用户名: 密码: 验证码:
大型石油储罐应力与基础沉降分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国石油化工工业的发展以及国家原油战略储备库项目的实施,石油储罐大型化成为发展的必然趋势。储罐大型化同时带来许多新问题,如储罐刚度降低,基础不均匀沉降加大,储罐长期使用导致底板褶皱变形、底板腐蚀漏油概率增多等,伴随问题的解决提出一些改善措施,其中新型环保型基础的出现是一项重大突破。环保型基础即碎石环墙式基础与环保技术的结合,基础顶面中间低、周围高,底板呈倒锥形。而大型储罐常用的环墙式基础,中间高、周围低,且无环保措施,底板呈正锥形。国外已开展倒锥形基础方面的研究工作并投入使用,我国仅在南海石化项目中首次使用。目前我们对该基础储罐的力学性能还不完全了解。
     本文以15万方大型储罐为研究对象,采用数值模拟方法研究正、倒锥形基础储罐,主要做了以下几方面工作:
     1、运用ANSYS件建立大型储罐的二维轴对称有限元模型,选取DP弹塑性模型模拟地基土的本构关系,采用接触模型模拟储罐与地基之间的移动边界条件。
     2、开展正、倒锥形基础储罐的静强度对比研究。分析结果表明:倒锥基础储罐底板应力比正锥基础储罐底板应力大幅减小,能有效改善底板褶皱变形、减小底板厚度;倒锥型基础变形后底板及基础负坡度增大,更有利于底板漏液依靠重力流动,解决了底板漏油不方便回收等问题;但大角焊缝处应力值增大,设计时应谨慎。
     3、对两种类型基础的储罐进行参数分析,包括储罐参数、基础参数和地基参数,总结各种参数对储罐的利弊,供储罐设计参考。
With the development of the petrochemical industry and the implementation of the national strategic oil reserve base project, the inevitable trend for oil storage tank will be large-scale. The large-scale tank also brings about many new problems, such as reducing the tank stiffness, increasing uneven foundation settlement, leading to distortion of bottom plate due to long-term use, increasing the probability of oil leakage due to bottom plate's corrosion and so on. Some of modifications are proposed to solve these problems. And the appearance of the new environmentally-friendly foundation is an important breakthrough. The environmentally-friendly foundation is composed of gravel ring wall foundation and environmental protection technology. It’s outstanding feature is that the outer zone of the foundation is higher than the inner zone, so the bottom plate shows like an upset cone. Whereas the typical ring wall foundation usually used for the large storage tank has no environmental protection technology. And the inner zone is higher than the outer zone, so the bottom plate shows front taper. The back taper foundation has been studied and put into use at abroad. However this kind of foundation was adopted in the NanHai petrochemical industry in our country for the first time, and its mechanical properties is not completely understood by us.
     In this paper 15×10~3m~3 tank is studied with numerical simulation method. And the front taper foundation tank will be contrasted with back taper. Main conclusion are as follows:
     1、The 2-D axisymmetric finite element model of large storage tank is established with ANSYS software. The constitutive relationship of subgrade soil is simulated by DP elastoplastic model, and the relationship between tank and foundation adopts contact model.
     2、The static analysis of tank is done for the comparison of front taper foundation with back taper. It shows that the stress of back taper bottom plate is more smaller than the front taper bottom plate, and the slope of the bottom plate increases after settlement, but the stress of the shell-tot-bottom fillet welds is more bigger. These behaviors could reduce the fold deformation, minish the thickness of the bottom plate. Furthermore the increasing slope is beneficial to environment, because the oil leakage flows to recovery well with help of gravity.
     3、The influence of the parameter is analyzed for the two type tank, which includes tank parameter, foundation parameter and subgrade parameter, etc.
引文
[1]孙新宇,李晓明,彭仁海等.油罐安全运行与管理[M].北京:中国石化出版社,2005.
    [2]武铜柱.大型立式油罐发展综述[J].石油化工设备技术,2004,25(3):56-59.
    [3]潘家华,国光臣,高锡祺.油管及管道强度设计[M].北京:中国石化出版社,2005.
    [4] J.B.Denham, J Russell, C M R Wills. How to Design a 600,000-Bbl. Tank. Hydrocarbon Processing, 1968, 47(5): 137-142.
    [5]李国深.大型变截面圆柱罐壁和罐底的应力分析[J].力学与实践,1979,1(4):38-41.
    [6] Wu Tianyun. More accurate method devised for tank-bottom annular plate design. Journal of Oil&Gas,1996 94(21): 81-83
    [7] Wu T Y, Liu G R. Comparison of design methods for a tank-bottom annular plate and concrete ringwall .International Journal of Pressure Vessels and Piping, 2000, 77(9): 511-517.
    [8]陈志平,蒋伟华,沈建民等.大型油罐大角焊缝处峰值应力分析[J].压力容器,2005,22(5):12-15.
    [9]吴天云.油罐应力分析的新方法及其计算验证[J].石油化上设备,1997,26(5):15-19.
    [10]潘家华.圆柱形金属油罐设计.北京:烃加工出版社,1986.
    [11]傅强,陈志平,郑津洋.弹性基础上大型石油储罐的应力分析[J].化工机械,2002,29(4):210-213.
    [12]S. Timoshenko. S. Woinowsky-Krieger. Theory of Plates and shells. McGraw-Hill Book Company.Inc. New York , 1959: 466487.
