用户名: 密码: 验证码:
温室栽培条件对土壤硝态氮行为影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室中的土壤受温室中特殊的环境因素影响,与大田土壤有着不同的理化性质。其中土壤硝态氮容易累积,易导致严重的次生盐渍化现象。氮是植物必需的矿质养分,容易被植物吸收,但也容易被水淋溶进入地下水,导致水体污染,对人畜可能造成危害。本试验研究温度、湿度、氮肥等温室栽培条件对土壤中水、氮运移特性以及水分、氮肥对温室作物氮吸收的影响。
     通过土柱模拟试验,研究蒸发条件下土壤水分和温度对温室土壤硝态氮运移的影响,为温室水肥及环境管理提供理论依据。研究结果表明:(1)土壤剖面水分随着蒸发时间的延长向上蒸发,水分含量随着深度的减小而减少,在土壤剖面100mm以上水分梯度变化大,在100mm以下变化不大。在蒸发开始的前3天内,土壤表层水分含量的减少较显著,而在后两天,水分含量的减少幅度明显减缓。随着温度升高、初始含水量高,土壤表层水分含量减少快。(2)随着蒸发时间的延长,土壤NO_3~--N逐渐向表层迁移,土壤NO_3~--N含量表聚现象明显,在表层0mm处的土壤NO_3~--N含量最高,在100mm以上,NO_3~--N含量向表层增加,而在100mm至下边界,剖面含盐量基本在初始值左右波动。土壤剖面NO_3~--N含量的向上迁移是由于土壤水分向上运动所致,和土壤剖面含水量呈显著的负相关。(3)在温室管理中,应该选择合理的灌溉方式及灌水量,控制适宜的温度,且在栽培中控制施肥量,以有效避免土壤中NO_3~--N过量及表聚。
     采用番茄为供试作物,利用温室盐渍化土壤,在模拟田间条件下研究不同土壤水分以及不同的施肥处理对番茄氮素吸收的影响,以探讨土壤水、氮耦合作用对温室作物氮吸收影响的作用机理。研究结果表明:(1)本实验中,含水量为90%FC、施氮量为150mg/kg的处理最有利于植株的生长发育,同时植株体内硝酸还原酶活性高,硝态氮含量低。含水量为60%FC、施氮量为300mg/kg的处理,植株的长势最差,植株生物量及根长指标均较其他处理差,同时植株体内硝酸还原酶活性低,硝态氮含量高。(2)水分含量低和施氮量高的处理,土壤残留NO_3~--N及NH_4~+-N含量高,且土壤酸化及次生盐碱化严重,盐分向地表积累情况严重,发生盐害。土壤中的NO_3~--N含量及NH_4~+-N含量均随着距离根系的距离的增加而增加,这是由于根系吸收养分导致。土壤全磷含量差异不显著,这与磷素在土壤中的移动性较差有关。土壤钾素丰富,钾的移动速率慢,容易被土壤固定,在土壤上层速效钾含量都超过了350mg/kg。(3)在温室栽培中,保持足够的灌水量有利于植株生长及生物量的积累,可降低植株体内硝态氮含量,并减少作物收获后土壤中残留的氮含量;过高施氮量,对于温室盐渍化土壤中作物生长发育产生抑制作用,使植物体内硝酸还原酶活性降低,体内的硝态氮累积量增加,作物收获后土壤中残留的氮含量也随之增加;受到低水分含量和高含氮量的双重胁迫时,植株的生长及生物量严重受到影响。在温室盐渍化土壤中进行作物生产,足量灌溉更有利于作物对氮的吸收利用,并促进作物的生长发育,应适当控制氮肥的应用,有效提高氮肥的利用率。
The particular environmental factors in greenhouse make soil having different physical and chemical features in greenhouse with those in open field soil. The greenhouse conditions leads to easy accumulation of nitrate in soil there by causing soil secondary salinization seriously. Nitrogen is unhealthful to people and animals, although it's a kind of indispensable mine nutrients to plant. What's more, nitrate is prone to be absorbed by plant and exuviated by water, result in water pollution. This test mainly study the transportation features of soil water and nitrate in greenhouse soil under distinct temperature、moisture and nitrogen fertilizer conditions as well as the nitrogen absorption effects of greenhouse plants due to disparate water and nitrogen fertilizer conditions.
