用户名: 密码: 验证码:
长江口滨外泥质区末次冰消期以来沉积特征与沉积环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口滨外泥质区是末次冰消期海侵以来的长江入海物质沉积中心和“物质汇”之一,论文对取自该泥质区的ECS-0702孔(122°40.0108′E,31°00.0041′N,孔深35.6m,水深22m) 30.8m以上岩心进行了沉积相分析并结合高分辨率的粒度分析及AMS14C测年进行了沉积单元划分。该孔岩心从上到下可以划分为DU1~DU4四个沉积单元:DU1(0-7.5m)开始形成的时间与黄河全部由淮河入南黄海的时间(公元1494年)较为一致;DU2(7.5-19.6m)为全新世海平面上升至最高位置后形成的产物(6.5-0.54 cal kyr BP);DU3(19.6-25.9m)形成于全新世早期-中期海侵期(11.6-6.5 cal kyr BP),对应于浅海沉积;DU4(25.9-30.8m)形成于13-11.6 cal kyr BP,对应于潮坪沉积。DU2单元顶部9.7m以上岩心沉积物中碳酸盐含量显著增高,且9.7m以上岩心沉积速率达到11.04mm/a,明显高于9.7m以下岩心1.73mm/a的沉积速率。结合AMS14C测年数据,我们推测9.7m处的14C年龄为822 cal yr BP左右,即公元1128年黄河开始流入南黄海的时间。黄河携带的大量物质通过黄海沿岸流的作用被带到该区沉积下来,这也是导致9.7m以上岩心沉积速率突然增大的直接原因,显然黄海沿岸流在该泥质区的沉积过程中起了重要作用。
     论文对ECS-0702孔25.9m以上岩心进行了粘土矿物、全岩样矿物、常量元素、微量元素和稀土元素分析。结果表明,粘土矿物成分以伊利石为主(>48.8%),其次为绿泥石(16%)、蒙脱石(15.6%)、高岭石(13.8%)。以伊利石、蒙脱石、高岭石+绿泥石为端元的三端元图清晰的表明黄河源物质对该区的影响较大。并用上述分析和元素之间的相关分析、微量元素聚类分析等方法对ECS-0702孔的物质来源进行了识别,表明ECS-0702孔沉积物的来源是长江和黄河的混合源。稀土元素配分模式上,球粒陨石标准化配分曲线明显右倾,轻稀土元素相对富集,反映出沉积物中等程度的Eu负异常。北美页岩和上陆壳配分曲线均近于平坦,在曲线上未见明显的Eu异常,Ce异常也不明显。论文还对ECS-0702孔进行了沉积环境分析,通过计算粒级-标准偏差获得了该孔20m以上岩心沉积物中对沉积环境变化较为敏感的粒度组分。
     通过以上分析,本文对长江口滨外泥质区末次冰消期海侵以来的沉积序列进行了初步研究,并探讨了该区的物质来源以及沉积动力过程。我们认为该区物源为长江和黄河的混合源,特别是公元1128年黄河流入南黄海以来,黄海沿岸流在该区的沉积过程中起了重要作用。这与长江口以南浙闽沿岸泥质带为东亚季风驱动下沿岸流输送的长江物质的沉积过程有明显区别。
The mud area off Yangtze River estuary is one of the accumulative centers of Yangtze River sediment since the last deglaciation transgression, the core ECS-0702 (122°40.0108′E, 31°00.0041′N, core length 35.6m, water depth 22m) locates in the mud area off the Yangtze River estuary, inner shelf of the East China Sea. By sedimentary facies analysis, combing with high resolution of the sediment grain-size and AMS14C above 30.8m we divide the sedimentary units.The core can divided into four sedimentary units (DU1~DU4) from up to down. The time which DU1 unit (0-7.5m) begin to develop was in correspondence with the Yellow river flow into the south Yellow sea; DU2 unit (7.5-19.6m) formed after sea level rise to the highest in the Holocene (6.5-0.54 cal kyr BP); DU3 unit (19.6-25.9m) formed in Holocene transgression (11.6-6.5 cal kyr BP) corresponding to shallow sea environment; DU4 (25.9-30.8m) formed in the tidal flat environment (13-11.6 cal kyr BP). carbonate content obviously high above 9.7m in core ECS-0702, and sedimentary rate above 9.7m is about 11.04mm/a, but the sedimentary rate below 9.7m only 1.73mm/a. combing with AMS14C we conclude the 14C age is about 822 cal yr BP in 9.7m when Yellow river begin flow into the south Yellow sea.in A.D.1128. The Yellow river carries a large quantity of materials and deposited in the mud area off Yangtze River estuary by Yellow Sea Coastal Current.which is the immediate cause of above 9.7m sedimentary rate suddenly increase.Obviously,Yellow Sea Coastal Curren palys an important role in the mud area off Yangtze River estuary deposition process.
