用户名: 密码: 验证码:
电流纵差保护原理分析与仿真评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力系统的发展,电压等级不断升高,电网规模逐渐扩大,超高压输电线路日益增多而且承担着传送巨大功率的任务,因此维持超高压输电线路的安全稳定运行是一个十分重要的问题。在种类众多的保护类型中,基于基尔霍夫电流定律的电流纵差保护能够根据被保护元件各端的电流关系正确地判别区内和区外故障,同时还具有灵敏度高、简单可靠、动作速度快、本身有选相功能等优点,已经成为超高压输电线路主保护的首选原理之一。
     本文主要分为两大部分:一是原理分析;二是仿真评估。电流纵差保护的动作判据众多,本文详细分析了基于工频正弦量的全电流差动保护判据、基于故障分量相量的差动保护判据、基于故障分量瞬时值的差动保护判据和零序差动保护判据等四种判据的基本原理。同时本文对影响电流纵差保护的两个重要因素分布电容电流和电流互感器饱和进行了探讨。在高压输电线路上,分布电容等值容抗的加大使线路两端电流发生改变,从而直接影响到差动保护判据的灵敏度和可靠性。本文从理论上分析了分布电容电流的影响并给出了全电流相量判据和零序判据的补偿方案。CT饱和问题一直是困扰电流纵差保护的主要问题之一。本文给出了CT饱和时一次、二次电流的特征并对CT饱和的检测方法和抗饱和措施进行了介绍。
     在仿真评估部分本文首先建立了基于Matlab的一次系统模型,在此基础上在Simulink中开发了四种保护判据的差动保护模块。利用所封装的保护模块仿真了四种判据在线路正常运行、内外部故障及振荡情况下的动作行为及各种保护判据的特点。在前文原理分析的基础上仿真了全电流判据和零序判据的电容电流补偿方案,同时对由于CT饱和引起的差动保护误动作这一情况进行了仿真。
     在已建保护模块的基础上,为分析和学习差动保护的性能与特性提供依据,也为开发更好的保护原理提供指导,开发了基于Guide的动态仿真系统界面。
With the continuous development of power system, the level of voltage gets higher and the system expands gradually. The EHV transmission lines increase day to day and they usually carry heaver power, so it is an important issue that how to maintain the EHV transition lines work safely and steady. In many kinds of protection relaying, the current differential protection based on Kirchhoff s current law can correctly distinguish the internal and external faults using relationship of the protected element current, and also it has been one of the best options for protecting EHV transmission line with the advantages of high sensitivity, simplicity, reliability, speediness and the ability of phase-selection.
     Two parts are included in this paper. One is principle analysis, the other one is simulation assessment. Many different current differential criterions exist at present. This paper analyzes the criteria based on the power-frequency sine vector, the criteria based on fault component vector, the criteria based on fault component instantaneous value and the criteria based on zero-sequence current differential protection etc. In addition,
     This paper discusses the two important factors which influence the current differential protection such as capacitance current and CT saturation. Under long distance EHV lines, increase of distributive equivalent capacitance makes both sides currents changed, which directly gives an impact on the sensitivity reliability of differential protection. Firstly, this paper analyzes the influence of distributive capacitance current and then presents compensation methods on general vector and zero-sequence current differential protection. The problem of CT saturation is very difficult all the time. This paper exhibits the character of primary and secondary current when CT is saturation. The method how to detect CT saturation and anti-saturation are also mentioned.
     In simulation assessment part, a Matlab based simulation system is designed and then the four protection modules are explored on Simulink in this paper. Using these packed modules, behaviors of four protection principles have been simulated under the situation such as normal operation, inside and outside faults and power swing etc. At the same time, characteristics of four criteria are assessed. Compensation methods on general vector and zero-sequence current differential protection together with maloperation caused by CT saturation are simulated in the basis of the prior analysis.
     To provide the basis for analysis and study on current differential, and also provide guidance towards development on a better principle, dynamic simulation system interface are designed based on Guide.
