.
    [59]高厚磊,江世芳.T接线路电流纵差保护新判据研究[J].继电器,2001,29(9):6-16.
    [60]Gao Houlei, Crossley P A. A new current differential protection scheme for teed transmission lines[C]. IEEE Power Engineering Society General Meeting,2006.
    [61]王绪昭,杨明玉,杨奇逊.三端系统数字式分相电流差动保护跳闸判据研究[J].继电器,1992,20(3):28-32.
    [62]李岩,尹项根,马天浩,等.T接短线微机纵差保护原理研究[J].电力自动化设备,1999,19(2):21-23.
    [63]Ito H, Shuto I, Ayakawa H, et al. Development of an improved multifunction high-speed operating current differential relay for transmission line protection[C]. IEE Seventh International Conference on Developments in Power System Protection,2001.
    [64]郭征,贺家李.输电线路纵联差动保护[J].电力系统自动化,2004,28(11):1-5.
    [65]Xu Z Y, Du Z Q, Ran L, et al. A current differential relay for a 1000 kV UHV transmission line[J]. IEEE Transactions on Power Delivery,2007,22(3):1392-1399.
    [66]李斌,贺家李,郭征,等.线路中间带并联电抗器的线路差动保护[J].电力系统自动化,2006,30(7):31-36.
    [67]郭征,贺家李.有串补电容输电线纵联差动保护原理[J].天津大学学报,2005,38(3):195-200.
    [68]苏斌,董新洲,孙元章.特高压带并联电抗器线路的行波差动保护[J].电力系统自动化,2004,28(23):41-44.
    [69]张武军,何奔腾,沈冰.特高压带并联电抗器线路的行波差动保护[J].中国电机工程学报,2007,27(10):56-61.
    [70]柳焕章,李晓华.新型数字线路电流差动保护原理及其应用[J].电网技术,2007,31(11):74-81.
    [71]王海港,董新洲,薄志谦.一种灵敏可靠的输电线路电流差动保护判据[J].电网技术,2006,30(10):90-93.
    [72]贺家李,李永丽,郭征,等.特高压输电线继电保护配置方案:(一)特高压输电线的结构与运行特点[J].电力系统自动化.2002,26(23):1-6.
    [73]贺家李,李永丽,李斌,等.特高压输电线继电保护配置方案:(二)保护配置方案.电力系统自动化[J],2002,26(24):1-6.
    [74]李斌,李永丽,贺家李.750kV线路保护与并联电抗器的研究[J].电力系统自动化,2005,29(11):40-44.
    [75]李斌,李永丽,贺家李.750kV输电线路保护与单相重合闸动作的研究[J].电力 系统自动化,2007,23(19):73-76,84.
    [76]许正亚.输电线路新型距离保护[M].北京:中国水利水电出版社,2002.
    [77]沈冰,何奔腾.基于阻抗轨迹估计的自适应相间距离继电器[J].中国电机工程学报,2007,27(31):71-76.
    [78]范春菊,于会萍,郁惟镛,等.零序电抗继电器抗过渡电阻能力分析[J].电力自动化设备,2001,21(10):7-10.
    [79]王宾,董新洲,薄志谦,等.零序电抗继电器在特高压交流输电线路上的适用性分析[J].电力系统自动化,2008,32(4):46-50.
    [80]HA Hengxu, ZHANG Baohui. Study on Reactance Relays for Single Phase to Earth Fault on EHV Transmission Lines[J].2004 International Conference on Power System Technology-POWERCON 2004 Singapore,21-24 November 2004:1-5.
    [81]魏佩瑜,于桂音,张铭新,哈恒旭.一种新的比相式电抗型距离继电器算法[J].继电器,2006,34(8):13-16,49.
    [82]王宾,董新洲,薄志谦,等.特高压交流长线路零序电抗继电器动作特性分析及改进[J].电工技术学报,2008,23(12):460-64.
    [83]施世鸿.高压输电线路故障测距研究[D].硕士学位论文,浙江大学,2008.
    [84]宋国兵.双回线时域法故障定位研究[D].博士学位论文,西安交通大学,2005.
    [85]康小宁.基于参数识别的高压输电线路故障测距研究[D].博士学位论文,西安交通大学,2006.
    [86]徐振宇.1000kV特高压输电线路保护的现状及发展[J].电力设备,2008,9(4):17-20.
    [87]M.S. Sachdev, R. K. Agarwal.A technique for estimating transmission fault locations from digital impedance relay measurement[J]. IEEE Transactions on Power Delivery,1988,3(1):121-129.
    [88]覃剑,陈祥训,郑健超.不同故障类型情况下行波传播特点的研究[J].电网技术,1999,23(1):54-58.
    [89]覃剑,黄震,杨华,等.同杆并架双回线路行波传播特性的研究[J].中国电机工程学报,2004,24(5):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700