     The clay minerals、whole rock minerals、major elements、trace elements and Rare Earth Elements (REE) of the mud in the core ECS-0702 (0~25.9m)are analyzed.The results show that the clay minerals are composed primarily of illite (generally more than 48.8%), with small amounts of chlorite (16%), smectite (15.6%) and kaolinite (13.8%). A ternary diagram of smectite, chlorite+kaolinite, and illite concentrations shows that the concentrations of the samples are quite similar to the clay concentrations derived from the Yellow River-derived sediment. Based on above studies and combing with the correlation analysis of different elements、cluster analysis of trace elements, we discussed provenance, concluded that the sediment in the mud area mainly derived from Yangtze River and Yellow River. In REE distribution patterns, the chondrite-normalized REE partition curve incline to the right, indicate that they are enriched in LREE and middle degree Eu negative abnormity. The North American shale and upper continental crust normalized REE partition curve both of even type, indicate no negative Eu and Ce anomaly.The sedimentary environment of core ECS-0702 was discussed, the grainsize compositions sensitive to the sedimentary environment in the core ECS-0702 (0~20m) were taken by the analysis of grain size grade vs.standard deviation.
     Through above analyzing, this paper Preliminary study on Sedimentary Sequence since the last deglaciation transgression in the mud area off Yangtze River estuary, also study the provenance and Sedimentary Dynamic Processes of this mud area, we consider that sediment in the mud area mainly derived from Yangtze River and Yellow River. Yellow Sea Coastal Current .palys an important role in this mud area deposition process especially Yellow River begin flow into the south Yellow sea in A.D.1128. The deposition process of the mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts is that materials of Yangtze River carried to the Zhejiang and Fujian coasts by Coastal Current which controlled by East Asian Monsoon. The deposition process between the mud area off Yangtze River estuary and Zhejiang-Fujian coastal mud area has obviously different.
引文
[1]蔡爱智.长江入海泥沙的扩散[J].海洋学报,1982.4(1):78-88
    [2]陈丽蓉,徐文强,申顺喜.东海沉积物的矿物组合及其分布特征的研究.中国科学院海洋研究所海洋地质研究室,黄东海地质[C].北京:科学出版社,1982.82-97
    [3]陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究[J].海洋科学,1989,(2):1-8
    [4]陈涛,王欢,张祖青,王河锦,粘土矿物对古气候指示作用浅析[J].岩石矿物学杂志, 2003,22(4):416-420
    [5]程天文,赵楚年.我国主要河流入海径流量、输砂量及其对沿岸的影响[J].海洋学报, 1985,20(1):46-52
    [6]段凌云,王张华,李茂田.长江口沉积物210Pb分布及沉积环境解释[J].沉积学报,2005,23(3):514-522
    [7]范德江,杨作升,孙效功,张东奇,郭志刚.东海陆架北部长江、黄河沉积物影响范围的定量估算[J].青岛海洋大学学报,2002,32(5):748-756
    [8]范德江,杨作升,毛登等.长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001, 21(4):7-12
    [9]范德江,杨作升,王文正.长江、黄河沉积物中碳酸盐组成及差异.自然科学进展[J],2002, 12(1):60-64
    [10]谷国传,胡方西,胡辉.长江口外高盐水入侵分析[J].华东师范大学学报,1995 (长江河口最大浑浊带和河口锋研究论文集):109-117
    [11]高抒,Collins M.沉积物粒度趋势与海洋沉积物动力学[J].中国科学基金,1998.4:241-246
    [12]郭志刚,杨作升,雷坤,曲艳慧,范德江.东海陆架北部泥质区沉积动力过程的季节性变化[J].青岛海洋大学学报,1999,29(3):507-513
    [13]郭志刚,杨作升,曲艳慧,范德江.东海陆架泥质区沉积地球化学比较研究[J].沉积学报,2000, 18(2):284-289
    [14]郭志刚,杨作升,张东奇,范德江,雷坤.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J].海洋学报, 2002a,24(5):71-80
    [15]郭志刚,杨作升,范德江.东海陆架北部表层细粒级沉积物的级配及意义[J].青岛海洋大学学报,2002b,32(5):741-747
    [16]郭志刚,杨作升,陈致林.东海陆架泥质区沉积有机质的物源分析[J].地球化学,2001, 30(5):416-424
    [17]郭志刚.东海陆架泥质区的物质汇作用.博士论文, 2000a
    [18]何起祥.中国海洋沉积地质学[M].北京:海洋出版社. 2006.
