用户名: 密码: 验证码:
南大巴山镇巴—城口段构造变形特征及构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南大巴山构造带位于上扬子地块与南秦岭造山带的交接部位,西与米仓山为邻,东与川东高陡构造带相连,宏观上为一整体向南西凸出的弧形构造带。该构造带是印支期与燕山期两期逆冲推覆构造的复合产物。两期运动造就了南大巴山现今富有特色的弧形构造体系,也形成了类型特殊的前陆盆地(陆内前陆盆地)。通过现代构造地质学方法、地球物理及同位素年代学等多学科综合研究,对南大巴山镇巴—城口段现今构造按照“横向分带、纵向分段和垂向分层”的思路进行构造剖析,并利用锆石年代学资料对大巴山前陆盆地进行物源示踪,在此基础上重点讨论其构造演化及盆山物质耦合关系。至此,取得了以下进展和初步认识:
     1.在岩石地层方面,重点比对扬子北缘和高川盆地两类不同二叠系沉积,发现扬子北缘二叠系总体为一套台地相碳酸盐岩,而高川盆地二叠系郭家垭组为一套黑色岩系。结合区域构造分析,郭家垭组是扬子板块与秦岭微板块之间裂谷—有限洋盆的一部分被残留下来,是在区域拉张背景之下形成的,与峨眉山二叠纪玄武岩喷发事件所表征的拉张构造背景相吻合。
     2.通过对研究区地表地质构造的详细路线调查,对重点区段辅以大比例尺面积填图,基本查清南大巴山镇巴—城口段现今构造基本特征。根据构造样式及变形组合对南大巴山进行“横向分带、纵向分段和垂向分层”研究,横向上分为叠瓦冲断带、冲断褶皱带、逆冲推覆扩展变形带和低缓褶皱带,纵向上分为西段、中段和东段,垂向上根据区域滑脱面及地球物理资料分为上、中和下三大构造层。从南大巴山根带到前陆盆地方向,变形强度渐弱,褶皱形态逐渐开阔,地表出露地层时代愈新,滑脱层由北向南逐层抬升直至三叠纪膏盐岩。地表构造样式以箱状褶皱、紧闭褶皱、扇状褶皱和隔档式褶皱为主。
     3.认为米仓山东段与大巴山西段构造交接区发育两期褶皱,通过大比例尺填图对西乡县司上叠加褶皱研究,确定近东西向—北东东向褶皱形成在先,近南北向—北北西向褶皱形成在后。结合区域不整合事件及前人年代学资料,表明这两期褶皱均形成于J_3-K_1,其中近东西向褶皱形成时代相对南北向褶皱形成时代稍早。
     4.通过对大巴山陆内前陆盆地三叠系须家河组与侏罗系上沙溪庙组碎屑锆石年代学研究,发现碎屑锆石年龄与秦岭—大巴地区地质体年龄相似,并结合区域资料分析,认为大巴山前陆盆地的碎屑沉积物主要为源自秦岭造山带中生代中晚期陆内造山岩浆活动的产物(213 Ma~283Ma;163 Ma~274Ma)、北秦岭(312 Ma~448Ma;404Ma)、南秦岭(694 Ma~710Ma;712Ma)、秦岭(1430 Ma~1988 Ma;1742 Ma~1972 Ma)、秦岭造山带基底(2133 Ma~2708 Ma;2116 Ma~2594 Ma、3025 Ma~3140 Ma)。研究显示,前陆盆地与秦岭—大巴造山带具有物质上的沟通关系,从物源角度可以说明两构造单元具物质上的耦合关系。
     5.恢复南大巴山中新生代以来构造活动序列:①受早期华南华北两大板块印支期碰撞造山影响,南大巴山地区已被波及,造成城口坪坝三叠系须家河组角度不整合覆盖在下三叠统之上,此时,城口、坪坝断裂可能形成并活动,但此次活动并未使南大巴山发生广泛的褶皱变形;②燕山期扬子地块向秦岭之下的大型陆内俯冲导致北大巴山地区瓦房店中下侏罗统被逆冲掩覆,南大巴山地区再次被连带卷入到此次变形中,造成南大巴山地区褶皱变形,褶皱系统及逆冲断裂系统相继形成,并可能叠加有右行走滑;③晚白垩纪以来,在喜山运动影响之下整体抬升剥蚀,终成今日之面貌。
South Dabashan Mountain tectonic belt is seated at the north margin of the Upper Yangtze block, the connection area of Sichuan basin and south Qinling orogenic belt, which lies adjacent to the Micangshan Mountain in west and to the high and steep orogenic belt in east and takes on a southwest-protruded arc orogenic belt in the whole at a macro view. The belt is the compound production of thrust movement of two periods both in Indosinian stage and Yanshanian stage. Thus two stages' movements forged the distinctive arc orogenic system of present South Dabashan Mountain, together with the special foreland basin(intra-continental foreland basin). After synthesized study of modern tectonics methods, geophysics and isotopic chronology and so on, following the thought of "section-divide in strike, belt-divide in inclination and layer-divide in vertical direction", the present tectonic of South Dabashan Mountain Zhenba-Chengkou section is analyzed in detail. What's more, with the help of Zircon chronology data in tracing the provenance area of Dabashan Mountain foreland basin, its tectonic evolution and mountain-basin coupling relativities are discussed in particular. From these studies, some advances are acquired as follows:
