用户名: 密码: 验证码:
磁场诱导环氧树脂/纳米石墨微片有序复合材料及其各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米石墨微片是一种新型的碳纳米填料。它的平均厚度约为50纳米,径向尺寸0.5-20微米,具有巨大的径厚比,保持了天然石墨良好的导电性及导电各向异性。由于纳米石墨微片具有特有的片层结构及突出的导电各向异性,当其在聚合物中有序排列后,结构上的有序化使复合材料表现出来的相关性能在不同方向上也会有所差异。目前设计制备具有有序化结构的高分子复合材料已成为聚合物基功能复合材料的发展方向之一。本文首次利用磁场对填充在环氧树脂中的纳米石墨微片进行定方向诱导排列,实现了纳米石墨微片与环氧树脂的有序化复合。与机械力诱导相比,纳米石墨微片在基体中的有序程度更高,方向可调性更好,材料具有更加广阔的设计空间。
     论文主要研究内容为通过外加磁场对填充在环氧树脂中的经过磁改性后的纳米石墨微片进行诱导,使其在基体中定方向取向排列,得到环氧树脂/纳米石墨微片结构有序复合材料,并在此基础上对复合材料表现出来的性能各向异性进行了分析表征。
     首先采用湿化学共沉淀法,以Fe2+和Fe3+的混合溶液为覆层前驱液,滴加氢氧化钠,使生成的四氧化三铁纳米粒子沉积在纳米石墨微片表面,采用XRD,SEM对产品进行表征。结果表明在大气气氛中,将反应温度控制在30℃,铁盐摩尔比n(Fe2+)/n(Fe3+)=5:1的条件下,在纳米石墨微片表面均匀沉积了一层物相组成单一的α-Fe3O4纳米粒子,改性后的纳米石墨微片表现出良好的软磁特性。
     在对纳米石墨微片进行磁改性后,将其均匀分散在环氧树脂预聚物中,在体系固化前对其施加磁场。改性后的纳米石墨微片在磁场作用下,在树脂基体中沿石墨002面平行磁场的方向取向排列形成有序结构。通过单方向取向,得到一维有序复合材料;通过双方向取向得到二维有序复合材料。采用XRD与AFM对材料的有序结构进行了表征。纳米石墨微片单方向取向后,一维有序复合薄膜在可见光区的透光性明显增强,复合材料在垂直于纳米石墨微片取向方向上的拉伸强度明显提高。在二维有序复合材料中,磁性纳米石墨微片相互之间平行排列,材料表现出电磁屏蔽各向异性。
Graphite nanosheets (GNs), a new carbon nanofiller, 50 nm in thickness and 0.5-20 micrometer in diameter averagely, possess a high aspect ratio of diameter to thickness and much better in-plane conductivity compared to that in c-direction. It is understandable that the alignment of GNs in polymer will result in the composite with anisotropic properties, due to the anisotropy of GNs. In this study, for the first time, GNs have been aligned in an epoxy resin through the inducement of magnetic field. Compared with the shear-force inducement, by this method, the composites have a much higher degree of alignment which can be adjusted much easily.
     Herein, we have investigated the alignment of magnetically modified GNs in epoxy resin by subjecting the mixture to an external constant magnetic field before the system cured to form epoxy resin/GNs highly ordered composites, and special attentions were paid on their anisotropic properties.
     GNs obtained from sonicating the expanded graphite were modified chemically by depositing magnetite nanoparticles onto their surface through wet-chemical coprecipitation of ferric and ferrous ions with sodium hydroxide in the absence of nitrogen protection and surfactant, and were characterized using XRD and SEM. It was found that excellent magnetite-coated GNs can be obtained at 30 oC with 5:1 molar ratio of Fe2+ to Fe3+ in the air. The coated GNs are electrically conducting and ferromagnetic at room temperature.
     The modified GNs were dispersed in epoxy prepolymer, and then subjected to a magnetic field before the suspension solidified. Modified GNs were aligned with their 002 planes parallel to the field direction in epoxy matrix forming an ordered structure. We have successfully obtained 1-dimensionally ordered composite through single-directional inducement and 2-dimensionally ordered composite by double-directional inducement which were confirmed by XRD and AFM measurements. The 1-dimensional orientation of GNs brought about an improvement in transmittance of composite films in the visible light region of 400-750 nm in wavelength and an remarkable enhancement in the tensile strength in direction perpendicular to the magnetic filed. The two-dimensionally ordered composites with modified GNs being induced to align with layers parallel to each other display interesting anisotropic electromagnetic interference fielding shielding properties.