    [19]贺松林.东海近岸带沉积物陆源矿物组分的比较研究[J].华东师范大学学报(自然科学版), 1991(1):78-86
    [20]金秉福,林振宏,杨群慧,季福武.沉积矿物学在陆缘海环境分析中的应用[J].海洋地质与第四纪地质,2002,22(3):113-118
    [21]金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展, 2003,21(1):99-106
    [22]金翔龙.东海海洋地质[M].北京:海洋出版社,1992.196-215
    [23]金翔龙,喻普之.黄、东海地质构造.中国科学院海洋研究所海洋地质研究室,黄东海地质[C].北京:科学出版社,1982:1-22
    [24]蓝先洪.海洋地球化学的研究现状与展望.韩晓鹏等主编.海洋科学中若千前沿领域发展趋势的分析与探讨[M].北京:海洋出版社,1994.55-66
    [25]蓝先洪.晚更新世末期陆架古环境研究[J].海洋地质动态,1995(5):6-8
    [26]雷坤,杨作升,郭志刚,白虹.东海不同底质类型海域春季悬浮体通量及影响因素[J].海洋与湖沼,2001,32(1):50-57
    [27]李风岐,苏育嵩.海洋水团分析[M].青岛海洋出版社,2000.348-385
    [28]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究[M].北京:科学出版社,2005. 1-49
    [29]李国刚.中国近海沉积物中的粘土矿物的组成、分布及其地质意义[J].海洋学报,1990,12(4): 470-479
    [30]李国刚,秦蕴珊.中国近海细粒级沉积物中的方解石分布、成因及其地质意义[J].海洋学报, 1991,13(3):381-386
    [31]李双林.东海陆架HY126EA1孔沉积物稀土元素地球化学[J].海洋学报,2001,23(3):127-132
    [32]李双林,李绍全,孟祥君.东海陆架晚第四纪沉积物化学成分及物源示踪[J].海洋地质与第四纪地质,2002,22(4):21-28
    [33]黎彤.中国陆壳及其沉积层和上陆壳的化学元素丰度[J].地球化学,1994,23(2):140-142
    [34]林承坤.黄海粘土沉积物的来源与分布[J].地理研究,1992,51(2):41-51
    [35]林以安,唐仁友,李炎等.长江口生源元素的生物地球化学特征与絮凝沉降的关系[J].海洋学报,1995,17(5):65-72
    [36]刘健,李绍全,王圣洁.末次冰消期以来黄海海平面变化与黄海暖流的形成[J].海洋地质与第四纪地质,1999,19(1):13-24
    [37]刘敏厚,吴世迎,王永吉.黄海晚第四纪沉积[M].北京:海洋出版社,1987.362-370
    [38]牟保垒.元素地球化学[M].北京:北京大学出版社.1999
    [39]庞重光,王凡.东海悬浮体的分布特征及其演变[J].海洋科学集刊,2004,46:22-31
    [40]秦蕴珊,赵一阳,陈丽蓉,赵松龄.东海地质[M].北京:科学出版社,1987.1-209
    [41]秦蕴珊,郑铁民.东海大陆架沉积初分布特征的初步探讨.中国科学院海洋研究所海洋地质研究室,黄东海地质[C].北京:科学出版社,1982.3l-51
    [42]屈翠辉,郑建勋,杨绍晋,钱琴芳,杨亦男.黄河、长江、珠江下游控制站悬浮物的化学成分及其制约因素的研究[J].科学通报,1984,(17):1063-1066
    [43]曲沛奎,严肃庄.长江口悬沙锋及其对物质输移的影响[J].华东师范大学学报,1995(长江河口最大浑浊带和河口锋研究论文集):118-127
    [44]邵磊,李献华,韦刚健.南海陆坡高速堆积体的物质来源[J].中国科学,2001,31(10):828-833
    [45]石学法,陈丽蓉,李坤业.西菲律宾海西部海域粘土沉积物的成因矿物学研究[J].海洋地质与第四纪地质,1995,15(2):61-72
    [46]苏广庆,王有强,王晓彬.南沙群岛及其邻近海区的矿物沉积.见:南沙群岛及其邻近海域第四纪沉积地质学[M].武汉:湖北科技技术出版社.1993
    [47]孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质,1990,10(3):23-34
    [48]孙东怀,安芷生,苏瑞侠.古环境中沉积物粒度组分分离的数学方法及其应用[J].自然科学进展,2001,11(3):269-276
    [49]孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼,2000,31(6): 581-587
    [50]孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响[J].海洋与湖沼,2001,32(6): 665-671
    [51]孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报,2003, 48(1):83-86
    [52]汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘,2002,9(2):337-344
    [53]汪品先.西太平洋边缘海的冰期碳酸盐旋回[J].海洋地质与第四纪地质,1998,18(1):1-11
    [54]汪品先,张纪军,赵泉鸿.东海底质中的有孔虫和介形虫[M].北京:海洋出版社.1988
    [55]王贤觉.东海大陆架海底沉积物稀土元素地球化学[J].地球化学,1982(1):56-65
    [56]王中刚.稀土元素地球化学[M].北京:科学出版社.1989.