    [13]沈建民.大型油罐的静强度及动力响应分析[D].杭州:浙江大学,2006.
    [14]Mouse E A, Ruiz C. Stresses in cylindrical tanks due to uneven circumferential settlement [J]. Journal of Strain Analysis,1979, 1(4):7-9.
    [15]Peter Rosenberg, Journeaux L. Settlement limitations for cylindrical steel storage tanks [J]. Journal of the Geotechnical Engineering, Canada. 1982: 232-238.
    [16]Kamyab H, Palmer S C. Analysis of displacements and stresses in oil storage tanks caused by differential settlement [J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 1989,203 (C 1): 61-70.
    [17]曹庆帅.大型钢储罐在谐波沉降下的结构性能[D].杭州:浙江大学,2005.
    [18]Palmer S C. Stresses in storage tanks caused by differential settlement [J]. Proceedings of the Institute of Mechanical Engineering, Part E, Journal of Process MechanicalEngineering, 1994, 208(EI): 5-16.
    [19]J. Mark F G Holst. J M Rotter. Nonlinear response and buckling of cylindrical tanks due to foundation settlement [A]. Proceedings, International Conference on design, inspection, maintenance and operation of cylindrical steel tanks and pipelines [C]. Prague, Czech Republic, 2003: 29-35.
    [20]马玉红,邹君.大型圆筒形储罐有限元设计计算[J].炼油与化工,2002,13(3):26-28.
    [21]李群生.弹性地基上大型圆筒形储罐应力分析[J].炼油设计,2002,32(4):56-59.
    [22]张斌.储罐基础沉降与变形后的可靠度评价研究[D].大庆:大庆石油学院,2007.
    [23]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003.
    [24]惠虎,宋虎堂,吴云龙等.大型原油储罐的有限元强度分析[J].油气储运,2004,23(12):12-25.
    [25]K.A.R. Ismail, J.F.B. Leal & M.A. Zanardi. Models of liquid storage tanks[J]. Energy, 1997, 22(8): 805~815.
    [26]沈建民.大型油罐的静强度及动力响应分析[D].杭州:浙江大学,2006.
    [27]贾庆山.储罐基础工程手册[M].北京:中国石化出版社,2002.
    [28]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨:哈尔滨工程大学,2006.
    [29]孙建刚.立式储罐地震响应控制研究[D].哈尔滨:中国地震局工程力学研究所,2002.
    [30]中国科学院力学研究所板壳组.浮顶油罐的强度和稳定性的计算公式[J].力学与实践,1982,(2):36~42.
    [31]马昌恒.基于小波分析的风场模拟及大型储罐风致屈曲初步研究[D].大庆:大庆石油学院,2007.
    [32]朱萍,石建明.大型立式圆筒形储罐设计中几个问题的探讨[J].化工装备技术,2006,27(4):16-21.
    [33]刘强.储罐基础和底板设计中存在的问题[J].油气田地面工程,2007,26(7):3.
    [34]刘晓山,邱宏宇,张斌.150000 m3浮顶油罐国产化设计展望[J].压力容器,2004,21(5):32-35.
    [35]吴天洪.环保型大型储罐凹形护坡式碎石环墙基础[J].工业建筑,2007,37(增刊):869-872.
    [36]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [37]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,2004.
    [38]刑精忠,王永岗,陈小霞等.ANSYS分析实例与工程应用[M].北京:机械工业出版社,2004.
    [39]杨光华等.土的多重势面模型及其验证[J].岩土工程学报,1999,21(5):578-582.
    [40]李广信.土的清华弹塑性模型及其发展[J].岩土工程学报,2006,28(1):1-9.
    [41]Lade P. V., Inel S.. Rotational kinematics hardening model for sand. Part I: concept of rotating yield and plastic potential surfaces[J]. Computers and Geotechnics, 1997, 21(3): 183-216.
    [42]郝文化. ANSYS在土木工程中应用实例[M].北京:中国水利水电出版社,2005.
    [43]尚小江,邱峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2006. 23(6):1037-1043.
    [44]赵同顺,周波.大型油罐地基变形特性的研究[J].岩石力学与工程学报,2004,23(6),1037-1043.
    [45]陈祥福.沉降计算理论及工程实例.北京:中国石化出版社,2005.
    [46]张乐乐,谭南林,焦风川.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社&北京交通大学出版社,2006.
    [47]唐国政.大型有限元程序的原理结构与使用[M].北京:清华大学出版社&北京交通大学出版社,2006.
    [48]徐智钧,燕一鸣.大型立式圆柱形储液罐制造与安装[M].北京:中国石化出版社,2003.
    [49]孙训方,方孝淑,关来泰.材料力学(第四版)[M].北京:高等教育出版社,2001.
    [50]GB50341-2003.立式圆筒形钢制焊接油罐设计规范[S].北京:中国计划出版社, 2003.
    [51]杨玉芬,王为松。立式储罐底部变形对储罐容量的影响[J].炼油与化工,2007,18(2):26-28.
    [52]赵家伟,盛应平.大型油罐弱地基充水预压加固试验沉降监测[J]。岩土工程界,2000,3(9):35~37.
    [53]Bjerrum, L., Overland, A.. Foundation Failure of an Oil Tank in Fredrikstad Norway. Proc[C]. Fourth International Conference on Soil Mechanics and Foundation Engineering, Norway,1957,(1),287-290.
    [54]贾庆山.大型储罐土地基变形控制标准的研究[J].石油工程建设,1996,(4): 17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700