用户名: 密码: 验证码:
蓝藻与猪粪混合厌氧发酵产沼气研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现太湖打捞的蓝藻资源化和无害化处置,本文在中温(35℃)条件下对蓝藻与猪粪厌氧发酵产沼气进行了研究。通过在实验室规模的分批发酵和示范工程大规模(1000 m3沼气工程)分批补料发酵的研究,得到了蓝藻与猪粪厌氧发酵的最佳条件、主要参数在发酵过程中的变化趋势和在实际工程运行的效果。本文研究以蓝藻减量化、无害化以及资源化为目的,为太湖蓝藻的治理提供了一条有效的途径。得到以下结论:
     (1)对接种比例、pH以及浓度进行单因素实验和响应面实验。结果表明,蓝藻与猪粪厌氧发酵产沼气的最佳条件为:接种比例2: 1、pH 7.9、发酵液浓度2.9%;
     (2)在接种比例(ISRs)分别为3.0,2.0,1.0,0.5和0.25的情况下,甲烷产量分别为206,202,97,48,21 mL CH4/g VSadded。ISRs在2.0以下时,ISRs对蓝藻发酵产甲烷影响较大,产甲烷量随接种量增加而增加;而3.0时,甲烷产量与2.0相比变化不大。而在各种ISRs情况下,整个产气过程遵守Cheynoweth方程Β=Β0(1 ? e?kt),相关系数R2>0.97。对蓝藻的生物降解率(BD)进行研究表明,随着ISRs的降低,蓝藻的BD(%)值分别为46.5,68.5,44.8,29.2和14.2;对发酵液中的pH、多糖、蛋白质、VS、氨氮和VFAs研究表明,多糖集中在发酵的前期降解,蛋白质则在后期降解较明显,蛋白质降解也导致了氨氮含量在发酵后期有较大的提高;发酵结束后,VFAs几乎全部消耗,VS的降解率在18-35%之间;
     (3)在对蓝藻与猪粪发酵进行工程调试时,蓝藻猪粪发酵产沼气量随着添加蓝藻的量的增加而增加,在反应器稳定运行后,每日稳定产沼气650-700m3,其中沼气成分为:CH4含量在60-65%左右,CO2约20%,N2含量约5%,未检测到H2S气体;对扩大后沼气工程发酵后的沼渣沼液进行分析,其主要有效养分含量的测试结果为:总氮含量为4.0-5.8 g/L;总磷含量为0.41-0.50 g/L;总钾含量为0.21-0.33 g/L;而对发酵原料及沼渣沼液中藻毒素研究显示,发酵原料中的藻毒素含量较高,藻毒素RR达到39.5 mg/L,藻毒素LR达到10.3 mg/L,而厌氧发酵后沼渣沼液中藻毒素RR和藻毒素LR毒素都低于检测限。因此,沼渣沼液不论从养分还是安全性来说都是很好的有机肥料。
Biogas production from blue-green algae and pig manure by anaerobic digestion at 35℃was investigated for the purpose of resource recovery and harmless treatment of the blue-green algae salvaged from Taihu Lake. In the studied laboratory-scale batch fermentation and large-scale fed-batch fermentation, we obtained the optimum conditions and the main parameters in the fermentation process and further carried out the 1000 m3 biogas production demonstration project. In this paper, we found a new effective way to manage the blue-green algae from Taihu Lake . Results were concluded as follows:
     (1) The inoculum to substrate ratios (ISRs), pH and algae concentration were studied by single-factor experiments and response surface experiments. Results showed that the best conditions of production of biogas from blue-green algae and pig manure by anaerobic digestion were as follows: ISRs 2:1, pH 7.9, and fermentation broth concentration of 2.9%.
     (2) When ISR was 3.0, 2.0, 1.0, 0.5 and 0.25, methane production content reached 206, 202, 97, 48, 21 mL CH4/gVSadded respectively. ISR had a great effect on methane producing blue-green algae when ISR was lower than 2.0 and methane production increased with inoculation ratio. However, the amount of methane produced was the same when ISR was3.0. Under different conditions of ISRs, the whole methane production abided the Cheynoweth formula (Β=Β0(1 ? e?kt))and the regression analysis was R2>0.97. As ISR decreased, the values of BD (%) of blue-green algae decreased from 46.5 to 4.2. With regard to the pH, polysaccharides, protein, VS, ammonia and VFAs in fermentation broth, the parameters depleted gradually. Especially, VFAs depleted completely when VS degradation rate was at the range of 18-35%. Polysaccharides degradation was fast during the initial stage of fermentation,so was visible protein degradation at a later stage. Protein degradation caused ammonia content to increase at the later stage of the fermentation. The optimum pH range for anaerobic fermentation should be within 7.1-7.7.
