用户名: 密码: 验证码:
高扬程、多起伏的长距离输水管道水锤防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,人们对水的需求日益增长,为了解决日趋尖锐的水资源供需矛盾,越来越多的城市开始兴建长距离的大型输水工程。为了保证供水系统的运行安全,防止系统中发生瞬变流现象而导致水锤事故,需对供水系统进行认真的水锤分析、预测和模拟各种工况下水锤的发生和传播规律。根据输水系统的实际特点,设计合理、有效、经济的水锤防护措施。
     在长距离输水管线中,尤以高扬程、多起伏管道水锤防护难度最大,发生水锤事故最多。因此,实际工程更需要这方面的技术,本研究专为此进行了探索。
     1、阐述了气、水两相流在输水管道中的各种流态,以及流态间的转化关系,并对气液两相流的各种数学模型进行了总结。据此对管道排气技术提出了要求。
     2、阐述管道中的气体来源和存气部位,分析比较了各种排气阀的工作原理、性能和优缺点,为工程中排气阀的选择提供了依据。
     3、对高扬程、多起伏的长距离输水管道的水锤防护措施进行了说明;并对管线防护中的断流水锤进行了分析,依据断流空腔内的介质以及弥合的方式对断流弥合水锤进行了分类及弥合升压分析。根据工程实际对高扬程、多起伏的管道系统提出了防护方案的选择步骤。
     4、建立了水锤计算的基本数学模型,并给出了高扬程、多起伏的管路系统中的各类边界条件的计算公式及应用条件,对现用的排气阀边界条件进行了修正。
     5、分别以榆林和大连两条输水管线为例进行了水锤防护优化。通过计算对各种断流防护措施进行了比较,对水泵的关闭和运行进行了优化。通过计算验证了不同性能的排气阀在水锤防护过程中的不同效果。根据计算得出具有恒速缓冲功能的排气阀是高扬程多起伏的长距离输水管道的断流弥合水锤的基本防护措施。
With the development of the economy, the water resources, which people require are incread day by day. In order to solve the sharp contradiction between supply and demand of water resources, long distance and large-scale water delivery cascade pumping stations are begin to be built. In order to guarantee security of the running of the water supply system to prevent the water-supply systems from causing water hammer accidents when transient phenomenon taken place in pipe. Tt is necessary to make water hammer analysis, predict and simulate the occurrence of water hammer accidents and diffuse law at each kind of the operating mode. According to actual characteristic of pumping system, the reasonable, effectively and economic measure of preventing water hammer is designed.
     In long pipe line, especially high-lift, multi-undulate pipeline, the difficulty of prevention water hammer is most difficult. Therefore, the actual project needs this aspect of the technology eager. And this was studied in this article.
     1、Each kind of air-liquid two-phase flow patterns in pipeline and the relations of the transformation among the flow patterns were expounded .Also the mathematical models of air-liquid two-phase flow were summarized. According to above set the request to the pipeline exhaust technology.
     2、The origin and position of the gas in the pipeline were elaborated. The work principle, the performance and the good and bad points of each discharge valve were analyzed and compared.
     3、The protective measures of the water hammer in high-lift, multi- fluctuations long distance pipeline were illustrated. The cut-off water hammer in pipeline protective was analyzed. According to the cavity medium as well as the pattern of closing, the cut-off and closing water hammer was classified and the analyzed by closing and press rising. On the basis of project, the choosing steps of protection plan of high-lift, multi- fluctuations pipeline system were proposed.
     4、The basic mathematical model of water hammer computation was established. And the formula and the application condition of each kind of boundary condition in high-lift, multi-fluctuations pipeline were put forward. The boundary condition used presently of the exhaust valve was revised
     5、Take the protection and optimization of water hammer of the pipeline in Yulin and Dalian as the example. Through the calculation, the protection measures of cut-off flow were compared. The closure and the operation of water pump were optimized. According to calculation, the different performance of different discharge valve in the protection processs of water hammer was verifyied. According to the calculation, the discharge valve with constant speed and cushion function is the basic protective measure of cut-off and closing water hammer in the high-lift, multi- fluctuations and long distance pipeline