引文
[1] R.M. Norman. Conductive rubbers and plastics [M]. Elseriver, New York, 1970.
    [2]益小苏.复合导电高分子材料的功能原理[M].北京:国防工业出版社,2004.
    [3]R. Strumpler and J.Glatz-Reichenbach. Conducting polymer composites[J]. J Electroceramics, 1999,3(4):329-346.
    [4]L.Flandin, Y.Brechet, and J.Y.Cavaille. Electrically conductive polymer nanocom- posites as deformation sensors[J]. Compos Sci Technol, 2001, 61(6): 895-901.
    [5] X.J. Wang and D.D.L .Chung. Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar [J]. Sensor Actuator A Phys,1998,71 (3):208-212.
    [6] W. Zhang, A.A. Dehghani-Sanij and R.S. Blackburn. Carbon based conductive polymer composites[J]. J Mater Sci, 2007,42: 3408–3418.
    [7]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨工业大学出版社,1999.
    [8] W.Jia, R.Tchoudakov, M.Narkis and A.Siegmann. Performance of expanded graphite and expanded milled-graphite fillers in thermosetting resins[J]. Polym Compos,2005, 26, 526-533.
    [9]G.H.Chen,J.R.Lu and D.J.Wu. PTC effect of polyethylene/foliated graphite composites [J]. J Mater Sci, 2005, 40:5041-5043.
    [10] J.Shen, X.Chen and W.Huang.Structure and electrical properties of grafted poly- propylene/graphite nanocomposites prepared by solution intercalation[J].J Appl Poly Sci,2003,88, 1864 -69.
    [11]G.H.Chen, C.L.Wu, W.G.Weng and et al. Preparation of polystyrene/graphite nanosheet composite [J].Polymer,2003, 44, 1781-1784.
    [12]G.H.Chen, W.G.Weng, D,J. Wu and C.L.Wu. PMMA/graphite nanosheets composite and its conducting properties[J]. Euro Poly J, 2003, 39:2329-2335.
    [13]张柏生.共混高聚物-炭黑复合材料的导电特性[J].塑料科技,1996,4: 1-5.
    [14]张福强.复合型导电高分子材料技术进展[J].塑料,1995,24(2): 7-13.
    [15] A. J. Heeger, P. Smith and A. Fizazi. Recent progress in conducting polymers:opportunities for science and opportunities for technology [J]. Synthetic Metals, 1991, 3: 1027-1032.
    [16] A. I. Medalia. Electrical conduction in carbon black composites. [J] Rubber Chem Tech, 1986, 432-461.
    [17] W. Thongruang, R. J. Spontak and C. M. Blalik. Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. [J] Polymer, 2002, 43, 2279-2286.
    [18] J. F. Feller, I. Linossier and Y. Grohens. Conductive polymer composites: com- parative study of poly(ester)-short carbon fibers and poly(epoxy)-short carbon fibers mechanical and electrical properties[J]. Mater Lett, 2002, 57, 64-71.
    [19] B.Coffey, P.V Madsen, T.O.Poehler, and et al. High charge density conducting polymer/graphite fiber composite electrodes for battery applications [J]. J Electrochem Soc, 1995, 142(2):321-325.
    [20]F.Du,J.Fischer and KWiney.Effect of nanotube alignment onpercolation conductivity in carbon nanotube/polymer composites[J]. Phys Rev B, 2005, 72 (12): 121404.
    [21]杨小平,荣浩鸣,陆泽栋.碳纤维导电复合材料的电学性能研究[J].材料科学与工程,2000,9:11-14.
    [22]H.Du, P.Zhang, F.Q. Liu and et al. Trilayer composite poly(styrene/butyl- acrylate/acrylic acid) terpolymer microspheres with Fe2O3 middle layer: Synthesis and Characterization [J]. Polym Int, 1997, 43(3): 274-280.
    [23]X.M.Qian, X.T.Zhang, H.B.Shao and et al. UV-Vis and surface photovoltage spectra of Fe2O3/polystyrene composite microspheres [J]. Chem Res Chinese U, 2002, 18(1): 75-78.