     1. After comparing the Permian strata of northern margin of Yangtze and Gaochuan basin in special, we discover that the Permian deposit is predominated by carbonate rocks of platform facies in northern margin of Yangtze(especially the Zhenba area) while black rock series of Guojiaya Formation of Permian distributes in Gaochuan basin. Considering the regional tectonic, Guojiaya Formation is the residual of the rift-limited oceanic basin between Yangtze block and Qinling micro-plate, and is formed under the background of regional extensional environment, which is consistent with the Permian basalt eruption event of Emei mountain resulted by regional extensional environment.
     2. The paper is based on detail route survey towards geological structures on the ground surface of the study area and large scale mapping for key area, and basically makes clear the present tectonic characteristics of South Dabashan Mountain Zhenba-Chengkou section. According to tectonic patterns and deformation assemblages, the principle of section-divide in strike, belt-divide in inclination and layer-divide in vertical direction are put in the study of South Dabashan Mountain, which is divided into east, middle and west in strike, imbricate thrust belt, fault fold belt and thrust stretched deformed belt in inclination and upper, middle and lower in vertical direction through regional decollement and geophysics data. From the root of South Dabashan Mountain to the foreland basin, the deformation becomes weaker and weaker, the shape of fold gets wider and wider and the strata of outcrop turns newer and newer. Meanwhile, the decollemen lifts to plaster salt rocks of Triassic from north to south. And the structures shape on the ground surface is mainly the box-shaped folds, tightly closed folds, fan-shaped folds and Jurassic folds.
     3.We believe that two periods' folds developed at the connection between eastern Micangshan Mountain and western Dabashan Mountain and identify that nearly east-west-northeast by east orientated fold formed earlier than the fold of nearly south-north-northwest by west orientated through superimposed study of large scale mapping towards Sishang area of Xixiang county. Combined with regional unconformity event and chronology data of predecessors, it can be concluded that both two periods' folds formed in J_3-K_1 and the nearly east-west orientated fold formed earlier that that of south-north orientated.
     4.Through Zircon chronology study of clastic rocks of Xujiahe Formation of Triassic and upper Shaximiao Formation of Jurassic in intra-continental foreland basin of Dabashan Mountain, we find that the clastic Zircon age is similar to that of Qinling-Daba area. Considering regional data, we put forward that the detrital deposits of Dabashan foreland basin is mainly derived from the productions of intra-continental orogenic magmatism in middle-late period of Mesozoic of Qinling orogenic belt(213Ma~283Ma; 163Ma~274Ma), northern Qinling(312Ma~448Ma; 404Ma), southern Qinling(694Ma~710Ma; 712Ma),Qinling(1430Ma~~1988 Ma; 1742Ma~1972Ma), the basement of Qinling orogenic belt(2133Ma~2708Ma; 2116Ma~2594Ma、3025Ma~3140Ma). Study shows that the foreland basin keeps communication with Qinling-Daba orogenic belt in material and the two tectonic units exist mutual coupling relativities in material composition.
