用户名: 密码: 验证码:
不同程度水氮磷耦合对冬小麦根系生理指标和解剖结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以小偃22为材料,通过盆栽调亏灌溉的方法,运用分光光度计法、荧光标记、显微形态观察和细胞化学定位等相结合的手段,从形态学、生理学、解剖学和细胞化学角度,对比研究了不同生育阶段(返青期和拔节期)、不同氮磷肥水平[低肥N_1P_1(纯氮0.1g/kg、P_2O_50.05g/kg)和高肥N_2P_2(纯氮0.3g/kg、P_2O_50.15g/kg)]和不同水分亏缺[田间最大持水量的70%~85%(正常供水,CK)、55%~70%(轻度亏缺,LS)、40%~55%(重度亏缺,SS)]对冬小麦根系生长、过氧化氢(H)_2O_2)代谢和水分调节特性的影响。为认识冬小麦根系形态、生理和细胞结构变化与功能的关系,以及水分胁迫条件下作物的水肥高效利用和最优调控提供理论依据。研究结果如下:
     (1)水氮磷耦合对根形态指标的影响:在相同氮磷营养条件下,返青期和拔节期水分胁迫抑制了冬小麦的生长,干物质量的累积降低,抑制程度与水分胁迫程度呈正相关。返青期根冠比LS>CK>SS,且N_2P_2> N_1P_1;拔节期组根冠比LS> SS> CK,且N_2P_2     (2)水氮磷耦合对根渗透调节的影响:在相同氮磷营养条件下,返青期和拔节期随着水分亏缺程度的加剧,根系中游离脯氨酸、可溶性糖和可溶性蛋白含量上升。同一水分条件下,其含量N_2P_2>N_1P_1。表明在受到胁迫后冬小麦会通过将光合产物向根系运输和根系自身合成渗透调节物质来维持细胞渗透压,提高其水分调节特性。并且,渗透调节能力高营养条件较低营养条件强。亏缺后复水根系中渗透调节物质仍继续维持较高值,尤其是拔节期亏水后复水,以此来缓减前期产生的伤害。
     (3)水氮磷耦合对根中H)_2O_2代谢的影响:相同氮磷营养条件下,返青期和拔节期根系H)_2O_2含量随水分亏缺程度的加剧而增加,并在SS达到最大。SOD、POD、CAT活性在LS达最高,维持细胞内H)_2O_2动态平衡。因此,细胞内MDA含量LS与CK接近,在SS显著增加。亏缺后复水SOD、POD、CAT活性仍持续保持较高值,以清除过量的H)_2O_2,修复前期亏水可能造成的伤害。同一水分条件下,虽然高肥条件下冬小麦生长更加旺盛,产生了相对多的H)_2O_2,但其清除酶活性也更强,所以在复水后得到更好恢复,各处理MDA含量低于低肥处理。
     (4)水氮磷耦合对根H)_2O_2分布的影响:返青期和拔节期随着水分亏缺程度的加剧,H)_2O_2的分布从根冠和成熟区逐渐延伸到分生区、伸长区,荧光强度也逐渐加强。表明水分亏缺下,冬小麦根尖是H)_2O_2产生的主要部位。进一步利用CeCl_3标记技术,对拔节期水分亏缺冬小麦根冠细胞中H)_2O_2在超微水平上的分布进行了定位,结果显示H)_2O_2主要分布于细胞膜上,同一水分条件下高肥处理高于低肥处理。随水分胁迫的加重,细胞间隙、细胞壁和液泡膜周围也出现了H)_2O_2标记,并在量上明显增多。
     (5)水氮磷耦合对根解剖结构的影响:返青期和拔节期随水分亏缺的加剧,冬小麦根尖皮层薄壁细胞体积变大,形状由近椭圆形变得不规则,排列也不再规则有序。导致皮层厚度增加和皮层占根系直径的比例增大,从而减小了根系水流导度,增加了水分向中柱运输的相对距离。中柱的有序性被打破,木质部导管的横截面积变小,从而使驱动水分流动的气压变化率减低,增大水分疏导阻力。这些变化有利于增加根系径向和轴向水分运输的阻力,从而提高根系的保水能力。同时,根解剖结构的此类变化主要是针对水分胁迫的一种响应。
     综上所述,高氮磷营养条件下返青期轻度亏水处理后复水的施肥和控水方式最有利于冬小麦生长,且产量最高,可以达到节水高产的目的。
In order to do some contrast studies to root growth, metabolism of hydrogen peroxide(H)_2O_2) and water regulation characteristics of winter wheat, we use spectrophotometer,fluorescent staining, scanning electron microscope and cell chemistry positioning methods atthe regreening and jointing stage of winter wheat growth. Such studies also had been done atdifferent nitrogen phosphate levels from low fertilizer level of N_1P_1(Nitrogen0.1g/kg, P_2O_50.05g/kg) to the high fertilizer level of N_2P_2(pure nitrogen0.3g/kg, P_2O_50.15g/kg) treatingwith winter wheat, and at different water deficit levels (the proportion of soil moisturecontent to field moisture is70%~85%(CK),55%~70%(LS), and40%~55%(SS)).Theexperiment provides a theoretical basis for people to understand the root morphology and therelationship between physiological changes and cell functions of winter wheat and also give away to achieve an optimal control that promote the utilization of water and fertilizer whenwinter wheat grow at the water deficit conditions. The results were shown follows:
     (1) Effects of water-nitrate combination on root morphology indicate that under thesame N\P conditions, water stress in regreening and jointing stage inhibited the growth ofwinter wheat, which reduced the accumulation of dry matter. The relationship between thedegree of inhibition and the water stress were positively correlated. At the regreening stage,the root-top ratio was LS>CK>SS with N_2P_2> N_1P_1; At the jointing stage, the root-top ratiowas LS>SS>CK with N_2P_2     (2) Effects of water-nitrate combination on root osmotic regulation show that under thesame N\P conditions, with water deficit intensified in regreening and jointing period, freepraline, soluble sugar and solubility protein were rising. At the same water defict level, thecontent of soil water performed to