     Through soil-column simulating experiment, the effects study of nitrate's transportation in greenhouse soil by soil water and temperature under evaporation condition provides water-fertilizer in greenhouse and environmental management with theoretical gist. The test results indicate: (1) The water content of soil section under 100mm has no obvious change while that above 100mm decreases gradually as close to the surface bit by bit. During first three days after evaporation began, the water content of surface layer decreases apparently, however, the decreasing extent becomes less in a large scale during two days afterward. Moreover, under conditions of high temperature or a great amount of initial water, the water content of surface soil will decrease quickly. (2)The soil nitrate content, which reaches the maximum at 0mm soil layer and increases from the 100mm soil layer to the soil surface gradually but nearly no change between 100mm layer and low-boundary, presents distinct phenomenon of surface gathering. The nitrate content of soil section transfers in upward direction attributing to the upward movement of soil water and the water content of soil section has palpable negative correlation with the nitrate content. (3) In greenhouse management, reasonable irrigation manner and capacity、feasible temperature and fertilization can reduce the excessive of the nitrate content of soil.
     Taking tomatoes as the crops for experiment, utilizing greenhouse salinized soil, the effects on nitrogen absorption of tomatoes by different soil water and disparate fertilization approaches were studied under simulated fields' environment condition, in order to explore and discuss the coupling action mechanism, from soil water and nitrogen, of the effects on the nitrogen absorption of greenhouse crops. The study results indicate: (1) Under the condition of this experimental level, the plants that were subjected to the treatment of 90%FC water and 150mg/kg nitrogen's fertilization grew better reflected by the high index of plants' biomass and roots' length, high activeness of nitrate reductase activity as well as little nitrate content. The plants that were subjected to the treatment of 60%FC water and 300mg/kg nitrogen's fertilization grew worse reflected by the low index of plants' biomass and roots' length, low activeness of nitrate reductase activity as well as more nitrate content. (2) The remaining nitrate and ammonium nitrogen contents in soil increases along with water decreasing and nitrogenous fertilizer's adding. The phenomenon of soil acidification and the secondary salinization of soil are serious. There is a serious situation of salinity's accumulation toward surface of ground causing the detriment of salinity. For absorbing nutrient by roots, the amount of nitrate and ammonium nitrogen increase along with the increase of distance to roots. The discrepancy of the contents of all-phosphors is not prominent due to their inconvenient movement in soil. Potassium in soil is abundant with over 350mg/kg's content of available K in upper layer soil. (3)Keeping providing adequate volume of water is convenient for plants' growth and biomass' accumulation and lessen the content of nitrate content in plants; On the other hand, a great amount of nitrogenous fertilizer will cause serious soil salinization and hamper the growth of plants and accumulation of biomass, furthermore, results in increasing amount of nitrate content in plants; The growth and biomass of plants were subjected to influence of due-pressing from both of the water content and high amount of nitrogen.