     5.Recovering the tectonic events sequence of South Dabashan mountain since Mesozoic-Cenozoic:①Suffering the early effect between the South China block and the North china block, South Dabashan area was deformed and which resulted in Xujiahe Formation of Triassic angular unconformity overlaid on the lower Triassic in Chengkou and Pingba area. At that time, Chengkou-Pingba fault may be formed and active, but the major area of South Dabashan were not folded and deformed;②The large-scale intra-continental subduction of the Southern Qinling in Yanshanian resulted in the thrust of Middle-Lower Jurassic strata in Wafangdian of North Dabashan area, and involved in the South Dabashan again, which caused the fold and deformation in the area . And folds and thrust faults formed in line, yet dextral strike-slipping may superposed at the same time;③Since Cretaceous Period, the study area has been uplifted and denuded in the whole with the impact of Himalaya movement and comes to today's visage finally.
引文
1.曹家敏,朱介寿,吴德超.东秦岭地区的地壳速度结构.成都理工学院学报,1994,21(1):11-17
    2.陈海泓,孙抠,李继亮,等.雪峰山大地构造的基本特征初探[J].地质科学,1993,28(3):201-209
    3.陈汉宗.鄂东北早前寒武系地质年代学研究[J].地球化学,1987,15(2):153-160
    4.程顺有,张国伟.秦岭造山带地壳上地幔结构[J].西北大学学报,1992,增刊:123-132
    5.邓明森.米仓山区盖层褶皱构造变形分析[J].矿物岩石,1997,17(增刊):132-142
    6.董树文,胡健民,施炜,等.大巴山侏罗纪叠加褶皱与侏罗纪前陆[J].地球学报,2006,27(5):403-410
    7.董云鹏,周鼎武,张国伟,等.秦岭造山带南缘早古生代基性火山岩地球化学特征及其大地构造意义[J].地球化学,1998,27(5):432-441
    8.高山,Yumin Qiu,凌文黎,等.崆岭高级变质地体单颗粒锆石SHRIMP U Pb年代学研究-扬子克拉通>3.2 Ga陆壳物质的发现[J].中国科学(D),2001,31(1):27-35
    9.葛肖虹.华北板内造山带的形成史[J].地质评论,1989,35(3):
    10.郭战峰,梁西文.东秦岭-大别造山带南侧中生代砂岩碎屑组分及其构造意义 2006[J].吉林大学学报(地球科学版),36(5):787-792
    11.郭正吾,邓康龄,韩永辉,等。1996,四川盆地形成与演化.地质出版社
    12.郝杰,刘小汉.桐柏-大别碰撞造山带大型推覆-滑脱构造及其演化[J].地质科学,1988,23(1):1-9
    13.何登发,吕修祥,林永汉,等.前陆盆地分析[M].北京:石油工业出版社,1996,1-11
    14.何登发,赵文智.中国西北地区沉积盆地动力学演化与含油气系统旋回.北京:1999.石油工业出版社,140-152.