N_2P_2>N_1P_1, which showed that after suffering from stressconditions, wheat can maintain its cell osmotic pressure through transmitting photosynthetic production to root for self-root synthesizing. Osmotic regulation matter finally improved itswater regulation features and this ability with higher nutrition more strength than that withlower nutrition. Osmotic regulation matter still maintain higher level in re-watering conditionafter root under water deficit conditions; especially after jointing stage, it can relieve hurtfrom earlier stage of cell.
     (3) Effects of water-nitrate combination on root H)_2O_2consumption indicate that underthe same N\P conditions, with water deficit intensified in returning green and jointing period,content of H)_2O_2was increased to the highest level in SS. The activity of SOD, POD and CATwere the highest level in LS to maintain the H)_2O_2dynamic balance. When the content ofMDA in cell was closed to CK, the level increased significantly in SS. After re-wateringtreaments, the activity of SOD, POD and CAT still keep intensified for eliminating excessH)_2O_2to restore the hurt in earlier water deficit stage. Under the same water level, althoughtreat wheat with high nutrition, its still grew vigorously, producing more H)_2O_2. But theenzyme to eliminate H)_2O_2active; therefore, after re-watering stage of growth, the MDAcontent of each treatment were lower than those with lower nutriments.
     (4) Effects of water-nitrate combination on H)_2O_2distribution of roots show thatfollowing the water deficit intensified in returning green and jointing period of wheat, H)_2O_2distribution area extended meristematic zone and elongation zone from root-shoot andmaturation region with fluorescence strength intensified slowly, which showed that underwater deficit condition, the root tip of winter wheat was the main area for producing H)_2O_2.Furthermore, H)_2O_2in the root-shoot cell of winter wheat with water deficit in jointing stagewere signed by CeCl_3and the results told us that H)_2O_2mainly located on the cell membraneat the same water level; H)_2O_2content under higher fertilizer level higher than those withlower fertilizer treatments. With water stress intensified, there H)_2O_2mark appeared inintercellular space、cell wall、and vacuole membrane, which increased significantly.
     (5) Effects of water-nitrate combination on root anatomical structure illustrate that withwater deficit intensified in returning green and jointing period, the thin-wall cell of winterwheat root-tip cortex, whose shape changed from oval to no rules with new arrangement indisorder. Leading to increase the thickness of cortex and the ratio of cortex-root diameter. soit decreased the flow conductance of root, and enlarged the relative distant of watertransmitting to central-pillar. The order of central pillar was ruined and the ratio of drivingwater flowing air pressure decreased, improving the water dredge resistance. These changeswere helpfully to increase the resistance in root radial and axial flowing, which can improvethe ability for roots to keep water. Meanwhile, those changes of root anatomical structurewere regarded as a response to water stress.
     In conclusion, under the higher N\P nutrients treaments, applying fertilizer and watercontrol in re-watering stage after lighter water deficit in returning green period were usefulfor winter wheat growing and having higher yield, which can promote water efficience andincrease crop yield.
