用户名: 密码: 验证码:
甜瓜钾离子通道基因MIRK的拟南芥转化及转基因植株的耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化是一个世界性的问题,培育新型的耐盐作物品系是改善这一状况的最有效途径。甜瓜(Cucumis melo L.)是我国重要的一种设施栽培作物,具有较强的耐盐性,这种特性使其有可能成为新型耐盐作物品系的培育的植物资源。
     渗透凋节是植物耐盐的最基本特征之一,它具有两种方式:一是在细胞中选择性吸收和积累无机盐;二是在细胞中合成有机溶质。吸钾排钠降低植物地上部分盐分浓度是植物耐盐的重要机理之一。作为植物吸收转运大量钾的主要方式,K+通道可能与植物的耐盐性有关。
     成功从甜瓜“春丽”中克隆KAT1类亚家族钾离子通道基因MIRK (Melon Inward Rectifying K+ channel, Gene Bank accession number: DQ116940),全长2506 bp,编码701个氨基酸残基的多肽。将MIRK转入爪蟾卵母细胞中表达,通过电生理分析发现Na+对MIRK有抑制作用(未发表),此现象暗示在甜瓜中MIRK在盐胁迫下可能扮演着重要的生理角色。
     本研究构建了MIRK基因植物双元表达载体,利用农杆菌浸花法将其转入拟南芥(Arabidopsis thaliana L. Columbia ecotype)中。转化植株的Kan抗性筛选、转化植株叶片DNA的PCR检测和Southern-blotting结果显示MIRK已经整合到拟南芥基因组中,并且获得了可遗传的拟南芥转基因后代。
     为了研究MIRK基因的功能及其与耐盐性的关系,以不同浓度的NaCl溶液(0、50、100、150、200 mmol/L)处理转基因拟南芥(T3),在0、4、8、12、16d后分别对其相对电导率、相对含水量、叶绿素含量、叶绿素荧光和钾钠含量比值K+/Na+进行测定。研究结果表明,随着NaCl浓度或处理时间的增加,转基因植株和阴性对照植株的生长状况均逐渐恶化,但转基因植株受影响较小;200 mmol/L NaC1胁迫16d后,转基因植株的相对电导率仅为对照植株的57.7%,相对含水量和Fv/Fm值高于对照植株,叶绿素含量为对照植株的1.2倍,钾钠含量比值K+/Na+约为对照植株的2.3倍;差异达显著水平。初步证明MIRK基因的转入在一定程度上提高了拟南芥的耐盐能力。
Soil salinization is a global problem; one method of utilizing saline-alkali soil is to cultivate salt tolerant plants. Melon (Cucumis melo L.), an important cultivation in china, has a strong salt tolerance. This character makes it to become a salt tolerant or desalination plant resource.
     Infiltration wither section is an important mechanism of salt tolerant through absorbing and accumulating of inorganic salts or synthesizing of solute-sike in plant cells. Uptaking sodium potassium to reduce the concentration of salt on the ground part of plants is an important mechanism of salt tolerant in plants. As the main way of absorport and transformation of potassium, K + channel may be related to salt tolerance of plants.
     In our previous work a K+ channel gene MIRK (melon inward rectifying K+ channel, Genbank accession number: DQ116940) was cloned from Chunli (Cucumis melo L.). The full length cDNA of MIRK is 2506 bp, encoding a peptide of 701 amino acids. Transferred MIRK into Xenopus oocytes, electrophysiological analysis showed that Na+ inhibited on the transport of MIRK (unpublished), this phenomenon demonstrate that MIRK probably play an important role under the conditions of salt stress in the melon plants.
     We constructed a plant transformation vector of melon K+ channel Gene MIRK, and transferred it into Arabidopsis thaliana by Floral Dip method. Resistance testing, PCR results and Southern hybridization confirmed that MIRK has been integrated into the genome of Arabidopsis thaliana. Conversion efficiency of Floral Dip method was 4.3%. Transgenic plants provide a experimental system for further study.