    15.何建坤,卢华复,朱斌.东秦岭造山带南缘北大巴山构造反转及其动力学[J].地质科学,1999,34(2):139-153
    16.何建坤,卢华夏,张庆龙.南大巴山冲断构造及其剪切挤压动力学机制[J]。高校地质学报,1997,3(4):419-428
    17.何政伟,刘援朝,魏显贵,等.扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J].矿物岩石.1997.17(境刊):83-87
    18.何政伟,魏显贵,刘援朝,等.米仓山西缘变质杂岩地质和地球化学特征[J].矿物岩石:1996,16(4):23-3
    19.胡明.四川盆地北部地区构造样式及成因分析.中南大学学报(自然科学对如流版),2006,37(增刊):17-21
    20.湖北省地质矿产局.湖北省区域地质志.北京:地质出版社,1990:705
    21.黄继钧.纵弯褶皱叠加地区岩石有限应变特征[J].地质论评,2000,46(2):178-185
    22.贾承造,何登发,雷振宇,等.2000.前陆冲断带油气勘探.北京:石油工业出版社,351p
    22.贾承造,何登发,雷振宇,等.前陆冲断带油气勘探.北京:2000,石油工业出版社,351p
    23.贾东,陈竹新,贾承造,等.龙门山前陆褶皱冲断带构造解析与川西前陆盆地发育[J].高校地质学报.2003,9(3):402-410
    24.乐光禹,杜思清,黄继钧,等.构造复合联合原理-川黔构造组合叠加分析.成都:成都科技大学出版社,1996:5-100
    25.乐光禹.大巴山造山带及其前陆盆地的构造特征和构造演化[J].矿物岩石,1998,18(9):8-15
    26.李春昱,等.秦岭及祁连山构造发展史.国际交流地质学术论文集(一),1978,北京:地质出版社,174-187
    27.李怀坤,陆松年,陈志宏,等.南秦岭耀岭河群裂谷型火山岩锆石U-PB年代学[J].2003.地质通报.22(10):775-781
    28.李继亮.碰撞造山带大地构造相.李靖波主编,现代地质科学研究论文集.南京:南京大学出版社,1992:9-22
    29.李锦轶.中朝地块与扬子地块碰撞的时限与方式-长江中下游地区震旦纪-侏罗纪沉积环境演变[J].地质学报,2001,75(1):25-34
    30.李三忠,张国伟,李亚林,等.秦岭造山带劬略缝合带构造变形与造山过程[J].地质学报,2002,76(4):469-483
    31.李书兵,何鲤,柳梅青.四川盆地晚三叠世以来陆相盆地演化史[J].天然气工业,1999,19(增刊):18-23
    32.李曙光,Hart S,郑双根,等.中国华北,背地南陆块碰撞时代的钐-钕同位素年龄证据[J].中国科学B辑,1989,3:312-319
    33.李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩年代学和地球化学-古生代洋盆及其闭合的证据.中国科学D辑,1996,26(3):223-230
    34.李庭柱,张仪娴.米仓山区“后河群”的时代及岩石特征[J].地层学杂志.1995,19(2):149-155
    35.李勇,曾允孚,伊海生.龙门山前陆盆地沉积与构造演化.成都:成都科技大学出版社,1995,92
    36.李占奎,丁燕云.大巴山推覆构造特征的探讨.物探与化探,2007,31(6):495-498
    37.凌文黎,高山,张本仁,等.扬子克拉通北缘早前寒武纪地壳演化-后河杂岩元素和同位素地球化学限制[J].矿物岩石,1997,17(4):26-32
    38.凌文黎,高山,郑海飞,等.扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究[J].科学通报,1998,43(1):86-89
    39.凌文黎,王歆华,程建萍.扬子北缘晋宁期望江山基性岩体的地球化学特征及其构造背景[J].矿物岩石地球化学通报,2001,20(4):218-221
    40.刘池洋,赵红格,杨兴科,等.前陆盆地及其确定和研究[J].石油与天然气,2002,23(4):303-313
    41.刘登忠,魏显贵,杜思清,等.米仓山西段地质研究新进展[J].矿物岩石.1997.17(增刊):1-8
    42.刘国惠,张寿广,游振东,等.秦岭造山带主要变质岩群及其变质演化.北京:地质出版社,1993:5-100
    43.刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报.1994,68(2):101-118
    44.刘和甫,梁慧社,蔡立国,等.川西龙门山冲断席构造样式与前陆盆地演化[J].地质学报,1994,68(2):101-118
    45.刘建华,刘福田,孙若昧,等.秦岭-大别造山带及其南北缘地震层析成像.地球物理学报,1995,38(1):46-54
    46.刘树根,李智武,刘顺,等.雍自权大巴山前陆盆地-冲断带的形成与演化(M).北京:地质出版社,2006:1-248
    47.刘树根,罗志立,戴苏兰,等.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995a,69(3):205-214
    48.刘树根,罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式[J].地质学报,2003,77(2):177-186.
