用户名: 密码: 验证码:
基于Archimedean Copulas函数的多变量干旱频率及空间分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱在人类历史上从古至今一直影响和制约着经济与社会的发展。我国由于其特殊的地理、气候、水文特征情况,更是深受其害。水资源的短缺以及因此导致的用水量供需不平衡更是加剧了人与自然和谐相处的矛盾,对于工农业生产、经济建设和社会发展产生了极为不利的影响,造成局部地区生态环境极度脆弱。据此,对我国干旱半干旱地区的干旱特征进行理论分析就显得很有必要。本文以新疆地区和黑河流域为代表,通过对其月平均降水提取气象干旱特征变量以及月平均径流资料提取水文干旱特征变量,构建多维干旱变量的联合分布,并进行深度的干旱分析。相关研究对于探讨区域和流域的干旱演变规律具有十分重要的意义。
     选取具有代表性的新疆41个气象站的月降水数据、黑河流域21个气象站的月降水数据提取气象干旱变量;选取黑河流域上游莺落峡、梨园站和正义峡三个水文站的月径流资料提取水文干旱变量,基于Archimedean Copulas函数建立了二维、三维气象和水文干旱变量的联合分布,经拟合优度评价,选取最佳的Copula函数用以刻画干旱演变规律,以期为区域、流域内旱灾防治和控制、用水量合理调配、水资源可持续发展以及水利建筑工程规划建设提供一定的理论支撑。主要取得以下结论:
     (1)基于游程理论从新疆地区和黑河流域长系列的月平均降水以及黑河流域长系列的月平均径流资料中提取干旱历时、干旱烈度和干旱烈度峰值三个干旱特征变量。由相对离差平方和最小准则(WLS)判断三个干旱特征变量的分布类型。结果表明:新疆地区41个站点以及黑河流域21个站点的干旱历时服从指数分布;干旱烈度服从Weibull分布;烈度峰值服从广义Pareto分布。黑河上游莺落峡、梨园站和正义峡的干旱历时服从广义Pareto分布,干旱烈度服从Weibull分布,烈度峰值服从Gamma分布。经单变量边缘分布的Kolmogorov-Smirnov(K-S)拟合度检验,剔除新疆地区干旱特征变量拟合情况不佳的6个站点(哈密市,吐鲁番市,且末县,和田县和民丰县);以及黑河流域拟合情况不佳的7个站点(马鬃山,玉门镇,永昌,阿拉善右旗,拖勒,刚察和门源)。
     (2)干旱特征变量间必须具有一定的相关性方可采用Copulas函数构建联合分布。通过变量间相关性度量得出:新疆地区的干旱历时和干旱烈度之间的相关性最好,干旱烈度和烈度峰值之间的相关性次之,干旱历时和烈度峰值之间的相关性最弱;黑河流域21个气象站和三个水文站的干旱烈度和烈度峰值之间的相关性最好,干旱历时和干旱烈度之间的相关性次之,而干旱历时和烈度峰值之间的相关性最弱。
     (3)对于新疆地区和黑河流域气象和水文干旱特征变量联合分布的Copulas函数参数估计:选用适线法和极大似然法对20种二维Archimedean Copulas函数和Plackett、Farlie-Gumbei-Morgenstern(FGM) Copulas函数以及4种对称的、5种非对称的三维Archimedean Copulas函数的参数进行估计,适线准则采取离差平方和最小准则。采用AIC准则、均方根误差(RMSE)准则以及Bias准则进行拟合度评价。拟合优度表明:对于新疆地区以及黑河流域整体来讲,适线法的Copulas函数的参数估计效果优于极大似然法,故采用前者进行Copulas函数的参数估计。
     (4)经拟合优度评价优选最佳的Copulas函数。对于整个新疆地区的气象干旱而言:Frank Copula函数对干旱历时和干旱烈度、干旱历时和烈度峰值的二维联合分布的拟合度最好;Clayton Copula函数对于干旱烈度和烈度峰值的二维联合分布以及干旱历时、干旱烈度和烈度峰值的三维联合分布拟合效果最佳。对于黑河流域的气象干旱特征:FGM Copula函数对干旱历时和干旱烈度的拟合度最好;Nelsen No20Copula函数对于干旱历时和烈度峰值的拟合度最佳;而Nelsen No14Copula函数对于干旱烈度和烈度峰值的拟合效果最好。Clayton Copula函数对于干旱历时、干旱烈度和烈度峰值的三维联合分布拟合效果最佳。对于黑河莺落峡、梨园站和正义峡的水文干旱而言:FGM Copula函数对干旱历时和干旱烈度、干旱历时和烈度峰值的二维联合分布的拟合度最好;NelsenNo20Copula函数对干旱烈度和烈度峰值的拟合度最好。同样Clayton Copula函数对于干旱历时、干旱烈度和烈度峰值的三维联合分布拟合效果最好。
     (5)基于优选的Copulas函数构建新疆地区和黑河流域的二、三维干旱特征变量的联合分布模型,计算干旱变量的联合概率及重现期。新疆地区和黑河流域的二、三维重现期分布具有大致类似的规律:单变量的重现期介于二维、三维变量联合重现期与同现重现期之间;二维、三维变量的同现重现期大于相应的联合重现期;三维变量的同现重现期大于相应的二维变量的同现重现期,而三维变量的联合重现期小于相应的二维变量的联合重现期。
     (6)由二维、三维干旱特征变量的特定条件概率:P(S≤50|D≥4)、P(M≤10|D≥4)、P(S≤50|M≥10)以及P(D≤4∪S≤50∪M≤10)绘制新疆地区和黑河流域水文和气象干旱特征的空间分布图。多维干旱特征变量空间分布规律大体为,对于新疆地区:特定干旱事件发生概率从北到南递增,即新疆的南疆比北疆更易发生带有特定条件概率的干旱事件;对于黑河流域气象干旱分布特征:黑河下游比上游更容易发生特定条件概率的干旱事件。
