用户名: 密码: 验证码:
太阳同步天回归轨道的高分相机像移补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际环境的瞬息变化,火灾、地震、海啸等自然灾害的频频发生,国内外对具备高分辨率可见光对地观测小卫星的需求越来越迫切。高精度的像移补偿模型的分析和设计是确保高分辨率卫星成像质量的关键技术之一。目前,像移补偿模型设计理论还不成熟,对卫星姿态、轨道参数以及执行机构高速旋转对高分辨率TDI CCD相机成像产生的影响的研究还不多见,而卫星的轨道设计、姿态控制和TDI CCD成像又是一个有机的整体融合在一起,起到至关重要的作用,值得做出针对性的深入研究。
     本论文研究了太阳同步天回归轨道的高分相机像移补偿技术。着重研究了卫星姿态、轨道控制引起的像移误差对TDI CCD相机成像的影响。首先,设计了适于高分辨率侦察卫星的561km的太阳同步天回归轨道;其次以卫星轨道参数和轨道分析为输入条件,设计了高精度像移补偿系统,并根据TDI CCD工作原理,利用蒙特卡洛方法,分析了偏流角误差对TDI CCD相机成像的影响;然后分析了卫星轨道衰减导致的高分相机读出频率升高对成像的影响,并提出了后摆补偿地速的方案;最后,对卫星姿态控制的执行机构——金字塔构型的单框架控制力矩陀螺(Single Gimbal Control Moment Gyro,以下简称SGCMG)在高速旋转过程中对高分相机成像的影响进行了仿真分析。
     卫星的轨道设计是卫星研制的首要条件,是像移补偿模型设计分析的输入条件。本文根据载荷对地面目标成像要求有比较稳定的地面太阳光照条件,同时可为电源系统提供有利的光照角度等需要,选取轨道类型为太阳同步轨道。为了满足对一些大规模的突发事件快速响应,轨道设计需要融合高的时间分辨率,因此,选取561km的太阳同步天回归轨道。最后,对轨道的轨迹特性、光照特性、衰减特性、跟踪弧段和测控数传弧段等进行了分析。
     在轨道特性分析的基础上,本文首先设计了像移速度矢补偿模型,将轨道根数的变化、卫星姿态参数的变化、地球自转等引入像移速度矢量中,进而利用蒙特卡洛方法分析了姿态轨道参数的大小对像移速度失配的影响。其次,针对偏流机构调整引起的TDI CCD拼接的漏缝问题,偏流机构旋转中心的选择进行了设计,研究了利用卫星平台调整偏流角从而校正像移速度的方法,最后根据像移速度失配对高分相机成像的影响分析,建立了推扫相机像点与物点一一对应的数学模型,计算了偏流角误差对TDI CCD相机成像的影响。
     在轨卫星由于受到空间环境的影响,卫星轨道一直处于不断衰减的状态,高分相机的数据读出频率会随轨道的降低明显升高,产生高频干扰,从而严重影响成像,为了保证读出频率不变,需要卫星轨道维持,而轨道维持又受到携带燃料多少的限制。针对这两难困境,提出拍照过程的同时后摆补偿地速方案,即轨道降低后,在保证相机数据的读出频率一定的条件下,利用卫星的俯仰角速度,补偿引起过高读出频率的地速。最后利用TDI CCD相机像点与物点一一对应模型的仿真系统对后摆过程引起的像移速度失配及误差进行了分析,算例表明在拍照时间要求不太长,俯仰角为小角度时,仿真成像能较好地满足要求。
     高分辨率卫星要求具备高的时间分辨率,由于天回归轨道星下点轨迹间距大,需要在轨卫星具备快速的机动能力,从而实现对敏感区域大范围的拍照,与此同时空间高分辨率的任务需求对卫星的指向精度和姿态稳定度也提出了很高的要求。本文针对国内航天领域即将应用的满足上述需求的既具有力矩放大能力,又能够提供大控制力矩的SGCMG,分析了金字塔构型的SGCMGs工作原理及相应的带零运动违逆操纵率,最后利用齐次坐标变换方法和卫星动力学方程,将转子动不平衡力矩变换至卫星本体坐标系下的星体颤振角位移和颤振角速度,仿真分析了颤振角位移和角速度对遥感卫星成像的影响,为SGCMGs在高分卫星上的应用做有力论证和补充方法。
     本文的研究工作出于工程实践的需求,设计了太阳同步天回归轨道和高精度像移补偿系统,并针对具体工程要求,分析了偏流角误差对成像的影响、轨道衰减卫星后摆补偿地速成像及姿控执行机构SGCMGs颤振对高分相机成像的影响,通过实验仿真证明了本文的方法是实用、有效的,具有理论与工程参考价值。
The demand for high resolution and visible earth observation satellite has increased greatly in and out of board, which is due to frequent occurences of disasters such as fire, earthquake and tsunami, resulting from rapid changes in international environment. The analysis and design of high resolution image motion compensation model is the most critical technology among the factors that influence high resolution satellite imaging quality. But until now image motion compensation model design theory was immature. And there was not enough research on the influence on high resolution TDI CCD imaging generated by spacecraft attitude, orbital parameters and actuator’s high-speed rotation. Since spacecraft orbit design and attitude control is essential to TDI CCD image, it is necessary to investigate the image motion compensation deeply.