    49.刘树根,童崇光,罗志立,等.川西晚三叠世前陆盆地形成与演化[J].天然气工业.1995b,15(2):11-14
    50.刘战庆.陕南镇巴-紫阳地区构造特征及构造演化(D).西安:长安大学,2008
    51.卢华复,阎吉柱,李鹏举,等.四川前龙门山中南段推覆构造及其与天然气藏关系[J].南京大学学报(地球科学),1993,(5):141-147
    52.卢欣祥,董有,尉向东.东秦岭吐雾山A型花岗岩的时代及其构造意义[J].科学通报,1999,44(5):975-978
    53.卢欣祥.秦岭造山带花岗岩与构造演化.河南地质矿产与环境文集,北京:中国环境科学出版社,1996:19-23
    543.陆松年,陈志宏,李怀坤,等.秦岭造山带中两条新元古代岩浆岩带[J].地质学报,2005,79(2):165-173
    55.罗志立,龙学明.龙门山造山带崛起和川西前陆盆地沉降[J].四川地质学报,1992,12(1):1-17
    56.马杏垣,杨森楠,朱志澄.中国大地构造论文集[A].武汉:中国地质大学出版社,1992:5-24
    57.马大铨,李志昌,肖志发.鄂西崆岭杂岩的组成、时代及地质演化[J].地球学报,1997,10(3):233-241
    58.裴先治.东秦岭商丹构造带的组成与构造演化.西安,西安地图出版社,1997
    59.沈传波,梅廉夫,徐振平,等.川东北地区沉积特征及物源构造属性[J].矿物岩石地球化学通报,2007,26(增刊):394-395
    60.施炜,董树文,胡健民,等.大巴山前陆西段叠加构造变形分析及其构造应力场特征[J].地质学报,2007,81(10):1314-1326
    61.四川油气区石油地质志编写组.中国石油地质志,卷十,四川油气区.北京:石油工业出版社,1989:5-300
    62.四川盆地陆相中生代地层古生物编写组.四川盆地陆相中生代地层古生物(上篇).成都:四川人民出版社,1984:1-236
    63.四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991:730
    64.孙肇才,邱蕴玉,郭正吾.板内形变与晚期次生成藏-扬子区海相油气总体形成规律的探讨.石油实验地质,1991,13(2):107-142
    65.陕西省区域地层编写组.西北地区区域地层表-陕西省分册(M).北京:地质出版社,1983:174-217
    66.陶晓风.龙门山南段推覆构造与前陆盆地演化[J].成都理工学院学报,1999,26(1):73-77
    67.田永清,梁英芳,范嗣昆,等.恒山杂岩的年龄学和钕同位素演化[J].地球化学,1992(3):255-263
    68.陶洪祥,何恢亚,王全庆,裴先治.扬子板块北缘构造演化史(M).西安:西北大学出版社,1993:110-132
    69.汪泽成,刘和否,熊宝贤,等.从前陆盆地充填地层分析盆山耦合关系[J].2001,地球科学,26(1):33-39
    70.王道永.龙门山中段中生代前陆盆地的构造演化史[J].成都理工大学学报,1994,21(3):20-28
    71.王清晨,孙枢,李继亮,等.秦岭的大地构造演化[J].地质科学,1989,2:129-142
    72.魏显贵,村思清,刘援朝,等.米仓山推覆构造几何结构及演化特征[J].矿物岩石,1997,17(增刊):114-122
    73.吴德超,刘援朝,魏显贵,等.川北米仓山火地垭群非共轴重褶皱构造研究[J].矿物岩石,1997,17(增刊):97-106
    74.吴德超,魏显贵,村思清,等.米仓山叠加型推覆构造几何结构及演化[J].矿物岩石,18(增刊):16-20
    75.吴根耀,马力.“盆”、“山”耦合和脱耦:含油气盆地研究的新思路.见:油气盆地研究新进展:第一辑.北京:石油工业出版社,2002,20-36
    76.吴汉宁,常承法,刘椿,等.华北和华南块体古生代到至中生代古地磁极移曲线与古纬度的分布变化[J].西北大学学报(自然科学版),1991,21(3):99-105
    77.吴正文,柴育成,黄万夫,等.秦岭造山带的推覆构造格局[A].见:叶连俊,钱祥麟,张国伟主编.秦岭遗山带学术讨论会论文选集[C].西安:西北大学出版社,1991,111-120
    78.吴世祥,汤良杰,郭彤楼,等.米仓山与大巴山交汇区构造分区与油气分布[J].石油与天然气地质,2005,26(3):361-390
    79.肖庆辉,李晓波,贾跃明.1995.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,2(1-2):43-50.
