1. [地质云]滑坡
低雷诺数下被动微混合器性能的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微系统是现代制造技术发展的一个重要方向,而微混合器是微系统的一个重要组成部分,得到研究者们的日益关注。为了加快我国自主设计开发高效、快速的微混合器的步伐,本文基于数值模拟技术,对不同参数下微混合器性能进行了系统研究。
     基于Fluent软件平台,采用循环计算技术的策略,对不同性质流体在简单式(SCM)、交错式(SHM)与分合式(SRM)微混合器的混合性能进行了数值模拟研究。其结果表明:
     1)在低雷诺数下的SCM,依靠流体的分子扩散作用实现混合,流体的扩散系数越大以及接触时间越长,其混合不均匀度越小。
     2)实际刻蚀微通道的压降P与流体Re数成线性关系,与截面形状因子η成幂指数关系,即截面形状的影响比雷诺数的影响大。
     3) SHM内流体的Re数对Sc数较小流体的混合不均匀度的影响较大,对Sc数较大的流体,Re数的影响作用较小。这说明与分子扩散作用相比,SHM的混沌对流作用的影响较大,当Re数增大到一定程度后,流体的混合主要由混沌对流作用决定。
     4)对于SRM,流体分子扩散作用和分合扩散作用共同影响流体的混合,流体Re数对W-SRM的混合性能影响较大,而对T-SRM的影响较小。在SRM的设计中,为了提高分合式被动微混合器的混合性能,应该把分合结构设计成垂直状,使两股流体间产生压缩作用以及适当减小汇合通道的长度以保持流体的压缩混合状态。
     总的来说,SHM与SRM的混合性能比SCM的混合性能要好得多;在流体Pe数小于50000的情况下,SRM的混合性能比SHM的混合性能好;而随着Pe数的继续增大,将出现SHM的混合性能优于SRM的现象。
Microsystem is one of important developing field of modern manufacture technology, and micromixer is a critical part of microsystem, which have attracted more and more attention of researches. In order to increase the speed of designing high efficiency and quick mciromixer, mixing performance of micromixer under different parameters is systematically investigated in this paper.
     By Fluent, using circulating skill, mixing performance of different property fluid in simple micromixers(SCM), Staggered herringbone micromixers (SHM) and Split-Recombining micromixers(SRM) are simulated . The main conclusions show as following:
     1) Mixing performance of SCM depends on molecular diffusion at low Re, the bigger diffusion coefficient of fluid and the longer fluid diffusion time is, the lower mixing nonuniform degree is.
     2) Pressure drop of real microchannels by wet corrosion is linear with fluid Re and is power exponent with cross shape factorη, which means cross shape factor's effect is intenser than Re's.
     3) As to SHM, the smaller Sc of fluid is, the larger influence of Re on fluidic mixing nonuniform degree is, which indicates that influence of chaotic convection is bigger than that of molecular diffusion. If Re increase up to some extent, fluid mixing will totally rely on chaotic convection.
     4) As to SRM, fluid molecular diffusion and split-recombining diffusion affect fluid mixing simultaneously; Re has bigger effect on mixing performance of W-SRM compared to T-SRM. In order to improve mixing performance of split-recombine passive micromixer, the split-recombine structure should ensure the direction of two parts of fluid is vertical to each other, which makes one part of fluid hit the other one, at the same time, length of recombining channel should be decreased, which makes sure fluids have statue of hitting.
     Generally, mixing performance of SHM is greater than that of SCM; when Pe≤50000, mixing performance of SRM is more excellent than that of SHM, with the Pe adding continuously, phenomenon of SHM mixing performance is more superiority than that of W-SRM.
引文
[1]干云华.硅基微通道内流动与传热的可视化测量及其规律的研究[D].合肥:中国科学技术大学,2006.
    [2]李路明,王立鼎.MEMS研究的新进展--微型系统及其发展应用的研究[J].光学精密工程,1997,(1):67-73.
    [3]刘云.微流控芯片酶反应器的研究[D].上海:复旦大学,2007.
    [4]穆金霞.微流控芯片在两相有机合成中的应用研究[D].浙江:浙江大学,2006.
    [5]张保柱.生物芯片微扩散管流量及微通道液体混合特性[D].武汉:华中科技大学论文,2005.
    [6]穆莉莉,侯丽雅,章维一.基于玻璃精细加工的数字化微流体器件的制备[J].华中科技大学学报,2007(3):64-68.
    [7]孙长晶,褚家如.基于MEMS技术的微流体混合器及相关技术[J].微纳电子技术,2004(5),28-32.
    [8]黄金,张仁元,柯秀芳,李爱菊.基于硅结构的微流体混合器的探讨[J].广东工业大学学报,2004,(2):21-24.
