用户名: 密码: 验证码:
独立车轮踏面设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的不断发展,公铁两用车作为经济型牵引动力,愈来愈受到广大铁路用户的关注。实现公铁车辆的主要措施是采用独立车轮,独立车轮就是将传统的刚性轮对的左右车轮解耦,使它们各自独立地绕车轴旋转。
     与传统的刚性轮对相比,独立车轮理论上不存在纵向蠕滑力产生的回转力矩,因而不会产生蛇行运动,对提高稳定性有好处。但是这一优点也同时是它的缺点,因为独立车轮缺少了纵向蠕滑力矩的导向作用,因而降低了轮对的导向能力,本文的目的是设计出适合独立车轮的踏面,使其具有较好的直线对中和曲线通过性能。
     本文论述了MDL踏面的设计方案,并将MDL踏面和60kg/m钢轨数据按照SIMPACK的格式要求做成文件并通过SIMPACK的处理程序,生成轮轨接触关系。为了便于分析比较所设计的MDL踏面的性能,同时建立了DDB踏面、JXDL1踏面和JXDL2踏面模型。比较分析了4种踏面与60kg/m钢轨匹配时的轮轨接触关系。然后通过对公铁两用车辆简化建模得到了各部件的质量、转动惯量,为建立多体动力学模型做好了准备。通过多体动力学软件SIMPACK建立了车辆系统动力学模型,之后对模型进行动力学仿真计算,并且评价了它的动力学性能。
     分析和计算结果表明:在横移量小于4mm时,MDL踏面左右接触角差缓慢增大,有利于保证车辆的稳定性。当横移量继续增加时,MDL踏面左右接触角差快速增大,并且同DDB踏面比较,MDL踏面可以达到更大的左右接触角差,这样可以获得更大的重力复原力。通过对四种踏面对车辆动力学性能的影响进行计算分析,得出结论:MDL踏面的设计是比较合理的,可以得到比较好的平稳性、直线对中性能和曲线通过能力。
The road-rail vehicles are more and more concerned as economical tration by lots of railroad customers with the development of the economy. The way to realize that is to use the independently rotating wheels(IRWs).
     Comparing with the conventional fixed wheelset, the IRW don’t engender longitudinal creep force, so hunting won’t occur and the stability of vehicle system is very good. But IRW loses self-steering capability of longitudinal creep moment, so its restoration capability and curving performance becomes worse. The purpose of this paper is to design an appropriate tread shape for IRW.
     The paper discusses the design program of the MDL tread. The wheel and rail contact relationship can be get through a SIMPACK processing procedure before the MDL tread and the 60kg/m rail data should be made into a document according to the SIMPACK format request. Meanwhile, the DDB tread JXDL1 tread and JXDL2 tread models were builted in order to compare with the MDL tread. The parts’gravity center and mass were gained by building up the road-rail vehicle model. A vehicle system dynamic model was established by utilizing the multi-body system dynamic software SIMPACK. Then the dynamic simulation caculation was performed. The dynamics performance were evaluated.
     The conclusion shows that the contact angle difference of the MDL tread which increase slowly is favor of ensuring the stability when the horizontal movement is small in 4 mm. It will increase quicly as continued horizontal movement and attain the greater than the DDB tread used. So we can get more gravity restoring force. We can get the conclusion that the design of the MDL tread is more reasonable and it can get better riding quality, center capability in straight line and curve passing performance according to analysis the vehicle dynamics with 4 kinds of treads.