    80.徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程[J].地质学报,1992,66(1):1-14
    81.徐树桐,江来利,刘贻灿等.大别山区(安徽部分)的构造格局和演化过程(J).地质学报,1992.66(1):1-14
    82.许志琴,卢一伦,汤耀庆,等.东秦岭造山带的变形特征及构造演化.地质学报,1986,60(3):237-247
    83.薛良伟,原振雷,张荫树,等.鲁山太华群Sm-Nd同位素年龄及其意义[J].地球化学,1995,24(增刊):92-97
    84.闫全人,王宗起,闫臻,等.碧口群火山岩的时代-SHRIMP锆石U-Pb测年结果[J].地质通报,2003,到22(6):456-458
    85.闫义,林舸,李自安.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学,2003,27(2):184-190
    86.姚根顺,李大成,卢文忠,等.四川叠合盆地盆山耦合特征分析[J].大地构造与成矿学,2006,30(4):435-444
    87.袁海华,张志兰,刘炜,等.直接测定颗粒锆石207 Pb/206Pb年龄的方法[J].矿物岩石.1991,11(2):72-79
    88.袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520
    89.袁学诚,徐明才,唐文榜,等.东秦岭陆壳地震反射剖面.地球物理学报,1994,37(6):749-758
    90.翟光明,宋建国,靳久强.板块构造演化与含油气盆地形成和评价.北京:石油工业出版社,2002:393-404
    91.张长厚.初论板内造山带[J].地学前缘,1999,6(4):295-308
    92.张二朋,牛道韫,霍有光等.秦巴及邻区地质-构造特征概论(M).北京:地质出版社,1993:P291
    93.张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J].中国科学B辑,1995,25(9):994-1003
    94.张启锐,储雪蕾.扬子地区江口冰期地层的划分对比与南华系层型剖面[J].地层学杂志,2006,30(4):306-314
    95.张国伟,孟庆仁,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学D辑, 1996,26:193-200
    96.张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学。北京,科学出版社,2001
    97.张明利,金之钧,汤良杰,等.前陆盆地研究的回顾与展望[J].地质论评,2002,48(2):214-220
    98.张寿广,张宗清,宋彪,等.东秦岭陡岭杂岩中存在新太古代物质组成SHRIMP锆石U-Pb和Sm-Nd年代学证据[J].地质学报,2004,78(6):214-220
    99.张宗清,宋彪,诏索寒,等.秦岭佛坪变质结晶岩系年龄和物质组成特征-SHRIMP锆英石U-Pb年代学和全岩Sm-Nd年代学数据[J].中国地质,2004,31(2):161-168
    100.张宗清,张国伟,唐索寒,等.鱼洞子群变质岩年龄及秦岭造山带太古宙基底[J].地质学报,2001,75(2):198-204
    101.张宗清,刘敦一,宋彪,等.秦岭造山带中部存在太古宙岩块-陕西商南县湘河地区楼房沟斜长角闪岩一浅粒岩锆石SHRIMP U-Pb年龄及其意义[J].中国地质,2005,32(4):579-587
    102.赵宗溥.试论陆内型造山作用-以秦岭-大别造山带为例[J].地质科学,1995,30(1):20-27
    103.赵俊兴,李凤杰,刘琪,等.四川盆地东北部二叠系沉积相及其演化分析[J].天然气地质学,2008,19(4):444-451
    104.郑虹,胡明,陈英明.四川盆地北部构造特征及盆山耦合分析[J].特种油气藏,2008,15(4):24-27
    105.郑维钊,刘观亮,汪雄武.黄陵背斜北部崆岭杂岩的太古宙信息[J].中国地质科学院宜昌地质研究所所刊,1991,16:97-105
    106.周鼎武,张成立,刘良,等.1998.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论[J].地球学报,19(1):25-30
    107.朱志澄.构造地质学[M].北京:中国地质大学出版社,1999:1-250
    108.张宗义,董树文,张岳桥,等.大巴山前陆北西向褶皱的厘定及其意义[J].地质论评,2009,55(1):10-24
    109.Ames L,Tilton G R,Zhou G.Timing of collision of the Sino-Korean and Yangtze cratons:U-Pb zircon dating of coesite-bearing eclogites.Geology,1993,21:339-342
    110.Ames L,Zhou G R,Xiong B.Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze crotons,central China.Tectonics,1996,15:472-489
    111.Anderson T.2002.Correction of common Pb in U-Pb analysis that do not report ~(204)pb.Chemical Geology,192:59-79
    112.Belousova E A,Griffin W L,O'Rilly S Y,et al.Igeous Zircon:trace element composition as an indicator of source rock type.Contrib Mineral Petrol,2002,143:602-622
    113.BoyerSE, Elliott D. Thrust systems[J]. AAPG, 1982, 66:1196-1230
    
    114.Bruguier O, Lancelet J R. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch(Central China): Provenance and tectonic correlations. EPSL, 1997,152:217-231
    115.Cong B, Wang Q, Zhai M, et al. Ultrahigh pressure metamorphic rocks in the Dabie-Sulu region, China: Their formation and Exhumation. Islang Arc, 1994, 3:135-150