引文
1.艾应伟,陈实,张先婉,徐佩,范志金.氮肥深施深度对小麦吸收利用氮的影响.土壤学报,1997,34(2):146-151
    2.艾应伟,陈实,张先婉,徐佩,范志金.垄作不同土层施肥对小麦生长及氮肥肥效的影响.植物营养与肥料学报,1997,3(3):25
    3.蔡大同,张春兰,蒋廷惠,徐阳春,杜国华,周瑞荣,林长丰.优质小麦氮肥分期施用的农业和生理效率.植物营养和肥料学报,1996,2(2):104-109
    4.陈清,温贤芳,郑兴耘,潘家荣.灌溉条件下施氮水平对土壤-作物系统中肥料氮素去向的影响.核农学报,1997,11(2):97-102
    5.褚天锋,林继雄,杨清.化肥科学使用指南.北京:金盾出版社,1997
    6.党廷辉,郭胜利,郝明德.黄土旱塬长期施肥下硝态氮深层累积的定量研究.水土保持研究,2003,10(1):58-60,75
    7.杜红斌,王秀峰,崔秀敏.植物NO_3~--积累的生理机制研究.中国蔬菜,2001,(2):49-51
    8.樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响.土壤与环境,2000,9(1):23-26
    9.樊军,郝明德,邵明安.黄土高原沟壑区草地土壤深层干燥化和氮素消耗.自然资源学报,2004,19(2):201-206
    10.樊军,邵明安,郝明德,王全九.黄土旱塬塬面生态系统土壤硝酸盐累积分布特征.植物营养与肥料学报,2005,11(1):8-12
    11.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响.植物营养与肥料学报,1998,4(1):16-21
    12.房云波,孟春玲.保护地内土壤次生盐渍化土壤形状的影响及对策.辽宁农业科学,2006,6:40-41
    13.古巧珍,杨学云,孙本华,马路军.旱地土娄土长期定位施肥土壤剖面硝态氮分布与累积研究.干旱地区农业研究,2003,21(4):48-52
    14.郭大应,熊清瑞,谢成春,冯艳.灌溉土壤硝态氮运移与土壤湿度的关系.灌溉排水,2001,20(2):66-68,72
    15.郭胜利,张文菊,党廷辉,吴金水,郝明德.干旱半干旱地区农田土壤NO_3~--N 深层积累及其影响因素.地球科学进展,2003,18(4):584-591
    16.胡承孝,邓波儿,刘同仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响.华中农业大学学报,1992,11(3),239-243
    17.胡省英,冉伟彦,范宏瑞.土壤-作物系统中重金属元素的地球化学行为.地质与勘探,2003,39(5):84-87
    18.胡田田,李生秀,郝乾坤.旱地土壤矿质氮和可矿化氮与土壤供氮能力的关系.水土保持学报,2000,14(4):83-86,103
    19.黄继茂,段昆生,林碧香,李华兴,谢梅芳.低硝酸盐优质高产叶菜的营养配方研究.土壤,1990,22(4):222-224,封3
    20.巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境,2003,12(1):24-28
    21.李东坡,武志杰,梁成华,陈利军.设施土壤生态环境特点与调控.生态学杂志,2004,23(5):192-197
    22.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240-242
    23.李世清,王瑞军,李紫燕,李凤民,邵明安,李生秀.半干旱半湿润农田生态系统不可忽视的土壤氮库-土壤剖面中累积的硝态氮.干旱地区农业研究,2004,22(4):1-14
    24.李文庆,李广德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995(2):165-169
    25.林志刚,赵仪华,薛耀英.叶菜类蔬菜上的硝酸盐积累规律及其控制方法研究.土壤通报,1993,24(6):253-255
    26.刘微.小麦-玉米两熟制下土壤硝态氮运移淋失规律及灌水施氮量推荐.河北农业大学硕士学位论文,2005:1-5
    27.刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与积累.土壤肥料,2001,(1):9-12
    28.罗时石,张浩,葛才林.不同温度及灌水量对土壤硝态氮淋失动态研究.核农学报,1995,9(增刊):7-10
    29.吕殿青,同延安,孙本华,OveEmteryd.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(2):8-15
    30.吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋吸效应影响的研究.植物营养与肥料学报,1999,5(4):307-315
    31.吕殿青,杨学云,张航,戴万宏,张文孝.陕西(土娄)土中硝态氮运移特点及影响因素.植物营养与肥料学报,1996,2(4):289-296
    32.马凤鸣.冬季休闲期间土壤剖面态氮的移动.东北农学院学报,1989,20(4):211-219
    33.马立珊,汪祖强,张水铭,马杏法,张桂英.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47
    34.马文奇,毛达如,张福锁.山东省蔬菜大棚养分累积状况.磷肥与复合肥,2000,15(3):65-67
    35.毛金峰,高鹏.日光温室土壤盐害与防治.长江蔬菜,2000,(3):35-36
    36.梅莉,王政权,韩有志,谷加存,王向荣,程云环,张秀娟.水曲柳根系生物量、比根长和根长密度的分布格局.应用生态学报,2006,17(1):1-4