     This paper deals with image motion compensation technology based upon day- regressive sun-synchronous orbit design. The effect of image motion error which induced by spacecraft attitude and orbit control on TDI CCD camera imaging is evaluated. First, a 561km Day-regressive Sun-synchronous orbit which suited for high resolution reconnaissance satellite is designed. Then based on the satellite orbital parameters act as inputs, a high precision image motion compensation system is designed. And simultaneously based on TDI CCD image principle, Monte Carlo method is used to analyze the influence of deviant angle error on TDI CCD camera imaging. Next, the technique of back-sway to compensate ground velocity is proposed under the analysis of the effect of satellite orbit attenuation on high resolution camera readout frequency increase and on the influence of TDI CCD imaging. Finally, the analysis and simulation results of the affection on high resolution camera image introduced by satellite’s actuator Single Gimbal Control Moment Gyro (SGCMG in short) of pyramid configuration in high rotating speed are performed.
     As a prerequisite condition for satellite design, satellite orbit design is also input for image motion mode design and analysis. In this paper, Sun-synchronous circular orbit is initially determined, for the reasons that enough sunlight illumination is needed to obtain better resolution when payload scouting ground target and beneficial illumination angle is necessary for power system. Simultaneously, in order to satisfy rapid response to large scale sudden events, satellite orbit design should mix up high time resolution. Therefore a 561km Day-regressive Sun-synchronous orbit is adopted. Finally, the characteristics of orbit trajectory, illumination, attenuation, track and measurement and control data transmission arc segment are analyzed to this orbit model.
     Based on previous analysis of orbit characteristics, how to find a reasonable and high efficiency method to carry out image motion compensation model design and analysis become the most important task of this paper. First, image motion velocity vector compensation model is designed and orbital parameters variation, satellite attitude parameters transformation and earth rotation are introduced to the vector. Then the effect of attitude and orbital parameters on image motion velocity mismatching is analyzed by means of Monte Carlo method. Next, the problem of TDI CCD splice leakage produced by deviant structure adjustment and deviant structure rotating center are designed and analyzed. After that, a method of adjusting deviant angle through satellite platform is raised to regulate image velocity. According to the influence of image motion velocity mismatching on camera image, the TDI CCD camera one-to-one model of image points and object points is established. Finally, the effect and simulation of deviant angle error on TDI CCD camera image is calculated.