    116.Dickinson W R and Suczek C A. Plate tectonics andsandstone composition. AAPG Bull,1979,63(12): 2164-2182
    117.Dickinson W R and Valloni R J. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull, 1983, 94(2): 222-235
    118.Dickinson W R. Plate tectonic evolution of sedimentary basin[A]. In Dickinson W R,Yarborondh H. Plate tectonic and hydrocarbon. accumulatoin[C]. AAPG Continuing Education Course Note Series. 1997, 1:1-63
    119.Enkin R J, Yang Z, Chen Y, Courtillot V.Paleomagnetic constraints on the geodynamic history of the major blocks of China from Permian to the Present. J, Geophys.Res., 1992, 97:13953-13989
    120Epard J L, Escher A. Transition from basement to cover:a geometric model[J]. Struct Geol,1996, 18(5):533-548
    121.Escher A, Beaumont C. Formation burial and exhumstio of basement nappes at crustal scale:a geometric model based on the Western Swiss-Italian Alps[J]. Struct Geol, 1997, 19(7):955-974
    122.Escher A, Masson H, steck A. Nappe geometry in the Western Swiss Alps[J]. Struct Geol,1993, 15(3-5):501-509
    123.Flemings P B, Jordan T E. Stratigraphic modeling offoreland basins: interpreting thrust deformation and lithosphere Geology[J]. Geology, 1990, 18: 430-434
    124.Galy A and France-Lanord C. The late Oligocene-early Miocene Himalayan belt constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan.Tectonophysics, 1996, 260: 109-118
    125.Gretener P E. Pore presure, discontinuities, isotasy and overthrusts. In: McClay K R, Price N J, eds. Thrust and Nappe Tectonics. Blackwell Scientific Publications, 1981: 33-39
    126.Hatcher R D Jr, Hooper R J. EvoLution of crystalline thrust sheets in the internel part of mountain chain [A] In:McClay K R. Thrust Tectonics[c]. London: Chapman and Hall, 1992:817-233
    127.Hatcher R D Jr, Williams R T. Mechanical model for single thrust sheets Part 1 :Crystalline thrust sheets and their relationships to the mechanical / thermal behaviour of orogenic belts[J]. Geol Soc Amer Bull. 1986, 97:975-985
    128.Hatcher R D Jr. Structural geology-principles , concepts , and problems[M]. New jersey:Prentice-Hall Inc. 1995: 525
    129.Henry P, Deloule E an d Michard A. The erosion of the Alps: Nd isotopic and geothermical constrains on the sources of the peri-Alpine molasse sediments. EPSL. 1996, 146: 627-644
    130.Hoskin P W O. Rare earth element chemistry of zircon and its use as a provenance indicator.Geology, 2002, 28 (7): 627-630
    
    131.HuangW, Wu Z W.Evolution of the Qinling orogenic belt. Tectoics, 1992, 11(2): 371-380
    132.Jordan T E. Retroarc foreland and related basins. In: Busby C J, Ingersoll R V, eds.,Tectonics of Sedimentary Basins, Blackwell Science, 1995:331-361
    133.Kroner A, CompstonW, Zhang G W, et al. Composition and evolution of the Archean crust in central Henan, Chinna. Precambrian Res, 1988, 27:7-35