    [9]DESAI Amish,BOKENKAPM Dirk,YANG Xing,et al.Microfluic submillisecond mixers for the study of chemical Reaction kinetics[A].1997International Conference on Solid - State Sensors and Actuators[C].Chicago:Transducers' 97,19971126-130.
    [10]朱丽,侯丽雅,章维一.微混合器研究进展[J].微纳电子技术.2005,(4):164-171.
    [11]Evans John,Liepmann Dorian,Pisano Albert P.Planar laminar mixer.Proceeding of the 10th International Workshop on Micro Electro Mechanical Systems(MEMS)[C].Japan:IEEE,1997,196-101.
    [12]Liu Robin H,etc.Passive mixing in a three - dimensional serpentine microchannel[J].Journal of Microelectromechenical systems,2000,9(2):190-196.
    [13]Julio M.ottino,Stephen Wiggins.Introduction:mixing in microfluidic[J].Phil.Trans.R.Soc.Lond.A(2004) 362:923 - 935.
    [14]陈实,张卫平,陈文元,牛志强.用于微流控芯片的PDMS微混合器工艺和 数值分析[J].微细加工技术.2006,(6):48-62.
    [15]Stroock,A.D.,Dertinger,S.K.,Ajdari,A.,Mezic,I.,Stone,H.A.,Whitesides,G.M.Chaotic mixer for microchannels.Science 2002,(295):647-651.
    [16]Johnson T J,Ross D,Locascio L E.Rapid microfluidic mixing,Anal.Chem.2001,12(74):45-51.
    [17]Jing-Tang Yang,Ker-Jer Huang,Kai-Yang Tung,I-Chen Hu,Ping-Chiang Lyu.A chaotic micromixer modulated by constructive vortex agitation[J].Journal of Micromechanics and Microengineering[J].17(2007):2084-2092.
    [18]J.M.MacInnesa,A.Vikhanskyb,R.W.K.Allena.Numerical characterisation of folding flowmicrochannel mixers[J].Chemical Engineering Science 62(2007):2718-2727.
    [19]Volker Hessel,Holger Lowe,Friedhelm Schonfeld.Micromixers- a review on passive and active mixing principles[J].Chemical Engineering Science 60(2005):2479 - 2501.
    [20]C.K.Chung,T.R.Shih.Effect of geometry on fluid mixing of the rhombic micromixers[J].Microfluid Nanofluid(2007)6.
    [21]MinKuJeon,Joon-Ho Kim,Jermim Noh,Soo Ho Kim,Hyun Gyu Park,SeongIhlWoo.Design and characterization of a passive Recycle micromixer [J].Joural of Micromechanics and Microengineering.15(2005):346-350.
    [22]Stefan Haeberle,Jens DucRe',Thilo BRenner,Thomas Glatzel,Roland Zengerle.Multilamination of flows in planar networks of rotating microchannels[J].Microfluid Nanofluid(2006) 2:78 - 84.
    [23]黄孙峰.微流体系统中的玻璃微管道工艺及其流动特性研究[D].南京:南京理工大学,2005.
    [24]江小宁,周兆英,李勇等.微流体运动的试验研究[J].光学精密工程,1995,(6):51-55.
    [25]宋红军.微全分析系统中微混合器的设计、加工和测量[D].合肥:中国科技大学,2005.
    [26]S.W.Stone,C.D.Meinhart,S.T.WeReley.A microflluidic-based nanoscope.Experiments in Fluids,2002,33,613-619.
    [27]马吉.微小通道内低雷诺数流动的实验研究.南京航天航空大学,2004.
    [28]邢丽燕.微通道结构对流动影响的数值模拟与实验研究[D].西安:西安建筑科技大学,2006.
    [29]李凌风.平行平板间微通道层流流动的实验研究和数值模拟[D].西安:西安 建筑科技大学,2004.
    [30]Seck Hoe Wong a,Michael C.L.Ward,Christopher W.Wharton.Micro T-mixer as a rapid mixing micromixer[J].Sensors and Actuators,2004(100),359-379.
    [31]刘静.低雷诺数下微流混合效能的研究[D].吉林:吉林大学,2006.
    [32]蒋炳炎,谢磊,谭险峰,鲁世强.流道截面形状对微流体流动性能的影响[J].中南大学学报(自然科学版),2006,37(5):964-969.
    [33]张合宝.微流体有限元分析软件的设计与研究[D].山东:山东大学,2006.
    [34]云和明,程琳,王立秋,曲燕.光滑矩形微通道液体单相流动和传热的数值研究[J].中国工程热物理学会学术会议论文:611-616.
    [35]Michael Engler,Norbert Kockmann,Thomas Kiefer,Peter Woias.Numerical and experimental investigations on liquid mixing in static micromixers[J].Chemical Engineering Journal,2004:315-322.