     Satellite orbit is always attenuating because of spatical environment. And high resolution camera data readout frequency would increase obviously with orbit reducing. Sequently, high frequency disturbance arises, which would affect image quality. So satellite orbit is very necessary to be maintenaned to guarantee constant readout frequency. But one question is that orbit maintenance is limited by quatities of fuels on satellite. To conquer the two problems, a proposal that back-sway compensates ground velocity while imaging is introduced. That means, after lowing orbit, utilizing satellite pitch angular velocity to compensate ground velocity, which caused high readout frequency. Of course, the prerequisite is to guarantee camera data readout frequency under certain limitation. Finally, the result of analyzing image motion velocity mismatch and error produced by back-sway through the simulation system, formulated by means of TDI CCD camera image points and object points, is performed. It demonstrates that the program satisfies image demand well if imaging time is not longer and pitch angle is smaller.
     High resolution satellite needs high time resolution. But the distance between two adjacent tracks is large. So on-orbit satellite is requested to have ability of quick maneuvering to take picture sensitive areas in large region. Meanwhile, high spatial resolution mission raises high requirements for satellite orientation precision and attitude stability. Here a kind of actuator named SGCMG which is to be used in spacecraft field in China is presented. The major advantage is its torque amplification ability. It can provide greater control torque. First, SGCMG’s working principle is given. Then SGCMGs of pyramid configuration and its pseudo-inverse steering law with null-motion are to be listed. Finally, through homogeneous coordinate transformation, rotator dynamic disequilibrium torque is tranformed into satellite body coordinate. Then how does SGCMGs’rotator dynamic inequilibrium affect remote sensing image is simulated and analyzed, which would be valuable proof and method for SGCMGs to be used on high resolution satellite.
     This paper copes with projects needs and presents design methods and simulation procedures of day-regressive sun-synchronous orbit and high precision image motion compensation system. Meanwhile, deviant angle error, and satellite back-sway compensating ground velocity to improve image resolution while orbit attenuating, the effect of attitude actuator SGCMGs vibration on high resolution camera imaging are included in this paper with respect to projects practical needs. By experiment simulating, the method proposed here is proved to be practical and effective and still of great value in theory and project. Key words: sun-synchronous; high resolution camera; image motion compensation;
引文
[1]王家骐,金光,曲宏松等.星载一体化构想与展望[J]光学精密工程,Vol. 15专辑(2007):1~26.
    [2]谢文君,韦玉春,倪绍祥等.遥感小卫星的进展[J]遥感信息,2000,3:41~44.
    [3]杨嘉墀等.航天器轨道动力学与控制[M]北京:国防工业出版社,2003.
    [4]杨维廉.资源一号卫星轨道:理论与实践[J]航天器控制,2001,10(1):30~43.
    [5] Ronald J. Boain. A-B-Cs of sun-synchronous orbit mission design[C]14th AAS/AIAA Space Flight Mechanics Conference, AAS 04-108, 2004.
    [6]曲宏松,张叶,徐伟,金光,陈涛.对地遥感卫星地面幅宽与轨道参数之间关系的研究[J]光学精密工程,Vol. 15,专辑(2007):124~129.
    [7]袁孝康.星载TDI2CCD推扫相机的偏流角计算与补偿[J]海航天2006(6):10~13.
    [8]闫得杰,徐抒岩,韩诚山.飞行器姿态对空间相机像移补偿的影响[J]光学精密工程,2008,16(11),2199~2203.
    [9]王志刚,袁建平,陈士橹,李英才.高分辨率卫星遥感图像的偏流角及其补偿研究[J]宇航学报,2009,23(5):39~43.
    [10]樊超,李英才,易红伟.偏流角对TDI CCD相机像质的影响分析[J]光电工程,2007,34(9):70~74.
    [11]王家骐.第二代CCD详查相机论证报告.中国科学院长春光学精密机械研究所内部资料. 1996年12月.
    [12]王家骐.可见光小卫星相机论证报告.中国科学院长春光学精密机械研究所内部资料. 2001年7月.
    [13] Richard Hartley. Photogrametric technique for panoramic cameras, SPIE Vol.1944, 127~139.