    [57]吴明清,王贤觉.东海沉积物的稀土和微量元素[J].地球化学,1991(1):40-46
    [58]吴世迎.从黄海碳酸钙分布特征探讨黄河在黄海沉积过程中的作用.第三届全国第四纪学术会议论文集.北京:科学出版社,1982:95-102
    [59]向荣,杨作升,SaitoY,郭志刚.济州岛西南泥质区近2300a来环境敏感粒度组分记录的东亚季风变化[J].中国科学D辑地球科学,2006,36(7):654-662
    [60]向荣,杨作升,郭志刚,SaitoY等.济州岛西南泥质区粒度组分变化的古环境应用[J].地球科学-中国地质大学学报,2005,30(5):582-588
    [61]肖尚斌,李安春,蒋富清,尤征,陈莉.近2ka闽浙沿岸泥质沉积物物源分析[J].沉积学报, 2005a,23(2):268-274
    [62]肖尚斌,李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报,2005b,23(1): 122-129
    [63]肖尚斌.东海内陆架泥质沉积的古环境记录[D].中国科学院海洋研究所博士学位论文,2004
    [64]谢传礼,翦知湣,赵泉鸿,汪品先.末次盛冰期中国海古地理轮廓及其气候效应[J].第四纪研究,1996(1):1-l0
    [65]许东禹.东海陆架泥质沉积作用[J].海洋地质与第四纪地质,1985,5(2):17-26
    [66]许东禹,刘锡清,张训华等.中国近海地质[M].北京:地质出版社,1997.1-309
    [67]薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J].海洋学报, 2004,26(1):48-61
    [68]杨光复,董太禄,徐善民,苍树溪.东海大陆架南部更新世末期以来的沉积特征.中国科学院海洋研究所海洋地质研究室,黄东海地质[C].北京:科学出版社,1982,67-81
    [69]杨守业,李从先.REE示踪沉积物物源研究进展[J].地球科学进展,1999a,14(2):164-167
    [70]杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用[J].自然科学进展, 1999b,9(10):930-937
    [71]杨守业,李从先.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质,1999c,19(2):20-25
    [72]杨子赓.中国东部陆架第四纪时期的演变及其环境效应.见:梁名胜等主编,中国海陆第四纪对比研究.北京:科学出版社,1991,1-22
    [73]杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J].海洋与湖沼,1988,19(4):336-346
    [74]杨作升,郭志刚,王兆祥,徐景平,高文兵.黄东海陆架悬浮体向其东部深海区输送的宏观格局[J].海洋学报,1992,14(2):81-90
    [75]杨作升,范德江,郭志刚,毛登.东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析[J].沉积学报,2002,20(1):1-6
    [76]杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J].第四纪研究,2007,27(5):690-699
    [77]叶青超.试论苏北废黄河三角洲的发育[J].地理学报,1986,41(2):112-122
    [78]张朝生,章申,王立军,王丽珍.长江与黄河沉积物金属元素地球化学特征及其比较[J].地理学报,1998,53(4):314-322
    [79]张虎才.武都黄土剖面稀土元素研究[J].地球化学,1996,25(6):545-551
    [80]张晓东,许淑梅,翟世奎.东海内陆架沉积气候信息的端元分析模型反演[J].海洋地质与第四纪地质,2006,26(2):25-32
    [81]张宗雁,郭志刚,张干等.东海泥质区表层沉积物中有机氯农药的分布[J].中国环境科学,2005,25(6):724-728
    [82]张宗雁,郭志刚,张干.东海泥质区表层沉积物中多环芳烃的分布特征及物源[J].地球化学,2005,34(4):75-82
    [83]赵松龄.晚更新世末期中国陆架沙漠化及其衍生沉积的研究[J].海洋与湖沼,1991,22(3): 285-293
    [84]赵松龄,董太禄,苍树溪.东海更新世末期最低海面的初步研究.中国科学院海洋研究所海洋地质研究室,黄东海地质[C].北京:科学出版社,1982,181-188
    [85]赵一阳,韩桂荣,张静等.东海沉积物中锆及稀土元素的若干地球化学特征[J].科学通报, 1982,22:1390-1392
    [86]赵一阳,王金土,秦朝阳等.中国大陆架海底沉积物中的稀土元素[J].沉积学报,1990, 8(1):37-43
    [87]赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社.1994.
    [88]赵一阳,鄢明才,李安春,高抒,贾建军.中国近海沿岸泥的地球化学特征及其指示意义[J].中国地质,2002,29(2):181-185
    [89]朱凤冠.东海陆架区全新世地层中粘土矿物[J].东海海洋,1985,3(4):32-51
    [90]庄克琳,毕世普,刘振夏等.长江水下三角洲的动力沉积[J].海洋地质与第四纪地质,2005, 25(2):1-10