    [24]Sudaryanto, T.Nishino, M.Ueno and et al. Interfacial and mechanical properties ofγ-Fe2O3/segmented polyurethane/poly(vinyl chloride) composites [J]. J Appl Polym Sci, 2001, 82(12):3030-3035.
    [25] K.Suri, S.Annapoorni, R.P.Tandon and et al. Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization [J]. Synth. Met, 2002, 126(23):137-142.
    [26] V.S. Zaitev, D.S. Filimonor, I. A. Presrryakov and et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions [J]. J Colloid Interface Sci, 1999,212(1): 49-57.
    [27]Y. Deng, W. Yang, C. Wang and et al. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure [J].Adv Mater, 2003, 15:1729-1732.
    [28]D.Wang, J.He and N.Rosenzweig. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation [J].Nano Lett, 2004, 4:409-413.
    [29] F. Caruso, M. Spasova, A. Susha and et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem Mater, 2001, 13: 109-116.
    [30]K.S.Mayya, B.S.choeler, F.Caruso. preparation and organization of nanoscale polyelectrolyte coated gold nanoparticles[J]. Advanced Functional Materials, 2003, 13 (3):183-188.
    [31]M.Abe, A.Yamamoto, M.Orita, and et al. Control of particle alignment in water by an alternating electric field[J]. Langmuir, 2004, 20: 7021-7026.
    [32]K.Yamamoto, S.Akita and Y.Nakayama. Orientation of carbon nanotubes using electrophoresis[J]. Jpn J Appl Phys, 1996, 35: 917–918.
    [33]K.Yamamoto, S.Akita and Y.Nakayama. Orientation and purification of carbon nanotubes using ac electrophoresis[J]. J Phys D Appl Phys, 1998, 31: 34–36.
    [34] X.Q. Chen, T. Saito, H. Yamada and K. Matsushige. Aligning single-wall carbon nanotubes with an alternating-current electric field[J]. Appl Phys Lett, 2001, 78(23): 3714–3716.
    [35]M.S.Kumar, T.H. Kim, S.H. Lee and et al. Influence of electric field type on the assembly of single walled carbon nanotubes[J]. Chem Phys Lett, 2004, 383: 235–239.
    [36]P.V.Kamat, K.G.Thomas, S. Barazzouk, and et al. D.Meisel. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field[J]. J Am Chem Soc, 2004, 126: 10757–10762.
    [37]K. Tanaka, Y. Fujioka, A. Kubono and R. Akiyama. Electrically developedmorphology of carbon nanoparticles in suspensions monitored by in situ optical observations under sinusoidal electric field[J]. Colloid Polym Sci, 2006, 284: 562-567.
    [38]A. Bezryadin, C. Dekker and G. Schmid. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes[J]. Appl Phys Lett, 1997, 71(9): 1273-1275.
    [39]P.A.Smith, C.D. Nordquist, T.N. Jackson and et al. Electric-field assisted assembly and alignment of metallic nanowires[J]. Appl Phys Lett, 2000, 77(9): 1399-1341.
    [40]T. Takahashi, T. Murayama, A. Higuchi and et al. Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field[J]. Carbon,2006, 44(7): 1180-1188.
    [41]H. Koerner, D. Jacobs, D.W. Tomlin and et al. Tuning polymer nanocomposite morphology: AC electric field manipulation of epoxy-montmorillonite (clay) suspensions [J]. Adv Mater, 2004, 16(4): 297-302.
    [42]P.V. Kamat, K.G.Thomas, S. Barazzouk and et al. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field[J]. J Am Chem Soc, 2004,126(34): 10757-10762.
    [43]J. Chung, K.H. Lee, J.Lee and R.S. Ruoff. Toward large-scale integration of carbon nanotubes[J]. Langmuir, 2004, 20: 3011-3017.
    [44]S. Chung, H. Jwang and J.lee. Conductivity of single-walled carbon nanotubes deposited by composite electric-field guided assembly (CEGA) method[J]. Curr Appl Phys,2006,6:e161-e165.
    [45]C.A. Martin, J.K.W. Sandler, A.H. Windle and et al. Shaffer. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites [J]. Polymer, 2005, 46(3): 877-886.
    [46]T.Prasse, L. Flandin, K. Schulte and W.Bauhofer. In situ observation of electric field induced agglomeration of carbon black in epoxy resin[J]. Appl Phys Lett, 1998, 72: 2903-2905.