    [36]DieterBothea,Hans-Joachim Warneckeb.Fluid mixing in a T-shaped micro-mixer[J].Chemical Engineering Science,2006,61:2950 - 2958.
    [37]A.Soleymani,E.Kolehmainen,I.Turunen.Numerical and experimental investigations of liquid mixing in T-Type micromixers[J].Chemical Engineering Journal,doi:10.1016/j.cej.2007.07.048.
    [38]Christopher M.Brotherton,Amy C.Sun,Robert H.Davis.Computational modeling and comparison of three co-laminar microfluidic mixing techniques[J].Microfluidic Nanofluidic,DOI 10.1007/s10404-007-0219-7.
    [39]Abraham D.Stroock,GRegory J.McGraw.Investigation of the staggered herringbone mixer with a simple analytical model[J].Phil.Trans.R.Soc.Lond.A(2004) 362:971-986.
    [40]J.Aubina,D.F.Fletcherb,C.XueReba.Design of micromixers using CFD modelling[J].Chemical Engineering Science 60(2005):2503 - 2516.
    [41]Chuang Li,Tianning Chen.Simulation and optimization of chaotic micromixer using lattice Boltzmann method[J].Sensors and Actuators B 106(2005):871 - 877.
    [42]D.G.Hassell,W.B.Zimmerman.Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow[J].Chemical Engineering Science 61(2006):2977 - 2985.
    [43]Kwang Yong Kim,Mubashshir Ahmad Ansari.Shape optimization of a micromixer with staggered herringbone groove[J].Chemical Engineering Science,doi:10.1016/j.ces.2007.07.059.
    [44]Mrutyunjay K.Singh,Tae Gon Kang,Han E.H.Meijer,Patrick D.Anderson.The mapping method as a toolbox to analyze,designs,and optimize micromixer[J].Microfluid Nanofluid,DOI 10.1007/s10404-007-0251-7.
    [45]Hongjun Song,Xie-Zhen Yin,Dawn J.Bennett.Optimization analysis of the staggered herringbone micromixer based on the slip-driven method[J].Chemical Engineering Research and Design,doi:10.1016/j.cherd.2008.03.015.
    [46]J.M.MacInnes,A.Vikhanskyb,R.W.K.Allena.Numerical characterisation of folding flowmicrochannel mixers[J].Chemical Engineering Science,2007(62):2718 - 2727.
    [47]Elmabruk A.Mansur,Ye Mingxing,Wang Yundong.A State-of-the-Art Review of Mixing in Microfluidic Mixers[J].Chinese Journal of Chemical Engineering,16(2008):503-516.
    [48]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001(9):575-577.
    [49]王昊利,王元,刘江.平板微通道壁面粗糙度对流场影响的摄动分析[J].西安交通大学学报,2005(5):540-550.
    [50]王玮,李志信,过增元.粗糙表面对微尺度流动影响的数值分析[J].工程热物理学报,2003,24(1):83-87.
    [51]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版),2002,23(6):1-5.
    [52]王瑞金.微通道中流体扩散和混合机理及其微混合器的研究[D].浙江:浙江大学博士论文,2005.
    [53]陈实.用于微流体芯片的PDMS被动式微混合器研究[D].上海:上海交通大学,2007.
    [54]L.C.Chang,K.T.Yang,J.R.Lloyd.Radiation-natural convection interaction in two-dimensional complex enclosures[J].ASME Journal of Heat Transfer,1983,1(4):89-95.
    [55]Stephen Wiggins Julio M.ottino.Introduction:mixing in microfluidic[J].Phil.Trans.R.Soc.Lond.A(2004) 362:923 - 935.
    [56]Nam-Trung Nguyen,ECT.Mixing in Microscale[M].Singapore,117-154.
    [57]张涤明,朱顶金.粘性流体力学教程[M].广州:中山大学出版社,1988:41-44.
    [58]Pfahler J,Harley J,Bau H.Liquid transport in micron and submicron channels[J].Sensors and Actuators,1990,22(1/3):431-434.
    [59]李勇,江小宁,周兆英等.微管道流体的流动特性[J].中国机械工程,1994,5 (3): 24-25.
    [60] Yun Wook Hwang, Min Soo Kim. The pressure drop in microtubes and the correlation development [J]. International Journal of Heat and Mass Transfer, 2006,1(49): 1804-1812.
    [61] J.M.MacInnes, R.W.K.Allen. Mixing Strategies for Flow in Microchannel Devices. Chemical and Process Engineering of University of Sheffield, 2004, 11, 24.
    [62] Stefan Haeberle, Jens DucRe, Thilo BRenner, Thomas Glatzel, Roland Zengerle. Multilamination of flows in planar networks of rotating microchannels [J]. Microfluid Nanofluid (2006) 2: 78 - 84.