引文
陈成升,谢志霞,刘小京.2009.等渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化.植物研究,29(6):708~713
    程国栋,赵传燕.2006.西北干旱区生态需水研究.地球科学进展,21(11):1101~1107
    单长卷,田雪亮,吴雪平.2006.小麦根系抗旱适应性研究进展.安徽农业科学,34(3):419~425
    范珊珊.2010.新华社. http://www.xinhua08.com/a/20110224/332151.shtml[2010-02-24]
    高俊凤.2000.植物生理学实验技术.世界图书出版公司
    高俊凤.2005.植物生理学实验指导.北京:高等教育出版社
    关军锋,李光敏.2002.干旱条件下施肥效应及其作用机理.中国生态农业学报,10(1):59~61
    郭相平,康绍忠,索丽生.2001.苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水,20(1):25~27
    郝福顺,陈珈.2005.植物细胞膜NADPH氧化酶的研究进展.植物学通报,22:1~10
    胡田田,康绍忠,原丽娜,李志军,张富仓.2008.不同灌溉方式对玉米根毛生长发育的影响.应用生态学报,19(6):1289~1295
    姜慧芳,任小平.2004.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,30(2):169~174
    康绍忠,梁银丽,蔡焕杰,等著.1998.旱区水-土-作物关系及其最优调控原理.中国农业出版社:37~64
    李锦树,王洪春.1983.干旱对玉米叶片细胞膜透性及膜脂的影响.植物生理学报,9(3):223~229
    李开峰,张富仓,祁有玲,等.2010.根区水肥空间耦合对冬小麦生长及产量的影响.应用生态学报,21(12):3154~3160
    李立科,田家驹,高华,等.1982磷肥对渭北早原小麦杭早增产的作用.陕西农业科学,(5):7~9
    李万春,姚雅琴,于涛,等.2012.不同水氮磷耦合对拔节期冬小麦根系水分调节特性的影响.西北农林科技大学学报(自然科学版)
    梁银丽.1996.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节.生态学报,16(3):258~264
    梁新华,史汉江.2006.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响.干旱地区农业研究,24(3):108~110
    林植芳,刘楠.2012.活性氧调控植物生长发育的研究进展.植物学报,47(1):74~86
    凌苗.2010.中国新闻网.
    http://society.people.com.cn/GB/8217/222655/14734548.html[2010-05-23]
    刘芷宇.1990.根际土壤的氮素状况.杭州科学技术出版社:197~121
    马成,高玉葆,李清芳,等.2006.内蒙古高原不同生境条件下甘蒙锦鸡儿水分调节特性和抗逆性的比较研究.应用生态学报,17(2):187~191
    马旭凤,于涛,汪李宏,等.2010.苗期水分亏缺对玉米根系发育及解剖结构的影响.应用生态学报,21(7):1731~1736
    马旭凤.2010.水分亏缺对玉米生理指标、形态特性及解剖结构的影响.[硕士学位论文].杨凌:西北农林科技大学
    马元喜,王化岑,王晨阳,等.2002.冬小麦根系各级分枝形成及其解剖结构研究.作物学报,28(3):327~332
    苗雨晨,宋纯鹏,董发才.2000. ABA诱导蚕豆气孔保卫细胞H2O2的产生.植物生理学报,26(1):53~58
    欧巧明,倪建福,马瑞君.2005.春小麦根系木质部导管与其抗旱性的关系.麦类作物学报,25(3):27~31
    彭昌操.孙中海.2000.低温锻炼期间柑桔原生质体SOD和CAT酶活性的变化.华中农业大学学报,19(4):384~387
    山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,2(1):70~76
    沈玉芳,曲东,王保莉,张兴昌.2005.干旱胁迫下磷营养对不同作物苗期根系导水率的影响.作物学报,31(2):214~218
    石喜,王密侠,姚雅琴,蔡焕杰.2009.水分亏缺对玉米植株干物质累积、水分利用效率及生理指标的影响.干旱区研究,26(3):396~400
    唐连顺,李广敏.1994.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系.植物学报,36(2):43~49
    汪洪,金继运.2006.铁、镁、锌营养胁迫对植物体内活性氧代谢影响机制.植物营养与肥料学报,12(5):738~744
    汪得水,高绪科,金柯,等编.1999.旱地农田肥水协同效应与耦合模式.气象出版社:1~49
    王宝山.1988.生物自由基与生物膜的伤害.植物生理学通讯,7(2):12~16
    王劲松,郭江勇,周跃武,等.2007.干旱指标研究的进展与展望.干早区地理,30(1):60~65
    王茅雁,邵世勤,张建花等.1995.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报,10(2):43~49
    王晓琴,袁继超,熊庆娥.2002.玉米抗旱性研究的现状及展望.玉米科学,2002,10(1):57~60
    王周锋,张岁岐,刘小芳.2005.玉米根系水流导度差异及其与解剖结构的关系.应用生态学报,16(12):2349~2352
    吴楚,王政权.2002.植物管状细胞栓塞后的重新充注研究进展.植物学通报,19(5):575~583
    吴爱敏,郭江勇,王劲松.2007.中国西北地区伏期干旱指数及干旱分析.干早区研究,24(2):227~233
    吴安慧,张岁岐,邓西平.2006.水分亏缺条件下玉米根系PIP2.5基因的表达.植物生理学通讯,42(3):457~460
    吴志华,曾富华,马生健.2004.水分胁迫下植物活性氧代谢研究进展.亚热带植物科学,33(3):77~80
    武维华.2003.植物生理学.北京:科学出版社:440
    熊明彪,胡恒,田应兵.2005.小麦生长期土壤养分与根系活力变化及其相关性研究.土壤通报,36(5):700~703
    徐洪伟,陆静梅,周晓馥.2009.水分胁迫条件下玉米毛状根再生植株耐旱性研究.农业工程学报,23(7):19~23
    徐世昌,沈秀瑛.1994.土壤干旱后玉米叶细胞膜脂过氧化和膜脂脱酯化反应以及膜超微结构的变化.作物学报,20(5):564~569
    徐兴友,张风娟,龙茹,等.2007.6种野生耐旱花卉幼苗叶片脱水和根系含水量与根系活力对干旱胁迫的反应.水土保持学报,21(1):180~184