引文
[1]金锥,姜乃昌,王兴华,等.停泵水锤及其防护[M].第二版.北京:中国建筑工业出版社,2004:1,11-12
    [2]涂军.梯级电站引水系统水力过渡过程研究[D].北京:国家图书馆,2002.4
    [3]M.Hanif Chaudhry.Applied Hydraulic Transients.British Columbia Hydroand Power Authority Vancouver.British Columbia,Canada,1979
    [4]Frizell J P.Pressure Resulting from Changes of Velocity of Water in Pipes[J].Trans of the ASCE,1898,39,Paper(819):1 - 18
    [5]Allievi L.The Theory of Water Hammer[J].English Translation by Hatmos E E,ASME,New York,1925
    [6]Streeter V.L.Transient Cavitating Pipe Flow[J].ASCE Journal of Hydraulic Engineering.1983,109(HY11):1408-1423
    [7]Streeter V.L.Water hammer Analysis[J].ASCE Journal of the Hydraulics Division,1969,95(HY6):1959-1972
    [8]曹广学.高扬程泵站压力管路安全防护的计算机数值模拟[D].太原:太原理工大学,2005
    [9]王树人,刘天雄,彭天玫.水击理论与水击计算[M].北京:清华大学出版社,1981,1
    [10][美])E.B.Wylie,V.L.Streeter著.清华大学流体传动与控制教研组译.瞬变流[M].北京:水利电力出版社,1983
    [11][加]M.H.Chaudhry著.陈家远、孙诗杰、张治滨译.实用水力过渡过程[M].成都:四川水力发电工程学会,1985
    [12]刘光临,刘志勇,王听全等.单向调压塔水锤防护特性的研究[J].给水排水,2002,28(2),82-85
    [13]刘光临,刘梅清,冯卫民等.采用单向调压塔防止长输水管道水柱分离的研究[J].水利学报,2002,9,44-48
    [14]刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社,1988
    [15]王学芳,叶宏开,汤荣铭等.工业管道中的水锤[M].北京:科学出版社,1995
    [16]杨玉思.全压高速排气阀[P].中国专利:98113073,2000-05-31
    [17]国际水力工程研究协会IAHR下设的工作组.伴有水柱分离的水力过渡过程(Hydraulic transients with water column separation)[R].马德里:国际水力工程研究协会,2000
    [18]金锥,杨玉思.两处水柱分离与断流空腔弥合水锤的研究[A].第三届中日流体机械国际学术会议.大阪:1990
    [19]熊水应,关兴旺,金锥.多处水柱分离与断流弥合水锤综合防护问题及设计实例(上)[J].给水排水,2003,29(7),1-5
    [20]熊水应,关兴旺,金锥.多处水柱分离与断流弥合水锤综合防护问题及设计实例(下)[J].给水排水,2003,29(8),1-6
    [21]杨玉思,羡巨智,王栋.有压供水管道气水两相流流态及排气方式[J].中国给水排水,2005,21(12),62-64
    [22]杨玉思,张世昌,付林.有压供水管道中气囊运动的危害与防护[J].中国给水排水,2002,18(9),32-33
    [23]杨玉思,金锥.两处断流水锤的判断及升压计算方法[J].西北建筑工程学院学报,1996,4,25-30
    [24]杨玉思,闫明.消减断流弥合水锤及气囊运动升压的最佳方式[J].中国给水排水,2006,22(4),44-47
    [25]郑源、刘德有、张健等.有压输水管道系统气液两相瞬交流研究综述[J].河海大学学报(自然科学版),2002,30(6),21-25
    [26]孙兰凤.空气阀在长管道供水系统水锤防护中的应用研究[D].武汉:武汉大学,2005
    [27]杨玉思,辛亚娟.管网爆管的水力因素分析及防爆技术探讨[J].中国给水排水,2006,22(21),61-63
    [28]吕伟娅,李进.高层建筑给水系统停泵水锤对止回阀的危害及防止措施[J].南京建筑工程学院学报,1998,44(1),76-80
    [29]邓风,梅凯.高层建筑给水系统停泵水锤分析[J].南京建筑工程学院学报,1997,43(4),35-40
    [30]刘勇.多功能水泵控制阀消除长距离输水管路水锤[J].中国给水排水,2003,19(13),145-146
    [31]李志鹏,刘可佳,王贵生等.多功能水力控制阀的设计与试验研究[J].流体机械,2001,29(1),18-21
    [32]汤荣铭,王学芳,姚朝晖等.防水锤偏心蝶式止回阀的设计与研究[J].阀门,1998,2,1-5
    [33]孔珑.两相流体力学[M].北京:高等教育出版社,2004
    [34]陈之航,曹柏林,赵在三.企业两相流动和传热[M].北京:机械工业出版社,1983
    [35]周强泰.两相流动和热交换[M].北京:税利电力出版社,1990
    [36][美]柏实义.施宁光,严家祥,夏玉顺译.二相流动[M1.北京:机械工业出版社,1985
    [37]Wallis G B.One-Dimensional two-phase flow[M].New York:McGTaw-Hill,1969
    [38]Baker O.Simulations flow of oil as gas[J].Oil and Gas,1954,53,185-190
    [39]徐济望.沸腾传热和气液两相流[M1.北京:原子能出版社,2001
    [40]钟兴福,张新宏,李全红等.气水两相流滑动比的实验研究[J].测井技术,1998,22(3),156-158
    [41]王文琪.两相流动[M]].北京:水利电力出版,1989
    [42]连桂森.多相流动基础[M].杭州:浙江大学出版社,1989
    [43]Lockhart R W,Martinelli R C.Proposed correlation of data for isothermal two-phase,two-component flow in pipes[J].Chem Engng Progress,1949,45,39-48
    [44]Martinelli R C,Nelson D B.Predication of pressure drop during forced circulation of water[J].Trans ASME,1948,70,695-702
    [45]Weisman J,Kang S Y.Flow pattern transitions in vertical and upward inclined pipes[J].Int J Multiphase Flow,1981,7,271-291
    [46]CECS 193:2005,城镇供水长距离输水管(渠)道工程技术规程[S].北京:中国计划出版社,2006
    [47]刘梅清,孙兰凤,周龙才,等.长管道泵系统中空气阀的水锤防护特性模拟[J].武汉大学学报(工学版),2004,37(5),23-27
    [48]杨晓东,朱满林,李郁侠.装有进排气阀的长距离压力输水系统水锤计算研究[J].水利学报,1998,增刊,60-64
    [49]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700