     (3) Finally, we did the demonstration project of production of biogas from blue-green algae and pig manure by anaerobic digestion, and found out that the gas volume increased with the blue-green algae addition level. When the reactor was operated stably, the gas production was between 650 m3 and 700 m3, which included about 60%-65% methane, 20% CO2, 5% N2.However, H2S gas was not detected in the biogas.Biogas residues after fermentation by the algae were also analysed, was found that the main effective nutrient content of the test results were as follows: total nitrogen content was 4.0 g/L to 5.8 g/L, total phosphorus content was 0.41 g/L to 0.50 g/L, total potassium content was 0.21 g/L to 0.33 g/L. Furthermore, the cyanophycean toxins levels of the raw materials was high with MC-RR content of 39.5 mg/L and MC-LR of 10.3 mg/L. MC-RR and MC-LR were not detected after the anaerobic fermentation. Therefore,regardless of nutrient content or the safety , the residues are good organic fertilizers.
引文
[1] Raynal J, Delgenes J P, Moletta R. Two-phase anaerobic digestion of solid waste by a multiple liquefaction reactors process [J]. Bioresource Technology, 1998, 65: 97-103.
    [2] Chynoweth D P, Owens J M, Legrand R. Renewable methane from anaerobic digestion of biomass [J]. Renewable Energy, 2001, 22: 1-8.
    [3]王永华,徐鹏,赵金保.污泥厌氧消化预处理的研究进展[J].环境科学动态, 2004, 4: 9-11.
    [4] Welker M, Steinberg C. Indirect photolysis of cyanotoxins:one possible mechanism for their low persistence [J]. Water Research, 1999, 33( 5) : 1159-1164.
    [5] YU S Z. Primary p revention of hepatocellular carcinoma [J]. Gastroenterology, 1995( 10) : 674-682.
    [6] Ueno Y, Nagata S, Tsutumi T, et al.Detection of microcystins,a blue-green algal hepatotoxins, in drinkingwater samp led in Haimen and Fusui, endemic areas of primary liver cancer in China,a highly sensitive immunoassay [J]. Carcinogenesis, 1996 ( 17) : 1317-1321.
    [7]汤鸿霄.用水废水化学基础[M].北京:中国建筑工业出版社, 1979,587-588.
    [8]徐亚同,史家梁,张明.污染控制微生物工程[M].北京:化学工业出版社, 2001. 120.
    [9] Cousins I. T. , Bealing D. J. , James H. A. , et al. Biodegradation of microsystin-LR by indigenous mixed bacterial populations [J]. Water Research, 1996, 30 (2) : 481-485.
    [10] Bourne D. G. , Jones G. J. , Blakeley R. L. , et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic pep tide toxin microcystin LR [J]. Applied and Environ. Microbiology, 1996, 62 (11) : 4086-4094.
    [11] Brourne D. G. , Riddles P. , Jones G. J. , et al. Characterization of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR [J]. Environmental Toxicology , 2001, 1: 523-534.
    [12]刘天齐.三废处理工程技术手册[M].化学工业出版社, 1995, 284-289.
    [13]王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理设备与技术, 2001, 2 (4): 77-85.
    [14] Lange M, Ahring B K. A comprehensive study into the molecular methodology and molecular biology of methanogenic [J].Archaea FEMS Microbiology Reviews, 2001, 5 (12): 553-571.
    [15]任南琪,周大石,马放.水污染控制微生物学[M].哈尔滨:黑龙江科学技术出版社,1993, 76-78.
    [16]杨琦,尚海涛. ABR工艺处理生活污水研究[J].中国沼气, 2006, 24 (1): 9-14.
    [17]公维佳,李文哲,刘建禹.厌氧消化中的产甲烷菌研究进展[J].东北农业大学学报, 2006,37 (6): 838-841.
    [18] Owen WF, Stuckey DC, Healy JB, Young LY, Mc Carty PL.Bioassay for monitoring biochemical methane potential and anaerobic toxicity [J]. Water Research, 1979, 3: 485-492.
    [19]国家环境保护总局编.水和废水监测分析方法(第四版) [M] .北京:中国环境科学出版社, 2002.