     In order to study the relationship between MIRK and salt tolerant in plants, watered transgenic plants(T3-generation) with different concentrations of NaCl solution (0、50、100、150、200 mmol/L) every day, and determined relative water content (Rwc), photochemical efficiency of PSⅡ(Fv/Fm), relative electronic conductivity (Rec)and chlorophyll content (Chla+b,Chla/b) after 0、4、8、12、16 days’salt stress. The phenotype of transgenic plants and negative control plants show that they were getting worse and worse while NaCl concentration and stress time increased gradually, but transgenic plants grown better than control plants; after 16 days’stress of 200 mmol/L NaCl, relative electronic conductivity of transgenic plants is 57.5 percent of the control plants, relative water content and the Fv/Fm value of transgenic plants were higher than those in control plants, chlorophyll content (Chla+b, Chla/b) of transgenic plants were 1.2 times of the control,,the ratio of potassium to sodium of transgenic plants were 2.3 times of the control; the differences between them reached a significant level. Those results indicated that melon K+ Channel Gene MIRK transformation could further improve salt tolerance of plant.
引文
[1]胡笃敬,董任瑞,葛旦之.植物钾营养的理论与实践.长沙:湖南科学技术出版社, 1993. 58 - 109.
    [2]史瑞和.植物营养原理.南京:江苏科学技术出版社,1989 305-344.
    [3]孙義.植物营养原理.北京.中国农业出版社,1997,134-159.
    [4] Véry AA and Sentenac H (2003) . Molecular Mechanisms and Regulation of K+ Transport In Higher Plants. Annu. Rev. Plant Biol. 54:575-603.
    [5] Hirsch RE., Lewis BD., Spalding EP., Sussman MR.. A Role for the AKT1 Potassium Channel in Plant Nutrition,science, 1998, 280,918~923
    [6]江苏农学院.植物生理学[M] .北京:农业出版社, 1984.118 - 119.
    [7]张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社, 1993. 63 - 69.
    [8] Lin D (林多), Huang DF(黄丹枫). Study on macronutrient absorption of soilless medium cultivated muskmelon. Plant Nutrition and Fertilizer science(植物营养与肥料学报). 2003,9(1): 112-116.
    [9]魏永胜,梁宗锁.钾与提高作物抗旱性的关系.植物生理学通讯. 2001, 37(6): 576-581.
    [10]高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱性的关系.西北植物学报, 1991, 11(1): 64-66.
    [11]李德全,邹琦,程炳嵩.土壤水分胁迫下小麦叶片的渗透调节与膨压的维持.华北农学报. 1991, 6(4): 100-106.
    [12]刘伟宏,刘飞虎, Schachtman D.植物根部细胞钾离子转运机制及其分子基础.1999,江西农业大学学报21(4):451-455.
    [13] Edward L. Potash fertilizer and increased tolerance to stress. Agriview, 1981.
    [14]陈新平.水分胁迫条件下施用钾对土壤生物有效性和小麦抗旱性的研究.北京:北京农业大学硕士学位论文, 1993.
    [15]吕金岭,董永.盐逆境胁迫下施钾对降低小麦盐害的生理效应研究.江西农业学报2007, 19(3): 39-40.
    [16]郑延海,宁堂原,贾爱君,李增嘉,韩宾,江晓东,李卫东.钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用.植物营养与肥料学报, 2007, 13(3): 381-386.
    [17] Zhu J K, Liu J P, Xiong L M. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell, 1998(10): 1191-1191
    [18]李兰辉.施用钾肥能增强油菜抗逆性.四川农业科技, 1989. 122 - 123.
    [19]施木田.钾对作物抗病性的影响.第四届全国青年土壤科学工作者学术会议论文集.中国土壤学会青年工作委员会编,北京:北京农业大学出版社, 1992, 241 - 247.
    [20]许前欣,赵振达,李季平,等.钾肥对蔬菜产量品质及效应研究.土壤肥料, 1999 , (2) : 23 - 25.
    [21]张漱茗,阎华,江丽华,等.钾肥对蔬菜产量品质和硝酸盐含量的影响.肥料与农业发展.北京:中国农业科学技术出版社, 1999. 482 - 486.
    [22]白厚义,陈佩琼,顾明华,等.氯化钾对旱藕产量及品质的影响.肥料与农业发展.北京:中国农业科学技术出版社, 1999. 552.
    [23]刘荣乐,金继运,吴荣贵,等.我国北方土壤作物系统内钾素平衡及钾肥肥效研究[.土壤肥料. 200(1): 9 - 11.
    [24]张漱茗,阎华.山东省主要作物钾肥肥效和平衡施肥.植物营养与肥料学报, 1995, (1): 93 - 94.