Drought affactes and restricts the economic and social development a lot in humanhistory. Because of its special geography, climate and hydrology characteristics in China,drought has hurt coutries economic development seviouly. Especially in recent years, theshortage of water resources led to unbalance between supply and demand of waterconsumption, this increasingly aggravates the conflict between human and nature in harmonywith each other. Drought has very disadvantageous effects on industry, agricultureproduction,economic construction and social development. Drought also causes the extremelyfragile ecology environment of local area. Accordingly, the theoretical analysis of drought isvery necessary in the arid and semi-arid area in China. Taking Xinjiang region and HeiheRiver basin as representations, meteorological drought variables were extracted by monthlyrainfall datas and hydrology drought variables were extracted by monthly runoff datas toconstruct multivariate joint distributions of drought variables to further do drought analysis.The related research is very important to the study of the evolution rules of drought events.
     Two and three-dimension joint distributions of drought variables were analyzed based onArchimedean Copulas functions for monthly precipitation at41representative weatherstations in Xinjiang province and at21weather stations in Heihe River basin. The monthlyrunoff data of3hydrologic stations, i.e., Yingluoxia, Liyuan and Zhengyixia in the upstreamregion of Heihe River basin, were also selected for hydrological drought analysis. The bestCopula function was selected by evaluations of goodness of fit to describe rules of droughtevents and to provide theoretical supports for drought prevention and control, reasonableallocation of water consumption, water resources sustainable development, waterconservancy construction project planning and construction in the locality. The followingmain conclusions were drawn:
     (1)Three drought variables, i.e., drought duration, drought severity and drought peak,were selected by run-length theory from long sequence of average monthly rainfall data inXinjiang region and Heihe River basin as well as average monthly runoff data in Heihe Riverbasin. Relative squared residuals minimization rule(WLS)showed that, for41weatherstations in Xinjiang and21weather stations in Heihe River basin: drought durations areexponential distributed; drought severities are Weibull distributed, while drought peaks are generally Pareto distributed. And for3hydrologic stations in Heihe River basin: droughtdurations of are Pareto distributed; drought severities are subjected to Weibull distribution,while drought peaks are subjected to Gamma distribution. The stations that have a poordegree of fitting were rejected by Kolmogorov-Smirnov (K-S) test of marginaldistributions.For Xinjiang region:Hami city,Tulufan city,Qiemo county,Hetian county andMinfeng county stations were rejected.While for Heihe River basin:Mazongshan,Yumentown,Yongchang,Alashanyouqi,Tuole,Gangcha and Menyuan stations were rejected.