    [91]Barber D.C., Dyke A., Hillaire-Marcel C., Jennings A.E., Andrews J.T., Kerwin M.W., Bilodeau G., McNeely R., Southons J., Morehead M.D., Gagnon J.-M. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature,1999,400: 344-348
    [92]Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature,1996,382:241-244
    [93]Clark, P.U., McCabe A.M., Mix, A.C., Weaver, A.J. Rapid rise of sea level 19,000 years ago and its global implications.Science, 2004,304:1141-1144
    [94]Clark, P.U., Mix, A.C. Ice sheets and sea level of the Last Glacial Maximum. Quat. Sci. Rev., 2002,21:1-7
    [95]Cullers R L,Barret T,Carlson R,et al. REE and mineralogic changes in Holocene soil and stream sediment.Chem.Geol.,1987,63:275-297
    [96]Demaster D J, Mckee B A, Nitrouer C A, et al. Rates of sediment accumulation and particles reworking based on radiochemical measurements from shelf deposits in the East China Sea[J]. Continental Shelf Research,1985,4:143-158
    [97]D.I. Lim, J.Y. Choi, H.S. Jung, K.C. Rho, K.S. Ahn. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Progress in Oceanography,2007, 73:145–159
    [98]Dronkers J, Miltenburg A G, 1996. Fine sediment deposits in shelf seas[J]. Journal of Marine Systems, 7: 119-131
    [99]Fairbanks, R.G. A 17000-year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature,1989,342:637-642
    [100]Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J].New Zealand Jour.Ged.And Geoph,1970,13:937-968
    [101]Gao S, Collins M. Analysis of Grain Size trends, for defining sediment transport pathways in marine environments [J]. Journal of Coastal Research, 1994, 10(1):70-78
    [102]Girty G H. Provenance and depositional setting of Paleozoic chert andargillite,Sierra Nervada, California. J Sedi Res, 1996, 66 (1):107-118
    [103]Hemming S.R, Biscaye P.E., Broecker W.S. et al. Provenance change coupled with increased clay flux during deglacial times in the western equatorial Atlantic.Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 142 (3-4): 217-230
    [104]Hori, K., Saito, Y, Zhao, Q., Cheng, C., et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology, 2001a, 41:233-298
    [105]Hu Dunxin. Upwelling and Sedimentation dynamics I. The role of upwelling in sedimentation in the Huanghe Sea and East China Sea-A description of general features.CHIN. J. OCEANOL. LIMNOLL, 1984, 2(1):12-19
    [106]Kuhlemann J., et al. Implications of a connection between clay mineral variations and coarse grained debris and lithology in the central Norwegian-Greenland Sea. Marine Geology, 1993,114:1-11
    [107]Lambeck, K., Yokoyama, Y, Purcell, T.. Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. Quat. Sci. Rev., 2002,21:343-360