    37.孟鸿光,李中,刘乙俭,金福兰,尹长安,姜文君,张基迁,王洪凤.沈阳城郊温室土壤特性调查研究.土壤通报,2000,31(2):70-72
    38.彭琳,王继增,余存祖.侵蚀旱作土壤氮素利用与淋溶流失.水土保持学报,1996,2(2):9-16
    39.史蒂文森[美]著.农业土壤中的氮.闵九康等译,北京:科学技术出版社,1989
    40.孙克刚,姚健,朱洪勋.长期不同施肥对潮土中硝态氮累积及作物产量的影响.干旱地区农业研究,1999,17(1):35-38
    41.孙宇瑞.土壤含水率和盐分对土壤电导率的影响.中国农业大学学报,2000,5(4):39-41
    42.汤丽玲,陈清,张宏彦,李晓林.不同水氮处理对菠菜硝酸盐累积和土体硝态氮淋洗的影响.农业环境保护,2001,20(5):326-328
    43.章有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    44.王援高,陆景岗,潘洪明.茶园土壤砷的动态研究.浙江农业大学学报,1999,25(1):10-12
    45.汪志荣,张建丰,冯保平,王文焰.温度影响下土壤水分运动模型.水利学报.2002,10:46-50
    46.魏新平,王文焰,王全九,张建丰.溶质运移理论的研究现状和发展趋势.灌溉排水,1998,17(4):58-63
    47.吴海卿,杨传福,孟兆江.应用N15示踪技术研究土壤水分对氮素有效性的影响.土壤肥料,2000,(1):16-18,37
    48.吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理.生态学报,2003,23(10):2040-2049
    49.奚振邦.现代化学肥料学.北京:中国农业出版,2003
    50.夏立忠,李忠佩,扬林章.大棚栽培番茄不同施肥条件下土壤养分和盐分组成与含量的变化.土壤,2005,37(6):620-625
    51.徐谦.我国化肥和农药非点源污染状况综述.农村生态环境,1996,12(2):39-43
    52.薛继澄,毕德义,李家金,殷永娴,吴志行.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,(1):4-9
    53.杨林,薛栋森,Henry C L,Harison R B.生物固体对土壤氮循环和硝态氮淋洗的影响.农业环境保护,1997,16(4):182-186
    54.杨学云,张树兰,刘杏兰.有机-无机肥配施增产效应及土壤剖面NO_3~--N累积定位研究.西北农业学报,1998,7(2):63-66
    55.袁新民,同延安,杨学云,李晓林,张福锁.施用磷肥对土壤NO_3~--N累积的影响.植物营养与肥料学报,2000,6(4):397-403
    56.袁新民,王周琼.硝态氮的淋洗及其影响因素.干旱区研究,2000,17(4):46-52
    57.袁新民,杨学云,同延安,李晓林,张福锁.不同施氮量对土壤硝态氮累积的影响.干旱地区农业研究,2001,19(1):8-14
    58.张春兰,张耀栋,周权锁.不同作物茬口对减轻蔬菜保护地土壤盐害及连作障害的作用.1995,26(6):257-259
    59.张春伦,朱兴明,胡思农.缓效尿素的肥效及氮素利用率研究.土壤肥料,1998,(6):17-20
    60.张国梁,章申.农田氮素淋失研究进展.土壤,1998,30(6):291-298
    61.赵竞英,徐丽敏,宝德俊,张鸿程,皇甫湘荣.小麦生长期间潮土硝态氮垂直移动规律研究.河南农业大学学报,1996,30(3):232-235
    52.赵琳,李世清,李生秀,张兴昌,吕丽红,邵明安.半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用.干旱地区农业研究,2004, 22(4):15-20
    63.周建斌,翟丙年,陈竹君,马爱生,尚浩博.设施栽培菜地土壤养分的空间累积及其潜在的环境效应.农业环境科学学报,2004,23(2):332-335
    64.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦.生态学报,2001,21(11):1782-1789
    65.周兆德,李天贵,黄启为.氮肥不同施用量对大白菜产量和品质的影响.湖南农业大学学报(自然科学版),1991,17(2):124-127
    66.朱国鹏,王玉彦,刘士哲,罗健,林东教.蔬菜设施栽培土壤的盐分累积及其调控.热带农业科学,2002,22(3):52-61
    67.朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1990
    68.Booltink H W G.Field monitoring of nitrate leaching and water flow in a structured clay soil.Agriculture,Ecosystems & Environment,1995,52(2/3):251-261
    69.Chang C,Entz T.Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta.Journal of environmental quality,1996,25(1):145-153.
    70.Cisneros Jorge J,Godfrey Larry D.Midseason Pest Status of the Cotton Aphid (Homoptera:Aphididae) in California Cotton:Is Nitrogen a Key Factor?.Environmental entomology,2001,30(3):501-510