    [25]吴平、印莉萍、张立平,植物营养分子生理学,科学出版社. 2001, 163-227.
    [26] EPstein E, Rains DW, Elzam OE. Resolution of dual mechanismsm of potassium absorption by barly roots. Proc Natl Acad Sci USA, 1963, 49: 684-692.
    [27] Shabala S. Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 2003; 92: 627-634.
    [28] Schachtman DP. Molecular insights into the structure and function of plant K+ transport mechanism. Biochimica et Biophysica Acta. 2000, 1465: 127-139.
    [29] Kim EJ, Kwak JM, Uozumi N, Schroeder JI. AtKUP1: an Arabidopsis geneencoding high-affinity potassium transport activity. Plant Cell 1998, 10: 51–62.
    [30]汤利,施卫明,王校常.植物钾吸收转运基因的克隆与作物遗传改良.植物营养与肥料学报. 2001, 7(4): 467-473.
    [31] Schroeder JI, Fang HH. Inward rectifying K+ channels in guard cells provide a mechanism for low affinity K+ uptake. Proc Natl Acad Sci USA, 1991, 88: 11583~11587.
    [32] Maathuis FJM, Sanders D.. Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 1996, 96:158–168.
    [33] Schachtman D, Liu WH. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends in plant science. 1999, 4: 281~287.
    [34] Spalding EP, Hirsch RE, Lewis DE, Qi Z, Sussman MR. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J Gen Physiol 1999, 113: 909–918.
    [35] Schroeder JI, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma membrane of vicia faba guard cells. Nature. 1989, 338: 427-430.
    [36] Schroeder JI, Hedrich R, Fernandez JM. Potassium selective single channels in guard cell protoplasts of Vicia faba. Nature. 1984, 312: 361~362.
    [37] Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663~665.
    [38] Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevidiae. PNAS,USA. 1992, 89: 3736~3740.
    [39] Pratelli R, Lacombe B, Torregrosa L, Gaymard F, Romieu C, Thibaud JB, Sentenac H. A Grapevine Gene Encoding a Guard Cell K+ Channel Displays Developmental Regulation in the Grapevine Berry. Plant Physiol. 2002, 128: 564–577.
    [40] Schachtman D, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA.Science, 1992, 258: 1654~1658.
    [41] Gaymard F, Cerutti M, Horeau C, Lemaillet G, Urbach S, Ravallec M, Devauchelle G, Sentenac H, Thibaud JB. The baculovires/insect cell system as an alternative to xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Bio Chem. 1996, 271: 22863-22870.
    [42] Schroeder JI, Ward JM, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 1994, 23: 441-471.
    [43] Thiel G, Wolf AH: Operation of K+ channels in Stomatal movement. Trends plant Sci. 1997, 2: 339-345.
    [44] Philippar K, Büchsenschütz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R. The K+ Channel KZM1 Mediates Potassium Uptake into the Phloem and Guard Cells of the C4 Grass Zea mays. J. Biol. Chem. 2003, 278(19): 16973-16981.
    [45] Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud J-B. A shaker-like KC channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell. 2000, 12: 837–51.
    [46] Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N. Diurnal and Circadian Regulation of Putative Potassium Channels in a Leaf Moving Organ. Plant Physiol. 2002, 128: 634-642.
    [47] Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, and Hedrich R. AtKC1, a silent Arabidopsis potassium channelα-subunit modulates root hair K+ influx. PNAS,USA. 2002, 99(6): 4079-4084.
    [48] Downey P, SzabòI, Ivashikina N, Negro A, Guzzo F, Ache P, Hedrich R, Terzi M, Schiavo FL. KDC1, a novel carrot root hair k+ channel cloning, characterization, and expression in mammalian cells. J. Biol. Chem. 2000, 275(50): 39420-39426.
    [49] Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Ferrière NM, Thibaud JB, Sentenac H. Identification and disruption of a plantshaker-like outward channel involved in k+ release into the xylem sap. Cell. 1998, 94: 647-655.
    [50] Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG., Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Letters. 2000, 486: 93-98.
    [51] Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996, 9: 195–203.