    [108]Lee H. J., Chough S. K. Sediment distribution, dispersal and budget in the Yellow Sea [J]. Marine Geology, 1989, 87:195-205
    [109]Leverington, D.W., Mann, J.D., Teller, J.T. Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7700 14C yr BP. Quat. Res,2002,57:244-252
    [110]Liu Jian, Yoshiki Saito, Wang Hong, Yang Zigeng, Rei Nakashima. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007,236:165-187
    [111]Liu J.P., Li A.C., Xu K.H. Velozzi D.M., Yang Z.S., Milliman J.D., DeMaster D.J.. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research, 2006, 26:2141–2156
    [112]Liu J.P., Milliman J.D., Gao S., Cheng P. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Mar. Geol, 2004, 209:45-67
    [113]Liu J P, Xu K H, Li A C, Milliman J D, Velozzi D M, Xiao S B, Yang Z S. Flux and fate ofYangtze River sediment delivered to the East China Sea. Geomorphology,2007,85(3~4): 208-244
    [114]Liu Z X et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Asian Earth Sci, 2000, 18:441-452
    [115]McManus J,Grain-size determination and interpretation.Techniques in sedimentology[M]. Backwell, Oxford, 1988. 63-85.
    [116]Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans [J]. Journal of Geology, 1983, 91:1-21
    [117]Milliman J D, Qin Y S, Park Y A. Sediments and sedimentary processes in the Yellow and East China Seas. In: Taira A, Masuda F, eds Sedimentary Facies in the Active Plate Margin. Tokyo Terra Scientific Publishing Company,1989,233-249
    [118]Milliman J D, Shen H T, Yang, Z S , Meade, R H. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Cont. Shelf Res, 1985, 4: 37-45
    [119]Mix A. C, Bard E, Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews, 2001, 20: 627-657
    [120]Naskin L A.Rare earth elements in sediments [J].J Geophys Res, 1966, 71(24): 6091-6105
    [121]Park Y A, Khim B K. Clay minerals of the recent fine-grain sediments on the Korean continental shelves[J]. Continental Shelf Research, 1990, 10: 1179-1191
    [122]Prins M A, Postma G, Weltje G. Controls on the terrigenous sediment supply to the Arabian Sea during the late Quaternay: The Makran continental slope [J]. Marine Geology, 2000, 169: 351-371
    [123]Qin, Y.S., Li, F. Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and the Huanghai Sea. Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, April 12-16, 1983. China Ocean Press, Hangzhou, 83–92.
    [124]Ren, M.E., Shi, Y.L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research, 1986, 6:785– 810.