    [47]M.K. Schwartz, W. Bauhofer and K.Schulte. Alternating electric field induced agglomeration of carbon black filled resins[J]. Polymer, 2002, 43: 3079-3082.
    [48]T. Prasse, J.Y.Cavaille and W.Bauhofer. Electric anisotropy of carbonnanofibre/epoxy resin composites due to electric field induced alignment[J]. Compos Sci Technol, 2003, 63: 1835-1841.
    [49]C. Park and R.E. Robertson. Alignment of particles by an electric field[J]. Mat Sci Eng A:Struct, 1998, 257: 295-311.
    [50] C. Park and R.E. Robertson. Aligned microstructure of some particulate polymer composites obtained with an electric field [J]. J Mater Sci, 1998, 33: 3541-3553.
    [51]Z.Chen,Y.L.Yang,Z.G. Wu, G. Luo, L.M. Xie and Z.F. Liu. Electric-field-enhanced assembly of single-walled-carbon nanotubes on a solid surface[J]. J Phys Chem B, 2005, 109: 5473-5477.
    [52] William M. Chirdon, William J. O'Brien and Richard E. Robertson. Fraunhofer diffraction of short-fiber-reinforced composites aligned by an electric field [J]. Dent Mater, 2006, 22: 107-111.
    [53]D.A.Norman and R.E. Robertson. The effect of fiber orientation on the toughening of short fiber-reinforced polymers[J]. J Appl polym Sci., 2003, 90: 2740-2751.
    [54] D.A. Norman and R.E. Robertson.Rigid-particle toughening of glassy polymers[J]. Polymer 2003, 44: 2351-2362.
    [55]G.Kim. Thermo-physical responses of polymeric composites tailored by electric field[J]. Compos Sci Technol, 2005, 65: 1728-1735.
    [56]V.N. Bliznyuk, S. Singgamaneni, R.L. Sanford, and et al. Micro orientation and anisotropy of conductivity in liquid crystalline polymer films filled with carbon nanotubes[J]. J Nanosci Nanotechno, 2005, 5(10): 1651-1655.
    [57]J aroslav Stejskal, Milena Sírková, Otakar Quadrat and et al. Electrically anisotropic materials: polyaniline particles organized in a polyurethane network [J]. Polym Int, 1997, 44(5): 283-287.
    [58]G. Kim and Y.M. Shkel. Polymeric composites tailored by electric field[J]. J Mater Res, 2004, 19(1): 1164-1174.
    [59] D.S. Mclachlan, M. Blaszkiewicz and R.E. Newnham. Electrical resistivity of composites[J]. J Am Ceram Soc,1990,73: 2187-2203.
    [60]V.E.Gul and M.G.Golubeva. [J].Trans Kolloid Z. 1968, 30: 13.
    [61]S.Jin, R.C.Sherwood, J.J.Mottine, and et al. New Z-direction anisotropicallyconductive composites [J]. J Appl Phy,1988,64(10):6008~6010.
    [62]E.Breval, M.Klimkiewicz, Y.T.Shi, and et al. Magnetic alignment of particles in composite films [J]. J Mater Sci,2003,38(6):1347-1351.
    [63]Z. Varga, G. Filipcsei and M. Zr?′nyi. Smart composites with controlled anisotropy. Polymer, 2005, 46 (18): 7779-7785.
    [64] T.Masayuki. Development of high performance polymers in high magnetic field. Polym Prepr Jpn, 2005,54(2):3714-3715.
    [65]D. Shi, P.He,J.Lian, X.Chaud and et al. Magnetic alignment of carbon nanofibers in polymer compositesand anisotropy of mechanical properties. J Appl Phys, 2005,97:064312.
    [66] T. Kimura, H. Ago, M. Tobita and et al. Polymer composites of carbon nanotubes aligned by a magnetic field [J]. Adv Mater, 2002, 14 (19):1380~1383.
    [67]E.S. Choi, J.S.Brooks, D.L.Eaton and et al. [J]. Enhancement of thermal and elec- trical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys,2003,94(9):6034~6039.
    [68]C.A.Cooper, D.Ravich, D. Lips and et al. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol,2002, 62: 1105– 1112.
    [69]R.Haggenmuller, H.H. Gommans, A.G. Rinzler and et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett, 2000, 330: 219-225.