    134.Lee Y S, Nishimura S, Min K D.Pa;eomagnetotectonics of East Asia in the Proto-Tethys Ocean[J].Tentonophysics, 1997, 270(1-2): 157-166
    135.Li S G, Chen Y, Cong B L, et al. Collision of the North China and Yangtze Blocks and formation of coesite-beaing eclogites:timing and process, Chem. Geol., 1993, 109:70-89
    136.Ludwig K R . Isoplot/Ex version 2. 49. A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication 2003, No. la: 1-56
    137.Macqueen R W, leckie D A. Introduction. In: Forland Basins and Fold Belts, AAPG Memoir,1992, 55: 1-8
    138.Meng Q R, Zhang G W. Timing of collision of the North and South China blocks:controversy and reconciliation[J]. Geology, 1999, 27:123-126
    139.Meng Q R, Zhang G W.Geologic framework and tectonic evolution of the Qinling orogen,central China[J]. Tectonophysics, 2000, 323:183-196
    140.Najman M R and Pringle M S. Laser ~(40)Ar/~(39)Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: Implications for early Himalayan evolution. Geology, 1997, 6:535-538
    141.Price R A, Large-scale gravitational folw of supracrustal rocks, southern Canadian Rockies,in K A De Jong and R A Scholten, Gravity and Tectonics: New York, John Wiley, 491-502
    142.Robertson A H F. Role of the tectonic facies concept in orogenic analysis and its applocation to Tethys in the eastern Mediterranean region.
    143.Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemgeol, 2002, 184:123-138
    144.Sengor A M C. Plate tectonic and orogenic research after 25 years: a Tethyan perspective.Earth-science Reviews, 1990, 27(1/2): 1-201
    145.Song S G, Zhang L F, Niu Y, et al. Evolution from oceanic subduction to continental collision:a case study of the Northern Tibetan Plateau based on geochemical and geochronological data.J Petrol, 2006, 47:435-455
    146.supppe J, Geometry and kinematics of fault-bend folding.American Journal of Science, 1983,283(7): 684-721
    147.supppe J, Medwedeff D A.Geometry and kinematics of fault-fropagation folding.Eclogae Geologicae Helvetiae, 1990, 83(3): 409-454
    148.Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: geochronology of the Ivren Zone (Southern Alps).Contrib Mineral Petrol, 1999, 134(4): 380-404
    149.Whitehouse M J, Kamber B S. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth Planet Sci Lett, 2002, 204(3-4): 333-346
    150.Xue F, Lerch M F, Kroner A, Reischmann T. Tectonic evolution of the east Qinling mountiains, China, in the Paleaeozoic, a review and new tectonic model[J]. Tectonophysics,1996, 253(3-4): 271-284
    151.Yanmin M Qiu , Shan Gao , Neal J . McNaughton, et al. First evidence of > 3. 2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics [J] . Geology, 2000, 28 (1): 11-14
    152.Zhang G W, Yu Z P, Sun Y, et al. The major suture zones in the Qinling belt[J]. Journal of southeast Asian Earth Sciences, 1989, 3(1 -4): 63-76
    153.Zhang K J. North and South China collision along the eastern and southern North China margins[J]. Tectonophysics, 1997, 270: 145-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700