    [52] Shi WM(施卫明), Wang XCh(王校常), Yan WD(严蔚东), Tang L(汤利), An ZZh(安志装), He SJ(何锶洁), Tian WZh(田文忠), Cao ZH(曹志洪).Over-expressing of Potassium Channel Genes in Rice Plants and Its Effect on K Uptake and Accumulation. Acta Agronomica Sinica(作物学报). 2002, 28(3): 374~378.
    [53] De Boer AH, Wegner LH. Regulatory mechanisms of ion channels in xylem parenchyma cells. J Exp Bot. 1997, 48: 441-449.
    [54] Wegner LH. And De Boer AH. Properties of Two Outward-Rectifying Channels in Root Xylem Parenchyma Cells Suggest a Role in K+ Homeostasis and Long-Distance Signaling. Plant Physiol. 1997, 115: 1707-1719.
    [55] Gilliham M and Tester M. The Regulation of Anion Loading to the Maize Root Xylem. Plant Physiol. 2005; 137(3): 819 - 828.
    [56] Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB. A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell. 2000, 12: 837–851.
    [57] Ache P, Becker D, Deeken R, Dreyer I, Weber H, et al. VFK1, a Vicia faba KC channel involved in phloem unloading. Plant J. 2001, 27: 571–580.
    [58] Maathusis FJM, Sanders D, Schroeder JI. Roles of higher plant K+ channels. Plant Physiol. 1997, 114:1141-1149.
    [59] Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Véry AA, Simonneau T, Thibaud JB, Sentenac H. TheArabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. PNAS.USA. 2003, 100: 5549-5554.
    [60] Schroeder JI, Hedrich R, Fernandez JM. Potassium selective single channels in guard cell protoplasts of Vicia faba. Nature. 1984, 312: 361~362.
    [61] Schroeder JI, Fang HH. Inward-rectifying K' channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci USA. 1991, 88: 11583-11587.
    [62] Nakamura RL, Mc Kendree WL, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 1995, 109: 371–374.
    [63] Pilot G, Lacombe B, Gaymard F, Che′rel I, Boucherez J, Thibaud JB, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem. 2001, 276: 3215–3221.
    [64] Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG., Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, and Hedrich R. KAT1 is not essential for stomatal opening. PNAS USA. 2001, 98: 2917–2921.
    [65] Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann K, Grabov A, Dolan L, Hatzopoulos P. Trh1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell. 2001, 13: 139–151.
    [66] Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L. AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Botany. 2003, 54(383): 781-788.
    [67]刘巍,于志水,纪纯阳,等.植物盐胁迫研究进展[J].防护林科技, 2008, 1.
    [68]张福锁.植物营养生态生理学和遗传学[M].北京.中国科技出版社, 1993.
    [69]王宝山.植物液泡膜质子泵的研究[J].植物学通报. 1997, (14): 25-30.
    [70]王洪春.植物抗盐生理[J].植物生理学通讯, 1981, (6) .
    [71]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报, 1997, 14 (增刊): 25-30.
    [72]陶晶,李铁,孙长彬,等.植物盐胁迫研究进展[J].吉林林业科技, 2003, 32 (5): 1 - 7.
    [73]刘祖祺,张石诚.植物抗性生理学[M ].北京:中国农业出版社, 1994.
    [74] MullerM, Santarius K A. Changes in chlorop last membrane lip ids cluring adap tation of barley to extreme salinity [J]. Plant Phyiol, 1978, 62: 326-333.
    [75] Rao G G, Rao G R. Pigment composition and chlorophyyase activity in pigment pea and Gingelley under NaCl salinity [J]. Indian J Exp Biol, 1986, 19: 768-770.
    [76]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报, 2000, 6 (4) : 379-387.
    [77] Carter D R, Cheese man J M. The effect of external NaCl on thylakoid stacking in lettuce plants. Plant [J]. Cell Environ, 1993, 16:215-223.
    [78]朱新广,张其德. NaCl对光合作用影响的研究进展[J].植物学通报, 1999, 16 (4) : 332-338.
    [79]曹洪学,王俊.盐害生理与植物耐盐性[J].生物学通报, 2005, 40 (9) : 1-3.
    [80]马建华,郑海雷,赵中秋,等.植物抗盐机理研究进展[J].生命科学研究, 2001, 5 (3) : 175-179.
    [81]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报, 2000, 6 (4) : 379 - 387.
    [82]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报自然科学版, 2003, 21 (2) : 177 - 182.