    [70]B. Safadi, R. Andrews and E.A. Grulke. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J Appl Polym Sci, 2002,84 (14) 2660-2269.
    [71]J.R.Lu, W.G.Weng, X.F.Chen and et al. Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene[J]. Adv Funct Mater, 2005,15(8):1358~1363.
    [72]陈国华,吴大军.电化学插层对石墨晶层的剥离作用[J].新型炭材料,1999,14(4):60,62.
    [73]南墅石墨矿.石墨[M].北京:中国建筑工业出版社,1975
    [74]A. M. Ziatdivo and N. M. Mishchenko. Phase transitions and“nonmetallic”temperature dependence of conduction electron spin resonance line width in quasi-two-dimensional synthetic metal C15HNO3 [J]. Solid State Comm, 1996, 97 (12):1085-1089.
    [75]D.Alliata, R.Kotz, O.Haas and H. Siegenthaler. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte [J].Langmuir, 1999, 15(24): 8483-8489.
    [76]M.J.Bottomley,G.S.Parry and A.R.Ubbelohde.Thermal expansion of some salts of graphite [C]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1964, 279, No.1378: 291-301.
    [77]K.Hashimoto, H.Sumitom and M. Kowasumi. Preparation of a new polyamide macromer having a vinylbenyl group from bicyclic oxalactam and its radical copolymerization with styrene[J]. Polym Bull, 1984, 11:121-128.
    [78]吴翠玲,翁文桂,陈国华.膨胀石墨的多层次结构[J].华侨大学学报,2003,24: 147-150.
    [79]T.W.Ebbesen and P.M.Ajayan. large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220 -202
    [80]Y. Ando, X.Zhao and M.Ohkohchi. Production of petal-like graphite sheets by hydrogen arc discharge[J]. Carbon, 1997, 35:153-158.
    [81]S. Iijima, T.Wakabayashi and Y.Achiba. Structure of carbon soot prepared by laser ablation[J]. J Phys Chem,1996,100:5839-5843.
    [82]陈国华,吴翠玲,吴大军等.聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究[J].高分子学报2003,5:742.
    [83]J.J.Wang, M.Y. Zhu, R.A.Outlaw and X. Zhao. Synthesis of carbon nanosheets by inductively coupledradio-frequency plasma enhanced chemical vapor Deposition[J]. Carbon,2004,42:2867-72.
    [84]Y. Murakami and H. Suematsu. Anisotropic energy and electron migration in multichromophore-laden polymers on metal surfaces [J]. Pure Appl Chem, 1996, 68: 1463-1467.
    [85]T. L. Makarova, B. Sundqvist, R. Hohne and et al. Magnetic Carbon[J]. Nature, 2001, 413: 716-719.
    [86]Y. Shibayama, H. Sato, T. Enoli and et al. Disordered Magnetism at the metal- insulator threshold in nano-graphite-based carbon materials[J].Phys Rev Lett, 2000, 84: 1744-1747.
    [87]B.L.V.Prasad, H.Sato, T.Enoki, and et al. Heat-treatment effect on the nanosized graphiteπ-electron system during diamond to graphite conversion [J].Phys Rev B,2000,62:11209-11218.
    [88]Y.Kopelevich, P.Esquinazi, J.H.S.Torres, and et al. Ferromagnetic and superconducting-Like behavior of graphite[J].J Low Temp Phys,2000,119:691-702.
    [89]M. Fujita, M. Igami and K. Nakada. Lattice distortion in nanographite ribbons [J]. J Phys Soc Jpn,1997,66:1864-1867.
    [90]K.Wakabayashi, M.Sigrist and M.Fujita. Spin wave mode of edge-localized magnetic states in nanographite zigzag ribbons [J]. J Phys Soc Jpn, 1998, 67: 2089- 2093.
    [91]Y.Miyamoto, K.Nakada and M. Fujita. First-principles study of edge states of H-terminated graphitic ribbons [J]. Phys Rev B, 1999,59: 9858-9861.
    [92]K.Harigaya. The mechanism of magnetism in stacked nanographite: theoretical study [J]. J Phys: Condens Matter, 2001, 13:1295-1302.
    [93]K. Harigaya. New type of antiferromagnetic state in stacked nanographite[J].Chem Phys Lett, 2001, 340: 123-128.