    [14] Sanjib K.Ghosh. Image motion compensation through augmented collinearity, Opt. Eng. Vol.24, No.6,1014~1017.
    [15] Wang Jiaqi et a1. Space optical remote sensor image motionvelocity vectorcomputational modeling,error budget and synthesis.Chin.Optics Lett,3(7):414~417.
    [16]汤亮,徐世杰.采用单框架控制力矩陀螺群的卫星侧摆机动控制研究[J]航天控制2003(2):1~6.
    [17]吴忠,吴宏鑫.单框架控制力矩陀螺系统的构型分析[J]航天控制,1998(1):19~27.
    [18]章仁为,朱敏.空间站的力矩陀螺控制[J]空间站科研成果论文集,2000:205~209.
    [19]樊超,李英才,易红伟,颤振对TDI CCD相机像质的影响分析[J]光子学报,2007,36(9)1714~1717.
    [20]耿文豹,翟林培,丁亚林,振动对光学成像系统传递函数影响的分析[J]光学精密工程,2009,17(2):314~320.
    [21]陈丁跃,周仁魁,李英才,陈蔚.星载TDICCD界面颤动的动力学模型及共振点扫描研究[J]光子学报,2004,33(12),1508~1512.
    [22]姜景山.空间科学与应用[M]科学出版社. 2001年.北京.
    [23] Herbert Gursky. Future Space Telescopes. AIAA-82-1824, 1~6.
    [24] Trott T. The Effects of Motion in Resolution. Photogramm.Eng. 1960, 26(2): 819~827.
    [25] Som S.C. Analysis of the Effect of Linear Smear on Photographic Images. Journal of the Optical Society of America. 1971, Vol.61, No.7, 859~864.
    [26] Robert N. Wolfe, and Sam A. Tuccio. The Effect of the Variables of a Photographic System on Detail Rendition, with Special Reference to Camera Motion. Photographic Science and Engineering. 1960, Vol.4, No.6, 330~340.
    [27] Dieter P. Paris. Influence of Image Motion on the Resolution of a Photographic System. Photographic Science and Engineering. 1962, Vol.6, No.1, 55~59.
    [28] Held K.J. and Barry J.D. Precision Optical Pointing and Tracking from Spacecraft with Vibration Noise. SPIE, Vol.616, 160~173 (1986).
    [29] Feonychev A.I. and Tillotson B.J. Characterization of the Microgravity Environment on the Salyut and Mir Space Station. SPIE, Vol.2220, 102~129 (1994) .
    [30] Macelo C. Algrain and Mark K. Woehrer. Determination of Attitude Jitter in Small Satellite. SPIE, Vol.2739, 215~228 (1996).
    [31] Rudoler S., Hadar O, Fisher M, and Kopeika N S. Image Resolution LimitsResulting from Mechanical Vibrations, Part 2: Experiment. Opt. Eng. 1991, 30(5): 577~589.
    [32] Hadar O, Fisher M, and Kopeika N S, Image Resolution Limits Resulting from Mechanical Vibrations, Part III: Numerical Calculation of Modulation Transfer Function. Opt. Eng. 1992, 31(3): 581~589.
    [33] Wulich D, Kopeika N S. Image Resolution Limits Resulting from Mechanical Vibrations. Opt. Eng. 1987, 26(3): .529~533.
    [34] Roland V. Shack. The Influence of Image Motion and Shutter Operation on the Photographic Transfer Function. Applied Optics.1964, Vol.3, No.10, 1171~1181.
    [35] Max R. Nagel, Spurious resolution by image motion, J.O.S.O.A Vol.51,No.7, 780~783, July,1961.
    [36] E.V.Nilov, Use of an electro-optical deflector for compensating image motionin high-speed movie cameras, Sov. J. Opt. 51(4),221~223, April 1984.
    [37] John T.Smith,JR. Editor-in-chief,Manual of color Aerial Photography ,American Society of Photogrammetry.
    [38] PhaseⅢⅣ?,proposal,Transition Region and Coronal Explorer Investigation and Technical Plan.