    71.Dalton F N,Herkelrath W N,Rawlins D S,Rhoades J D.Time-domain Reflectometry:Simultaneous measurement of soil water content and electrical conductivity with a single probe.Science,1984,224(4652):989-990
    72.Dekker L W,Bouma J.Nitrogen leaching during sprinkler irrigation of a Dutch clay soil.Agricultural Water Management,1984,9(1):37-45
    73.Dou Z,Fox R H,Toth J D.Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen source.Soil Science Society of America journal,1995,59(3):858-864
    74.Everts C J,Kanwar R S.Estimating Preferential flow to a subsurface drain with tracers.Transactions of the ASAE,1990,33(2):451-457
    75.Ferguson R B,Eisenhauerc D E,Bockstadter T L,Krull D H,Buttermore G.Water and nitrogen management in central Platte Valley of Nebraska.Journal of irrigation and Drainage Engineering, 1990, 116(4): 557-565
    76. Goncalves J L M, Carlyle J C. Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biology and Biochemistry, 1994,26(11): 1557-1564
    77. Heimovaara T J. Design of triple-wire time domain reflectometry probes in practice and theory. Soil Science Society of America journal. 1993, 57(6): 1410-1417
    78. Kanwar R S, Baker J L, Laflen J M. Nitrate movement through the soil profile in relation to tillage system and fertilizer application method. Transactions of the ASAE, 1985,28:1802-1807
    79. Mcconnell JS, Glover RE, Vories ED, Baker WH, Frizzell BS, Bourland. Nitrogen fertilization and plant development of cotton as determined by nodes above white flower. Journal of Plant Nutrition. 1995, 18(5): 1027-1036
    80. Nadler A, Dasberg S, Lapid I. Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns. Soil Science Society of America journal. 1991, 55(4): 938-943
    81. Soni M L, Singh J P. Nitrogen mineralization in sludge treated soils as influenced by temperature and soil water content. Journal of the Indian Society of Soil Science, 1994,42(3): 369-372
    82. Spalding R F, Exer M E. Occurrence of nitrate in groundwater-A review. Journal of Environmental Quality, 1993, 22(3): 392-402
    83. Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: Measurements in coaxial transmission Lines. Water Resources Research, 1980, 16(3): 574-582
    84. Wedin D A, Tilman D, Influence of Nitrogen Loading and Species Composition on the Carbon Balance of Grasslands. Science, 1996, 274(5293): 1720-1723
    85. Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impactson the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63(2-3): 117-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700