    [94]S.Okada and A.Oshiyama. Magnetic ordering in hexagonally bonded sheets with first-row elements [J].Phys Rev Lett, 2001, 87: 146803-146806.
    [95]K.Harigaya and T. Enoki. Mechanism of magnetism in stacked nanographite with open shell electrons [J]. Chem Phys Lett, 2002,351:128-134.
    [96] K. Kusakabe and M. Maruyama. Magnetic nanographite[J]. Phys Rev B, 2003,67: 092406.
    [97]P.Esquinazi, D.Spemann,R. H?hne and et al. Induced magnetic ordering by proton irradiation in graphite[J] . Phys Rev Lett, 2003, 91: 227201.
    [98]A.W. Mombrú, H. Pardo. Multilevel ferromagnetic behavior of room temperaturebulk magnetic graphite [J]. Phys Rev B, 2005, 71: 100404.
    [99]沈曾民.新型碳材料[M].北京:化学工业出版社, 2003.
    [100]美国德克萨斯大学.基础电学与电子学[M].北京:石油工业出版社, 1981.
    [101]任慧,焦清介,沈万慈等.超微粉石墨层间化合物FeCl3-NiCl2-GICs的制备及电磁性能研究[J].材料科学与工程学报,2003, 21(3): 346-349.
    [102]Y. H. Zou, H.B.Liu, L.Yang and et al. The influence of temperature on magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites[J]. J Magn Magn Mater,2006, 302(2): 343-347.
    [103]Y. Huang, Z. Xu, J.Y. Shen, and et al. Dispersion of magnetic metals on expanded graphite for the shielding of electromagnetic radiations. Appl Phys Lett, 2007, 90 (13): 133117.
    [104]任慧,康飞宇,焦清介等.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料,2006,21:24-29.
    [105]彭俊芳,康飞宇,黄正宏.填充氧化铁颗粒的石墨基复合材料[J].材料科学与工程,2002,20 (4): 469-472.
    [106]H. Podall,W.E.Foster and A. P.Giraitis.Catalytic graphite inclusion compounds I: potassium graphite as a polymerization catalyst [J]. J Org Chem, 1958, 23: 82-85.
    [107]H. Shioyama. The interactions of two chemical species in the interlayer spacing of graphite. [J]. Synth Met, 2000, 114:1-15.
    [108]H.Shioyama. Polymerization of isoprene and styrene in the interlayer spacing of graphite[J]. Carbon, 1997, 35(10-11): 1164-1165.
    [109]H.Shioyama, K.Tatsumi, N.Iwashita and et al. On the interaction between the potassium-GIC and unsaturated hydrocarbons[J]. Synth Met, 1998, 96(3):29-233.
    [110]M.Uhl, C.A.Wilkie. Polystyrene/graphite nanocomposites: effect on thermal stability [J]. Polym Degrad Stabil, 2002, 76(1): 111-122.
    [111]M.Xiao, L.Y.Sun, J.J.Liu, et al. Synthesis and properties of polystyrene/graphite nanocomposites[J]. Polymer, 2002, 43(8):2245-2248.
    [112]A.Celzard. Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical, critical exponents and anisotropy[J]. J Phys Chem Solids, 1996, 6-8:715-718.
    [113]Y.X.Pan, Z.Z.Yu, Y.C.Ou and et.al. A new process of fabricating electically conducting nylon-6/graphite nanocomposites via intercalation polymerization [J]. J Polym Sci, Part B: Polym Phys, 2000, 38:1626-1633.
    [114]潘玉珣,于中振,欧玉春等.尼龙6/石墨纳米导电复合材料的制备与性能[J].高分子学报, 2001,(1), 42-47.
    [115]G.H.Chen, D.J.Wu, W.G.Weng and et.al. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization[J]. J Appl Polym Sci, 2001, 82(10):2506-2513.
    [116]陈国华,翁文桂,吴大军等.石墨与聚苯乙烯的纳米复合过程研究[J].高分子学报, 2001,(6), 803-806.
    [117]G.H.Chen, D.J.Wu, W.G.Weng and et al. Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization[J]. Polym Int, 2001, 50: 980 - 985.
    [118]P.Xiao, M.Xiao and K.Gong. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique [J]. Polymer, 2001, 42:4813-4816.