引文
[1] Hondius H.German cities dominate deliveries of novel low and middle-floor cars. Developing Metors.1994,(8):13-17
    [2]鲍维千.独立车轮在低地板轻轨车辆上的应用.铁道车辆.2000,38(12):116-121
    [3]沈钢,黎冠中,李小江.轮轨外形的实际测量及几何接触的进一步研究.铁道学报.1999,21(5):24-28
    [4]金学松,刘启跃.轮轨摩擦学.中国铁道出版社,2004
    [5] Kevin Sawley.Managing profiles to extend both wheel and rail life.Railway Track&Structure.2001(9):17-19
    [6] WU Hu-ming.Designing wheel profiles for optimum wear performance.Proceeding of 12th International Wheelset Congress Qing-dao:China Railway Society,1998:172-180
    [7]藤本裕,蒋立忱.车轮踏面形状对高速动车运动特性的影响.国外内燃机车.1999,(2):22-29
    [8] Souza A F D等.轮轨踏面形状对蛇行运动的影响.国外铁道车辆.1990,(3):32-40
    [9]李芾,黄运华.独立旋转车轮的发展及其在轻轨车辆上的应用.国外铁道车辆.2002,39(1):1-6
    [10]任利惠.独立车轮导向技术研究.同济大学博士论文.2006
    [11] Imtiaz-ul-Haque等.车轮踏面形状的计算机辅助设计.国外铁道车辆.1990,(6):17-21
    [12] HELLER R,LAW E H.Optimizing the wheel profile to improve rail vehicle dynamic performance. Proceedings of the 6th IAVSD-Symposium Technical Berlin.1979:179-195
    [13] WU H M.Investigations of wheel/rail interaction on wheel flange clmb derailment and wheel/rail profile compatibility.Chicago The Graduate College of the Illinois Institute of Technology.2000,122-141
    [14]张剑,温泽峰,孙丽萍等.基于钢轨型面扩展法的车轮型面设计.机械工程学报.2008,44(3):44-49
    [15]叶志森,沈钢.独立车轮踏面外形设计.铁道车辆.2003,49(1):19-21
    [16] G.Shen,J B Ayasse,H Chollet and I Pratt. A unique design method for wheel profiles by considering the contact angle function.Journal of Rail and Rapid Transit.2003,Vol.217:25-30
    [17] SHEVTSOV IY, MARKINEVL, ESVELD C.Optimal design of wheel profile for railway vehicles. Wear, 2005, 258(7-8): 1002-1030
    [18] JAHED H, BEHROOZ F, MOHAMMADA. Etal A numerical optimization technique for design of wheel profiles[J]. Wear, 2008, 264(1-2): 1-10.
    [19]柳拥军.切比雪夫多项式在磨耗形踏面设计中的应用.北方交通大学学报.2000,24(4):34-37
    [20]张亚辉,林家浩.结构动力分析.大连理工大学工程力学系.2005.01
    [21]缪炳荣,方向华,付秀通.SIMPACK动力学分析基础教程.西南交通大学出版社.2008.02
    [22]洪嘉振.计算多体系统动力学(第一版).高等教育出版社.1999.07
    [23] SIMPACK帮助文件
    [24]陈泽深,王成国.铁道车辆动力学与控制.中国铁道出版社.2004
    [25]金鼎昌.磨耗形踏面研究.西南交通大学学报.1984,(1):81-87
    [26]罗赟,金鼎昌.高速动力车轮轨几何参数设计.铁道学报.1994,16(6):24-29
    [27]杨国桢.车轮踏面形状的初步研究(上).铁道车辆.1978,(11):1-6
    [28]杨国桢.车轮踏面形状的初步研究(下).铁道车辆.1978,(12):1-17
    [29] Alain Moreau.Characteristics of Wheel/Rail Contact.Rail Engineering International.1992,(3)
    [30]严隽耄.车辆工程(第二版).中国铁道出版社.2004
    [31]佐藤荣作.车轮踏面形状设计的科学化.国外内燃机车.2000,(3):39-43
    [32]佐藤荣作.独立车轮用踏面形状的研制.国外铁道车辆. 2002,39(2):36-38
    [33]杨国桢.磨耗形踏面轮轨接触几何参数的研究.中国铁道科学.1980,(2):83-95
    [34]臧其吉,黄成荣,范钦海.高速动力车磨耗型车轮踏面的参数研究.中国铁道科学.1994,15(4):1-7
    [35]王福天.车辆动力学.中国铁道出版社.1989
    [36]翟婉明.车辆-轨道耦合动力学.中国铁道出版社.1997
    [37] GB5599—85.铁道车辆动力学性能评定和试验鉴定规范.技术标准出版社.1985
    [38]李明,戴焕云,丁磊.70%低地板轻轨车建模及动力学分析.交通运输工程学报. 2004,4(2):49-52
    [39]董仲美,王自力,蒋海波.车轮踏面外形对机车曲线通过性能的影响.电力机车与城轨车辆. 2006,29(2):13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700