    [39]屠善澄.卫星姿态动力学与控制[M]北京:中国宇航出版社,1999.
    [40] R. H. Battin. An introduction to the mathematics and methods of astrodynamics[M]AIAA Education Series, AIAA, Washington, DC, 1987.
    [41]刘良栋.卫星控制系统仿真技术[M]北京:宇航出版社,2003.
    [42]杨维廉.关于卫星运动的交点周期[J]航天器工程,1997,12(3):34~38.
    [43]江刚武.航天器轨道设计与分析仿真系统的设计[D].解放军信息工程大学,2003.
    [44]李凡本.地球资源卫星[M].北京:国防工业出版社,1982.
    [45]谭炜.太阳同步卫星轨迹交会及轨道维持计算[C]2000年中国飞行力学年会论文集,江苏江阴,2000.
    [46]赵坚.太阳同步(准)同步轨道卫星的轨道保持方法研究[J]中国空间科学技术,2004.8(4):60~64.
    [47]陈洁,汤国建.中低轨道卫星控制方法[J]上海航天,2005.1:24~30.
    [48]廖炳瑜.太阳同步回归轨道的设计仿真研究[D]中国科学院空间科学与应用研究中心,2003.
    [49]杨维廉.近轨道控制的实用方法[J]航天器工程,2003.3,Vol.12(1):1~5.
    [50]杨维廉.太阳同步、回归轨道的轨迹漂移与控制[J]飞行器测控技术,1993.3:5~12.
    [51]杨维廉.卫星轨道保持的一类控制模型[J]中国空间科学技术,2001.2:11~15.
    [52]都亨,叶宗海.低轨道航天器空间环境手册[M]北京:国防工业出版社,1996.
    [53] DALSA. DALSA IL-EB TDI Image Sensors. http://www.dalsa.com.
    [54]王家骐.光学仪器总体设计[M]长春光学精密机械研究所研究生教材。1998:78~80.
    [55]曲宏松,张叶,徐伟,金光,陈涛.太阳同步回归轨道的Q值选取方法[J]光学精密工程,2007,10(专辑):130~136.
    [56]李凡本.地球资源卫星[M]北京:国防工业出版社,1982.
    [57] Daren Casey, JoBea Way. Orbit Selection for the EOS mission and its synergism implications[J]IEEE Transactions on Geosciences and Remote Sensing. Vol.29(1991): 822~835.
    [58]杨嘉择等.航天器轨道动力学与控制[M]宇航出版社.1995.
    [59]杨维廉.资源一号卫星轨道:理论与实践[J]航天器工程,2001,10(1).
    [60]范秦鸿.返回式卫星轨道设计[J]航天器工程,2000,9(2).
    [61]刘林.航天器轨道理论[M]北京:国防工业出版社,2000.
    [62]黄美玲,张伯珩,边川平,李露瑶.积分时间和级数分别可调的TDI CCD驱动器[J]半导体技术,2008,29(1):117~119.
    [63]郭强,张晓虎等.地球同步轨道二维扫描像移补偿技术建模与分析[J]光学学报,2007,27(10):1779~1787
    [64]王德江,匡海鹏等. TDI CCD全景航空相机前向像移补偿的数字实现方法[J]光学精密工程,2008,16(12):2465~2472.
    [65] Steven T. Jenkins and J. M. Hilbert, Line of sight stabilization using image compensation, SPIE Vol.1111,98~115.
    [66] Suhail Agwan, Dave Dobson, William Washkurak and Savas Chamberlain , A High Speed Dual Output Channel, Stage Selectable, TDI-CCD Image Sensor for High Resolution Applications, SPIE Vol. 2415,124~133.
    [67] Gerge R. Lewis, Image stabilization techniques for long range reconnaissance camera, SPIE Vol.242,153~158.
    [68] Billy M. Gaddy, The KA-99 panoramic camera, SPIE Vol.79,190~196,1976.