    [119]G.H Chen, D.J.Wu, W.G.Weng and et.al. Dispersion of graphite nanosheets in a polymer materix and the conducting property of nanocomposite[J]. Polym Eng Sci, 2001, 41(12): 2148 -2154.
    [120]李侃社,王琪.磨盘碾磨制备PP/石墨导电复合材料的研究[J].中国塑料, 2002,16(4): 25-29.
    [121]W.Zheng, S.C.Wong and H.J.Sue. Transport behavior of PMMA/expanded graphite nanocomposites[J]. Polymer, 2002, 73:6767-6773.
    [122]陈晓梅,全成子,沈经纬.聚丙烯/石墨导电复合材料的制备与表征[J].中国塑料, 2001,1(9): 40-43.
    [123]J.F. Zou, Z.Z.Yu and Y.C.Ou. Conductive Mechanism of Polymer/Graphite Conducting Composites with Low Percolation Threshold[J]. J Polym Sci, 2002, 40, 954-980.
    [124]G.H.Chen, J.R.Lu and D.J.Wu. PTC effect of polyethylene/foliated graphite nanocomposites [J]. J Mater Sci, 2005, 40(18): 5041-5043.
    [125]L.Chen, G.H.Chen and L.Lu. Piezoresistivie behaviors study on finger-sensingsilicone rubber/graphite nanosheet nanocomposite, Adv Funct Mater, 2007,17 (6):898- 904.
    [126]H.Q.Wang, H.Y.Zhang and G.H.Chen. Preparation of unsaturated polyester/ graphite nanosheet conducting composite under electric field, Composites A, 2007, 38 (10):2116-20.
    [127]H.Q.Wang, H.Y.Zhang, W.F.Zhao and et al. Electric field-induced orientation of graphite nanosheets in a polymer matrix, Compos Sci Technol, 2007,68:238-243.
    [128]腾凤恩,王煜明,姜小龙. X射线结构分析与材料性能表征[M].北京:科学出版社.1997.
    [129]T. Prassea, J.Cavaille and W. Bauhofer. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment [J]. Compos Sci Technol, 2003, 63: 1835-1841.
    [130]T. Prasse, M.Schwarz, K.Schulte and W.Bauhofer. The interaction of epoxy resin and an additional electrolyte with non-oxidised carbon black in colloidal dispersions[J]. Colloid Surface A, 2001,189: 183-188.
    [131]X.M. Liu, J.L. Spencer, A.B. Kaiser and W.M.Arnold. Electric-field oriented carbon nanotubes in different dielectric solvents[J]. Curr Appl Phys, 2004, 4:125-128.
    [132]B.W. Smith, Z. Benes, D.E. Luzzi and J.E. Fischer. Structure anisotropy of magnetically aligned single wall carbon nanotube films[J]. Appl Phys Lett, 2000, 77: 663-665.
    [133]T. Kimura, H.Ago and M.Tobita. Polmer composites of carbon nanotubes aligned by a magnetic field[J]. Adv Mater, 2002, 14: 1380-1383.
    [134]唐海涛.纳米石墨微片/Fe3O4复合粉末的制备及其在磁场下的自组装[D].福建泉州:华侨大学. 2006.
    [135]C.A. Mirkin, R.L.Letsinger and R.C. MUcic. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [136]R.P.Andres, J.D.Bielefld, D. B. Janes and et al. Self-Assembly of a two dimensional superlattice of molecularly linked metal clusters [J]. Science, 1996, 273: 1690-1693.
    [137]F.Caruso, R.Caruso and H M?hwald. Nanoengineering of inorganic and hybridhollow spheres by colloidal templating [J]. Science, 1998, 282: 1111-1114.
    [138]P.A.Kralchevskyan and N.D. Denkou. Capillary forces and structuring in layers of colloid particles [J]. Curr Opin Colloid Interface Sci, 2001, 6(4): 383-401.
    [139]S. Jin, T.H.Tiefel and R.Wolfe Directionally-conductive, optically-transparent composites by magnetic alignment[J]. IEEE Trans Magnet, 1992, 28:2211-2213.
    [140]J.E.Martin, K.M.Hill and C.P.Tigges. Magnetic-field-induced optical transmittan- ce in colloidal suspensions [J]. Phys Rev E, 1999, 9:5676-5692.
    [141]赖祖武.电磁屏蔽的理论基础[M].北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700