引文
[1]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005,5
    [2]葛耀中.电流差动保护动作判据的分析和研究[J].西安交通大学学报,1980,14(2):93-108
    [3]葛耀中.新型继电保护和故障测距的原理与技术(第2版)[M].西安:西安交通大学出版社,2007,7
    [4]郭征,贺家李,杨洪平等.电力系统故障时继电保护装置动态特性的数字仿真[J].电力系统自动化,2003,27(11):38-40
    [5]贺家李,宋从矩.电力系统继电保护原理(第二版)[M].北京:中国电力出版社,2004,9
    [6]江苏省电力公司.电力系统继电保护原理与实用技术[M].北京:中国电力出版社,2006,11
    [7]杨晓军.开放式的继电保护动态特性仿真系统[D],天津大学硕士学位论文,2004,1
    [8]高峰.微机距离保护动态仿真系统的研究[D],山东大学硕士学位论文,2005,5
    [9]王绪昭,杨明玉,杨奇逊.三端系统数字式分相电流差动保护跳闸判据研究[J].继电器,1992,20(3):2-8
    [10]任莉华.继电保护装置仿真培训系统的研究[D].华北电力大学硕士学位论文,2004,2
    [11]Crossley P A,Li H Y,Parker A D.Design and evaluation of a circulating current differential relay test system[J].IEEE Transactions on Power Delivery,1998,13(2):427-433
    [12]伍叶凯,邹东霞.电容电流对差动保护的影响及补偿方案[J].继电器,1997,25(4):4-8
    [13]毕天殊,于艳莉,黄少锋.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化,2005,29(15):30-34
    [14]于艳莉.超高压线路电流差动保护原理的研究[D],华北电力大学硕士学位论文,2004,12
    [15]李岩,陈德树,张哲.超高压长线电容电流对差动保护的影响及补偿对策仿真分析[J]..继电器,2001,29(6):6-9
    [16]徐玉琴,刘丽花,张丽.超(特)高压输电线路差动保护电容电流补偿[J].电力科学与技术学报,2007,22(2):16-20
    [17]单渊达.电能系统基础[M].北京:机械工业出版社,2001,12
    [18]王春生,卓乐友,艾素兰.母线保护[M].北京:中国电力出版社,1993,4
    [19]李瑞生,路光辉,王强.用于线路差动保护的电流互感器饱和判据[J].电力自动化设备,2004,24(4):70-73
    [20]景敏慧,孔霄迪,覃松涛,李九虎.P类电流互感器饱和原因分析及对策[J].电力系统自动化,2007,31(21):94-97
    [21]陈建玉,孟宪民,张振旗,王志华.电流互感器饱和对继电保护影响的分析及对策[J].电力系统自动化,2000,24(6):54-56
    [22]李海涛,邓樱.MATLAB程序设计教程[M].北京:高等教育出版社,2002,8
    [23]MATLAB 6.1.Reference Manual.MathWorks,Inc,2001
    [24]SIMULINK 4.1.Reference Manual.MathWorks,Inc,2001
    [25]Power System Block.Set.Reference Manual.MathWorks,Inc,2001
    [26]苏文辉,李钢.一种能滤去衰减直流分量的改进全波傅氏算法[J].电力系统自动化,2002,22(23):42-44
    [27]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究[J].中国电机工程学报,1999,19(8):49-53
    [28]高厚磊.利用故障分量瞬时值的电流纵差保护新判据[J].电力系统自动化,2000,24(16):21-24
    [29]张振宇.基于故障分量的方向电流差动保护[D],天津大学硕士学位论文,2006,1
    [30]袁荣湘,陈德树,马天皓等.基于故障分量的采样值电流差动保护研 究—原理分析[J],继电器,2000,28(3):9-14
    [31]高厚磊,江世芳.负荷电流对电流差动保护动作性能影响的分析[J].继电器,1999,27(1):14-16
    [32]陈德树,尹项根,张哲.再谈采样值差动保护的一些问题[J].电力自动化设备,2000,20(4):1-3
    [33]文明浩,李瑞生,王强,等.分相电流差动线路保护中零序差动作用分析[J].继电器,2002,30(12):424
    [34]程华,王静.线路高阻接地零差保护灵敏性分析及调试[J].四川电力技术,2007,30(4):69-71
    [35]Min Zhang,HaiGang Wang,Xinzhou Dong,Bow Z.Q,Caunce B R J,Klimek A.A Novel Criterion for Neutral Current Differential Protection[C].Proceedings of the 41st International Universities Power Engineering Conference,2006,Volume 1:388-392
    [36]Ning Zhang,Xinzhou Dong,Zhiqian Bo,Klimek A.Performance comparison of current differential protection scheme based on symmetrical components[C].42nd International Universities Power Engineering Conference,2007:305-309
    [37]汪洋.单电源线路纵差保护的灵敏度分析与改进[J].湖北电力,1999,23(2):51-52
    [38]李清波,刘沛.光纤纵差保护的应用及灵敏度的提高[J].电力自动化设备,2002,22(4):21-24
    [39]文明浩,陈德树,尹项根.超高压长线相量差动保护的研究[J].电力系统自动化,2000,20(10):37-39
    [40]余礼闯.超高压输电线路保护原理研究[D],浙江大学硕士学位论文,2007,5
    [41]李忠安,何奔腾.磁制动母线差动保护研究[J],继电器,2009,9(9):10-14
    [42]伍叶凯,负保记.利用故障分量的分相式电流差动保护[J],继电器,1996,24(3):4-9
    [43]车弛,白雪,张相明.由电流互感器饱和引起差动保护误动的分析及试验方法[J].沈阳工程学院学报,2007,12(4):349-350
    [44]Tziouvaras D A,McLaren P,Alexander G,Dawson D,Esztergalyos J,Fromen C,Glinkowski M,Hasenwinkle I,Kezunovic M,Kojovic L,Kotheimer B,Kuffel R,Nordstrom J,Zocholl S.Mathematical models for current,voltage,and coupling capacitor voltage transformers[J].IEEE Transactions on Power Delivery,2000,15(1):62-72
    [45]Villamagna N,Crossley P A.ACT saturation detection algorithm using symmetrical components for current differential protection[J].IEEE Transactions on Power Delivery,2006,21(21):38-45
    [46]Grunert H.Integrated solution for simulation,setting and testing of protective relays,with improved parameter determination,taking into account the affects of CT saturation[C].Seventh International Conference on Developments in Power System Protection.2001:29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700