    [83]李彦,张英鹏,孙明,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].植物生理科学, 2008, 24 (1) : 258-265.
    [84]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993:9-10.
    [85] Clipson N J W, Flowers T J. Salt tolerance in the halophyte Suaeda maritime L. Dum. The effect of salinity on the concentration of sodium in the xylem[J]. New Phytol, 1987, 105: 359 - 366.
    [86] Glenn E P, Watson M C, O’Leany J W, et al. Comparison of salt tolerance andosmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, A trip lex canescens [J]. Plant Cell Environ, 1992, 15: 711- 718.
    [87] Michelet B, Boutry M. The plasma membrane H+-ATPase-A highly regulated enzyme with multiple physiological functions [J]. Plant Physiol, 1995, 108: 1 - 6.
    [88]罗广华,王爱国,邵从本,等.超氧化物歧化酶(SOD)在大豆下胚轴线粒体内的定位[J].植物学报, 1987, 29: 171-177.
    [89] Ciraudat J, Parcy F, Gosti F. Current advances in abscisic acid action and signaling [J]. Plant Mol Biol. 1994, 26: 1557-1577.
    [90]李妍,张秀玲,郑世英,等.植物耐盐基因工程及前景[J].现代农业科技, 2007, 3: 100-101.
    [91]崔润丽,刁现民,等.植物耐盐相关基因克隆与转化研究进展[J].中国生物工程,2005, 25(8): 25-29.
    [92]刘风华,郭岩,陈受宜,等.转甜菜碱脱氢酶基因植物的耐盐性研究.遗传学报, 1997, 24(1): 54-58
    [93]苏金,陈丕铃,吴瑞,等.甘露醇.1.P脱氢酶转基因表达对转基因水稻幼苗抗盐性的影响.中国农业科学,1999,32(6):101-103.
    [94]刘俊君,彭学贤,王慧中,等.转mflD/gutD双价转基因水稻的耐盐性.科学通报, 2000, 45(7): 724-729.
    [95]刘岩,王国英,张福锁,等.大肠杆菌gutD基因转入玉米及l`耐盐转基因植株的获得.中国科学,1998,28(6):542-547.
    [96] Ohta M,Hayashi Y. Introduction of a Na /H antiporter geneform Atdplex gmelini confer salt tolerance to rice.FEBS Lett,2000,532(3):279-282.
    [97]赵风云,郭善利,王增兰,等.耐盐转基因植物研究进展.植物生理与分子生物学报,2003,29(3):171-178.
    [98] Apes M P, Aharon G S. Salt tolerance conferred by overexpression of a vacuolar Na/H an tiport in Arabidopsis. Science, 1999, 285: 1256-1258.
    [99]林栖凤,李冠一.红树DNA导人茄子获得耐盐性后代的研究.生物工程进展,2001,21(5):40—44.
    [100] Southgate E M, Davey M R, Power J B,et al. Biotechnology Advanecs, 1995, 13: 631-551.
    [101] Gasser C S, Fraley R T. Science, 1989, 244: 1293-1299.
    [102] Merajver S D, Pham T M, Caduff R F, et a1. Nat Genet, 1995,9(4):439-443.
    [103] O’Connell P, Cawthon R, Xu G F, et a1. J Dermatol, 1992, 19(11): 881-884.
    [104] Legius E, Marclruk D A, Collins F S, et al. Nat Genet, 1993, 3(2): 122-126.
    [105] Finlay C A, Hinds P W, Levine A J. 1989, 57: 1083-1093.
    [106] Sanford J C, Klein T M, Wolf E D, et al. Particulate Science and Technology, 1987, 5: 27-37.
    [107]安韩冰,朱祯.基因枪在植物遗传转化中的应用[J].生物工程进展, 1997, 17(1): 18-25.
    [108] Bretell R L S. Biotechnology and Genetic Engineering Reviews 1995 13: 315-334.
    [109]傅荣昭,孙勇如,贾士荣.植物遗传转化手册[M].中国科学技术出版社, 1995, 9-11.
    [110] Paul J.J.Hooykaas and Rob A.Schilperoort Agrobacterium and plant genetic engineering. Plant Mol. Biol. 1992, 19: l5-38.
    [111]王关林.植物基因工程原理与技术[M].科学出版社, 1998, 161-178.