    [125]Rollinson H R.Using Geochemail Data: Evaluation,Presentation,Interpretation.LongmanScientific and Technical.1993
    [126]Saito, Y., Yang, Z. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea, Proceedings of international symposium on the global fluxes of carbon and its related substances in the coastal-ocean-atmosphere system[C]. Hokkaido University, Sapporo, Japan, 1994, 7-12
    [127]Shen H T, Li J F, Zhu H F et al. Characteristics of suspended sediment transportation in Yangtze River mouth. In: Chen Jiyu, Shen Huanting, Yun Caixing (ed.), Process of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: the Science & Technology Press in Shanghai, 1988. 205-215
    [128]Stanley D.J., Warne A.G. Worldwide initiation of Holocene marine deltas by deceleration of sea level rise. Science, 1994, 265: 228-231
    [129]Stuut J B, Prins M A, Schneider P R,et al. A 300-kyr record of aridity and wind strength in south-western Africa: Inference from grain-size distributions of sediments on Walvis Ridge, SE Atlantic [J]. Marine Geology, 2002, 180: 221-233
    [130]Taoyuan Wei, Zhongyuan Chen, Lingyun Duan, Jiawei Gu, Yoshiki Saito, Weiguo Zhang, Yonghong Wang, Yutaka Kanai. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 2007, 71: 37-46
    [131]Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Black well, 1985, 29-45
    [132]Teller, J.T., Leverington, D.W., Mana, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev., 2002,21: 879-887
    [133]Tian R C. Dual filtration effect of geochemical and biogeochemical processes in the Changjiang Estuary. Chinese Journal of Occanologia and Limonologia, 1991, 9(1): 33-43
    [134]Vanderaveroet P. Miocene to Pleistocene clay mineral sedimentation on the New Jersey shelf [J] Oceanol.acta, 2000, 23(1):25-36
    [135]Visher G S. Grain size distributions and depositional processes [J]. Journal of Sedimentary Petrology, 1969, 39: 1074-1106
    [136]Wang L J, Sarnthein M, Erkenkeuser H, et al. East Asian monsoon climate during the late Pleistocene:hige resolution sediment records from the South China Sea [J]. Marine Geology,1999, 156:245-284
    [137]Werner U Ehrmann, Martin Melles, Gerhard Kuhn, Hannes Grobe. Signification of clay mineral assemblages in the Antarctic Ocean[J]. Marine Geology, 1992, 107: 249-273
    [138]Xie Q C, Zhang L F, Zhou F G et al. Features and transportation of suspended matter over the continental shelf off the Changjiang Estuary. In: Ren Mei’e (ed.), Proceeding of International Symposium on the Sedimentation on the Continental Shelf, with Special Reference to the East China Sea. Beijing: China Ocean Press, 1983. 400-412
    [139]Xu, D.Y., Mud sedimentation on the East China Sea shelf. Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, April 12– 16, 1983. China Ocean Press, Hangzhou, 506–516
    [140]Yang Shouye, LI Congxian, ZHAO Quanhong, Saito Yoshiki, Hori Kazuaki. Element geochemistry of Holocene sediment and paleoenvironmental change in the Changjiang Estuary [J]. SCIENCE IN CHINA(Series B), 2001, 44: 40-46
    [141]Yang Shou Ye, Jung Hoi Soo, Lim Dhong I, Li Cong Xian. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews 2003, 63:93–120
    [142]Yang, Z.S., Milliman, J.D. Fine-grained sediments of the Changjiang and Huanghe rivers and sediment sources of the East China Sea. In: Proc. Int. Sym. Sedimentation on the Continental Shelf, with special Reference to the East China. Beijing: China Ocean Press, 1983, 436-446
    [143]Yang Z S, Saito Y, Guo Z G, et al. Distal mud area as a material sink in the East China Sea. In: Iseki K, Koike I, Tsunogai S, et al, eds. Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean-Atmosphere System Sapporo Hokkaido University, 1994, 1-6
    [144]Yang Zuosheng, Wang Zhaoxiang, Qu Jianzhong, et al. Study on carbonates from the coastal zone of the Yellow River delta and adjacent Bohai Gulf. Journal of Ocean University of Qingdao, 1989, 19 (3): 91-99
    [145]Yashitaka Minai et al. Geochemistry of rare earth element and other trace element in sediments from sites 798 and 799, Japan Sea, Proceeding of the Ocean Drilling Program, Scientific Results, 1992, 127-128
    [146]Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. Timing for the maximum of thelast glacial constrained by lowest sea-level observations. Nature, 2000, 406: 713-716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700