    严小龙.2007.根系生物学:原理与应用.北京:科学出版社:23
    颜华,贾良辉,王根轩.2002.植物水分胁迫诱导蛋白的研究进展.生命的化学,22(2):165~168
    杨建昌.2011.水稻根系形态生理与产量、品质形成及养分吸收利用的关系.中国农业科学,44(1):36~46
    杨书运,严平,梅雪英.2007.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响.中国农通报,23(12):229~233
    杨晓青,张岁岐,刘小芳,等.2007.不同抗旱型冬小麦品种根系水力导度与解剖结构的关系.西北农林科技大学学报(自然科学版),35(8):161~164
    于涛,李万春,汪李宏,等.2011.水分亏缺对玉米根毛区皮层解剖结构的影响.西北农林科技大学学报(自然科学版),39(10):111~118
    于涛.2011.水分亏缺对玉米根和叶显微结构及H2O2积累的影响.[硕士学位论文].杨凌:西北农林科技大学
    岳文俊,张富仓,李志军,等.2012.返青期水分胁迫、复水和施肥对冬小麦生长及产量的影响.西北农林科技大学学报(自然科学版),40(2):57~63
    张凤翔,周明耀,周春林等.2006.水肥耦合对水稻根形态与活力的影响.农业工程学报,22(5):197~200
    张广涛,汪可欣,王丽学,等.2007.水肥耦合技术在辽宁地区农业可持续发展中的应用分析.安徽农业科学,35(24):7531~7555
    张红霞,刘果厚,崔秀萍.2005.干旱对浑善达克沙地榆叶片解剖结构的影响.植物研究,25(1):39~44
    张继澍.2005.植物生理学.北京:高等教育出版社:39
    张立新,李生秀.2007.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响.作物学报,33(3):482~490
    张士功,刘国栋,刘更另.2001.植物营养与作物抗旱性.植物学通报,18(1):64~69
    张岁岐,徐炳成,等.2010.根系与植物高效用水.北京:科学出版社:23
    张巍巍,郑飞翔,王效科.2009.臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响.植物生态学报,33(3):425~432
    张喜英.1999.作物根系与土壤水利用.气象出版社
    张玉革,姜勇.1999.长期施肥对土壤水分特性影响研究.土壤,3:120~125
    赵丽英,邓西平,山仑.2000.持续干旱及复水对玉米幼苗生理生化指标的影响研究.华北农学报,12(3):59~61
    朱维琴,吴良欢,陶勤南.2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430~433
    Barrowclough D E, Peterson C A, Steudle E.2000. Radial hydraulic conductivity along developing onroots. J Exp Bot,51:547~557
    Bedard K, Krause K H.2007, The NOX family of ROS generating NADPH oxidases: physiology andpathophysiology. Physiol Rev,87:245~313
    Boyer J S.1982. Plant productivity and environment. Science,218:443~448
    Bustos D, Lascano R, Villasuso A L, Machado E, Senn M E, Cordoba A, Taleisnik E.2008. Reductions inmaize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2-levels. Annalsof Botany,102:551~559
    Cheng Y, Song C P.2006. Hy drogen peroxide homeostasis and signaling in plant cells. Sci China C LifeSci,49:1~11
    Ernst Steudle, Carol A. Peterson.1998. How does water get through roots? Journal of Experimental Botany,49(322):775~788
    Ernst Steudle.2000. Water uptake by roots: Effects of water deficit. Journal of Experimental Botany,51(350):1531~1542
    Fitter A.2002. Characteristics and functions of root systems//Waisel Y Eshel A, Kafkafi U. Plant Roots,the Hidden Half. New York: Marcel Dekker Inc.:15~32
    Geiszt M.2006. NADPH oxidases: new kids on the block. Cardiovasc Res.71:289~299
    Gunz D W, Hoffmann M R.1990. Atmospheric chemistry of peroxides: a review. Atomos Environ,24A:1601~1633
    Inukai Y, Ashikari M, Kitano H.2004. Function of the root system and molecular mechanism of crownroot formation in rice. Plant and Cell Physiology,45(Suppl.):17
    J.B.Passioura.1996. Drought and drought tolerance. Plant Growth Regulation,20:79~83
    Jerry L, Hatfield, Thomas J. Sauer, and John H. Prueger.2001. Managing Soils to Achieve Greater WaterUse Efficiency: A Review.Agronomy Journal,93:271~280
    Kramer P J, Kozlowski T T.1979. Physiology of woody plants. Orlando Academic press
    Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L,Bloom R E, Bodde S, Jones J D G,Schroeder J I.2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABAsignaling in Arabidopsis. EMBO J,22:2623~2633
    Laloi C, Apel K, Danon A.2004. Reactive oxygen signaling: the latest news. Curr Opin Plant Biol,7:323~328
    Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R.1999. Deetiolation causes aphytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maizemesocotyl: a role in the photomodulation of growth and cell wall differentiation. Planta,208:146~154
    Liszkey A, van der Zalm E, Schopfer P.2004. Production of reactive oxygen intermediates (O-2, H2O2,and.OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol,136:3114~3123.
    Mark Rieger, Paula Litvin.1999. Root system hydraulic conductivity in species with contrasting rootanatomy. Journal of Experimental Botany,50(331):201~209.
    Mengel K. and E. A. Kirby.1987. Principles of plant nutrition (third addition), Internationalpotash Institute,Bern, Switzerland:68~78
    Monshausen G B, Bibikova T N, Messerli M A, Shi C, Gilroy S.2007. Oscillations in extracellular pH andreactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA,104:20996~21001
    Naoko Miyamoto, Ernst Steudle, Tadashi Hirasawa, et al.2001. Hydraulic conductivity of rice roots.Journal of Experimental Botany,52(362):1835~1846
    Ne ill S, De sik an R, Hancock J.2002. Hydrogen peroxide signaling. Curr Opin Plant Biol,5:388~395
    North GB, Nobel PS.1991. Changes in hydraulic conductivity and anatomy caused by drying andrewetting roots of Agave deserti (Agavaceae). Amer. J. Bot.78:906~915
    Nupur S, Vijay K, Gonugunta, Mallikarjuna R, Puli, Agepati S, Raghavendra.2009. Nitric oxideproduction occurs downstream of reactive oxygen species in guard cells during stomatal closureinduced by chitosan in abaxial epidermis of Pisum sativum. Planta,229:757~765
    Salln M L.1987. Toxic oxygen species and protective systems of the chloroplast. Physiol Plant,72:681~689
    Schopfer P, Liszkay A.2006. Plasma membranegenerated reactive oxygen intermediates and their role incell growth of plants. BioFactors,28:73~81
    Shi H Z, Zhu J K.2002. SOS4, a pyridoxal kinase gene, is required for root hair development inArabidopsis. Plant Physiol,129:585~593
    Tamás L, Valentovi ová K, Halu ková L, Huttová J, Mistrík I.2009. Effect of cadmium on the distributionof hydroxyl radical, superoxide and hydrogen peroxide in barley root tip. Protoplasma,236:67~72
    Turner N C.1990. Plant water relations and irrigation management. Agricultural Water Management,17:59~73
    Tyree M T, Yang S.1992. Hydraulic conductivity recovery versus water pressure in xylem of Acersaccharum. Plant Physiol,100:669~679
    Van Breusegem F, Bailey S J, Mittler R.2008. Unraveling the tapestry of networks involving reactiveoxygen species in plants. Plant Physiol,147:978~984
    VranováE, Inzé D, van Breusegem F.2002. Signal transduction during oxidative stress. J Exp Bot,53:1227~1236
    Turner N C.1990. Plant water relations and irrigation management. Agricultural Water Management,17:59~73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700