    [112] Hamilton H. A tinary-BAC system for plant transformation with high- molecular-weight DNA. Gene. 1997, 200: 107-l16.
    [113] Liu Y-G, Yumiko S, Hidehiro F, et a1. Complementation of plant mutants with large genomic DNA fragmentsby a transformation-competent artificial chromsome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA. 1999, 96: 6535-6540.
    [114] Feldmann K. T-DNA insertion mutagenesis in Arabidopsis: seed infection transformation. In: Koncz C, Chua N-H, Schell J, eds. Methods in Arabidopsis Research. Singapore: World Scientic, 1992: 274-289.
    [115] Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thalianap plants. C R Acad Sci ParisLife Sci, 1993, 316: 1194-1199.
    [116] Ye G N, StoneD, Pang S Z, et al. A rabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J, 1999, 19: 249-257.
    [117] Bechtold N, Jaudeau B, Jolivet S, et al. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics, 2000, 155: 1875-1877.
    [118] Desfeux C, Clough S J, Bent A F. Female rep roductive tissue are the primary target of Agrobacterium-mediated transformation by the Arabidopsis flora dip method. Plant Physiol, 2000, 123: 895-904.
    [119]徐芳熊爱生彭日荷.植物遗传转化的新方法: Floral Dip [J].中国蔬菜, 2005(3): 29-31.
    [120] Feldmann K A, MarksM D. Agrobacterium-mediated transformation of germinating seeds of A rabidopsis thaliana: a non2tissueculture approach. MOL Gen Genet, 1987, 208: 1-9.
    [121] Azpirozleehan R, Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet, 1997, 13: 152-156.
    [122] Chang S S, Park S K, Kim B C, et al. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta[J]. Plant J, 1994, 5: 551-558.
    [123] Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult A rabidopsis thalianap p lants. C R Acad Sci Paris Life Sci, 1993, 316: 1194-1199.
    [124] Clough S J, Bent A F. Floral dip: a simp lified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
    [125] Chung M H, Chen M K, Pan S M. Floral spray transformation can efficiently generate A rabidopsis transgenic plants. Transgenic Res, 2000, 9 (6): 471-476.
    [126] Bressan R A, Zhang C Q, Zhang H, et al. Learning from the Arabidopsis experience: The next gene search paradigm. Plant Physiol, 2001, 127:1354-1360.
    [127] Curtis I S,Nam H G.Transgenic radish( Raphanus sativus L. longipinnatus Bailey) by floral dip method-plant development and surfactant are important in optimizing transformation efficiency.Transgenic Res, 2001,10: 363—371.
    [128]付绍红,牛应泽,杨洪全,韦献雅.表面活性剂silwet-77对floral dip法转化甘蓝型油菜效果的影响.分子植物育种, 2004, 2(5): 661-666.
    [129]张宪政.作物生理研究法.北京:农业出版社, 1990
    [130]刘晶,周树峰,陈华,韩和平,李银心.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学, 2005, 38(8): 1636-1644.
    [131]李合生.植物生理生化实验原理和技术.北京:高等教育出版社, 2000: l34-137.
    [132] Zhu J K, Liu J P, Xiong L M. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell, 1998(10): 1191-1191.
    [133]王丽燕,赵可夫. NaCI胁迫对海蓬子(Salicornia bigelovii Torr. )离子区室化、光合作用和生长的影响.植物生理与分子生物学报, 2004, 30(1): 94-98.
    [134]赵可夫.植物抗盐生理.北京:科学出版社, 1993:132-163.
    [135]赵学杰,焦安民,王殿凯.盐碱地植物的耐盐性研究进展.生物学教学, 2008, 33(10): 4-6.
    [136]陈长平,王文卿,林鹏.盐度对无瓣海桑幼苗的生长和某些生理生态特性的影响.植物学通报, 2000, 17(5): 457-461.
    [137]殷立娟,石德成.东北碱化草地主要成分对羊草危害分析.草业学报, 1993, 1: 45-54.
    [138] Belkhodja R, Morales F, Abadia A.ChlorophyⅡfluorescence as a possible tool for salinity tolerance screening in barley.Plant physiology, 1993, 104:667-673.
    [139]中国科学院上海植物生理研究所,上海植物生理学会.现代植物生理学实验指南.北京:科学出版社, 1999: 302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700