    [69] Richard C. Ruck, The KA-93 panoramic camera, SPIE Vol. 79,208~215,1976.
    [70]梅遂生.光电子技术[M]北京:国防工业出版社,2000.
    [71] CCD Image Sensors Databook[M]1996-1997,DALSA INC, Canada.
    [72]焦斌亮,闫旭辉.基于TDI CCD成像像移分析及图像复原[J]宇航学报,2008,29(2):675~678.
    [73]王宏波,郭永飞,司国良,李云飞. TDI CCD器件电性模拟器的设计[J]电子设计,2009,25:270~273.
    [74]王家骐,于平,颜昌翔等.航天光学遥感器像移速度矢计算数学模型[J]光学学报,2004,24 (12):1585~1589.
    [75]王家骐.光学仪器总体设计[M]长春光学精密机械与物理研究所研究生部教材,1998.
    [76]胡绍林,许爱华,郭小红.脉冲雷达跟踪测量数据处理技术[M]北京:国防工业出版社,2007.
    [77]黄本诚,马有礼.航天器空间环境实验技术[M]北京:国防工业出版社,2002.
    [78]焦维新.空间天气学[M]北京:气象出版社,2003.
    [79]刘林.航天器轨道理论[M]北京:国防工业出版社,2000.
    [80] WASHKURAK W D High speed, low noise,fine resolution TDI CCD imagers[J]SPIE,1990,1242:252~263.
    [81] Margulies G, Aubrun J N. Geometric theory of single-gimbalcontrol moment gyro systems[J]Journal of the Astronautcal Sciences,1978,26(2):159~191.
    [82] Dominguez J, Wie B. Computation and visualization of control moment gyroscope singularities[R]AIAA-2002~4570,2002.
    [83] Wie B. Singularity analysis and visualization for singlegimbal control moment gyro systems[J]Journal of Guidance, Control and Dynamics, 2004, 27(2): 271~282.
    [84] Kurokawa H. A geometry study of single gimbal control moment gyros singularity problem and steering law[R]Technical Report of Mechanical Engineering Laboratory TR-175, Tsukuba: Mechanical Engineering Lab, 1998.
    [85] Yoon H, Tsiotras P. Singularity analysis of variable-speedcontrol moment gyros[J]Journd of Guidance, Control andDynamics, 2004, 27(3): 374~386.
    [86]汤亮,徐世杰.采用单框架控制力矩陀螺群的卫星侧摆机动控制研究[J]航天控制,2003,21(82):1~5.
    [87]汤亮,贾英宏,徐世杰.使用单框架控制力矩陀螺的空间站姿态控制系统建模与仿真[J]宇航学报,2003,24(2):126~131.
    [88] Yoon H.Tsiotras P.Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes[J]Journal of Guidance , Gontrol and Dynamics,2002,25(6):1081~1090.
    [89] Jia Y H, Xu S J, Fang L.Bias momentum attitude control system using energy/momentum wheel[J]Chinese Journal Of Aeronautics,2004,17(4):193~199.
    [90]吴忠,吴宏鑫.单框架控制力矩陀螺系统的构形分析[J]航天控制,1998,1(2):19~27.
    [91]吴忠,吴宏鑫.单框架控制力矩陀螺(SGCMG)系统的构形分析[J]控制工程,1998,1(2):9~16.
    [92]张锦江.单框架控制力矩陀螺系统的构型分析和对比研究[J]中国空间科学技术,2003,6(3):52~56.
    [93]吴忠.参数不确定SGCMG系统的自适应操纵律设计[J]控制理论与应用,2006,23(1):143~147.
    [94]吴忠.单框架控制力矩陀螺动态操纵律设计[J]宇航学报,2005,26(1):24~28.
    [95]吴忠,吴宏鑫.单框架控制力矩陀螺系统操纵律研究综述[J]宇航学报,2000,21(4):140~145.
    [96]李连军,戴金海.反作用轮系统内干扰建模与仿真分析[J]系统仿真学报,2005,17(8):1855~1863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700