    [20]任婉侠,李培军,范淑秀,等.低分子量有机酸对氧化亚铁硫杆菌影响[J].环境工程学报, 2008, 2 (9): 1269-1273.
    [21]曹稳根,焦庆才,刘茜,等.考马斯亮蓝显色剂变色反应机理的研究[J].化学学报, 2002, 60 (9): 1656-1661.
    [22]韩阳花,高莉,刘丽艳,等.酸浆果实中多糖的提取及含量测定[J].食品科学, 2006, 27 (2): 154-157.
    [23]闫海,潘纲,张明,陈海柳,邹华.微囊藻毒素的提取和提纯研究[J].环境科学学报, 2004, 24 (2): 355-359
    [24]郝元元,刘荣厚.大中型沼气工程工艺流程·发酵原料及其产物测试分析[J].安徽农业科学, 2006, 34 (14): 3429-3431.
    [25] Fang H, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture [J]. Bioresource Technology, 2002, 82: 87-93.
    [26] Horiuchi J.I., Shimizu T., Tada K. et al. Selective production of organic acids in anaerobic acid reactor by pH conteol [J]. Bioresource Technology, 2002, 82: 209-213.
    [27]任南琪.厌氧生物技术原理与应用[M].北京:中国轻工业出版社. 2001: 16-31.
    [28] Liu C F, Yuan X Z, Zeng G M et al. Prediction of methane yield at optimum pH for anaerobic digestion of organic Fraction of municipal solid waste [J]. Bioresource Technology, 2008, 99: 882-888.
    [29]茆军,张志东,王玮等.响应面法优化低温淀粉酶发酵条件研究[J].生物技术, 2008, 18 (4): 83-86.
    [30] Hashimoto A G. Effect of inoculum/ substrate ratio on methane yield and production rate [J]. Biological Wastes, 1989, 28: 247-255.
    [31] Gunaseelan V N. Anaerobic digestion of gliricidia leaves for biogas and organic manure [J]. Biomass, 1988, 17: 1-11.
    [32] Gunaseelan V N. Effect of inoculum/substrate ratio and pretreatments on methane yieldfrom parthenium [J]. Biomass and Bioenergy, 1995, 8(1): 39-44.
    [33] Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components [J]. Bioresource Technology, 1999, 69: 249-254.
    [34] Henze M. Wastewater treatment: biological and chemical processes (2nd edition) [M]. Berlin: Springer, 1997.
    [35] Raposo F, Borja R, Rincon B, et al. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake [J]. Biomass and Bioenergy, (2008), doi:10.1016/j.biombioe.2008.02.019.
    [36] Chynoweth D P. Biochemical methane potential of biomass and waste feedstocks [J]. Biomass and Bioenergy, 1993, 5(1): 95-111.
    [37] Richards B K,Cummings R J, White T E, et al. Methods for kinetic analysis of methane fermentation in high solids biomass digesters [J]. Biomass and Bioenergy, 1991, 1 (2): 65-73.
    [38]王寿权,严群,阮文权.蓝藻猪粪共发酵产沼气初步研究[J].食品与生物技术学报, 2008, 27 (05): 108-112.
    [39] Raposo F, Banks C J, Siegert I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests [J]. Process Biochemistry, 2006, 41: 1444-50.
    [40] Switzenbaum M S, Hickey R F. Monitoring of the anaerobic methane fermentation process [J]. Enzyme Microbiology and Technology, 1990, 12: 722-30.
    [41] Hu Z H, Wang G, Yu H Q. Anaerobic degradation of cellulose by rumen microorganism at various pH [J]. Biochemical Engineering Journal, 2004, 21: 59-62.
    [42] Hu Z H, Yu H Q. Application of rumen microorganism for enhanced anaerobic fermentation of corn stover [J]. Process Biochemistry, 2005, 40: 1-7.
    [43] Speece R E. Anaerobic biotechnology for industrial wastewaters [M]. New York: Archae Press, 1996.
    [44]熊云旦.初析上海第一生态村[J].环境科学动态,1996, 3: 25-27.
    [45]周孟津.沼气生产利用技术[M].北京:中国农业大学出版社, 1999.
    [46]李长征,李捍东,刘琴等.微生物降解藻毒素的研究进展[J].环境科学与技术, 2006, 29(8): 103-105.
    [47]燕晓雯,林晓.微囊藻毒素危害研究进展[J].江苏预防医学, 2008 ,19 (4) : 85-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700