     (2) The characteristic drought variables must be correlated between each other to useCopulas function to construct theire joint distributions. Through correlation measurement, forXinjiang region, the correlation was strongest between drought duration and drought severity,the next was drought severity and drought peak, while the correlation was weakest betweendrought duration and drought peak. For Heihe River basin based on the basic data at or the21weather stations and3hydrologic stations: the correlation was strong between droughtseverity and drought peak, the next was drought duration and drought severity, while thecorrelation was weakest between drought duration and drought peak.
     (3) The parameter estimation of Copulas functions for the meteorological and thehydrology drought variables for Xinjiang region and Heihe River basin was conducted.20kinds of two-dimension Archimedean Copulas, Plackett Copulas, Farlie-Gumbei-Morgenstern(FGM) Copulas functions as well as4kinds of symmetric,5kinds of asymmetricthree-dimension Archimedean Copulas functions were analyzed based on fitting curvemethod and maximum likelihood method. The standard of fitting curve method was minimumstandards of squared residuals. AIC, RMSE and Bias as goodness-of-fit assessment indiceswere taken to compare the fitting effects. The results of parameter estimation showed thatfitting curve method was better than maximum likelihood method for Xinjiang region andHeihe River basin. So it was selected to estimate the parameters of Copulas functions.
     (4)The best Copula function was selected by evaluation of goodness degree for fitting.For Xinjiang region: Frank Copula was the best when it was applied to two-dimension jointdistribution for drought duration-drought severity, and drought duration-drought peak.Clayton Copula was the best for drought severity-drought peak and three-dimension jointdistributions of the three drought variables. For Heihe River basin: FGM Copula was the bestwhen it was applied to two-dimension joint distributions for drought duration-droughtseverity. Nelsen No20Copula was the best for drought duration-drought peak. Nelsen No14Copula was best for drought severity-drought peak and Clayton Copula was the best forthree-dimension joint distribution of the three drought variables.While for3hydrologic stations-Yingluoxia, Liyuan and Zhengyixia in the upstream of Heihe River basin: FGMCopula was the best when it was applied to two-dimension joint distributions for droughtduration-drought severity, and drought duration-drought peak. Nelsen No20Copula wasthe best for drought severity-drought peak and Clayton Copula was the best forthree-dimension joint distribution of the three drought variables.
     (5)Two and three-dimension joint distribution models were constructed based on thebest Copulas functions, and the associated probability and return period of drought variableswere calculated for Xinjiang region and Heihe River basin. Two-and three-dimensional returnperiods were similar for Xinjiang region and Heihe River basin: the return period of singlevariable ranged between two-dimension joint return period and co-occurrence return period.The co-occurrence return period of the two-dimension, three-dimension was longer than jointreturn period. The co-occurrence return period of the three-dimension was longer than that oftwo-dimension, while the joint return period of the three-dimension was shorter than that oftwo-dimension.
     (6)Spatial distributions of drought feature variables in Xinjiang and Heihe River basinwere drawn through the conditional probabilities of two-dimensionl and three-dimensionaldrought variables: P(S≤50|D≥4), P(M≤10|D≥4), P(S≤50|M≥10) and P(S≤50|M≥10,D≥4).The spatial distribution characteristics of multivariate drought variables showed that, forXinjiang region,the conditional probabilities of drought events increased from the north to thesouth, meaning the conditional probability of drought events in southern Xinjiang were morelikely to happen than the northern Xinjiang. While for Heihe River basin, the conditionalprobabilities of drought events in the downstream region were more likely to happen than thatof upstream region.
引文
陈士永,王祥三,张涛.2009. Copula函数和AR模型在洪水随机模拟中的应用.水电能源科学.27(2):55-56.
    陈秀平,郑海鹰.2009. Copula函数在本科课程设置中的应用.知识丛林.(09):149-150.
    戴昌军.2005.多维联合分布计算理论在南水北调东线丰枯分析中的应用研究[博士学位论文].南京:河海大学.
    戴昌军,梁忠民.2006.多维联合分布计算方法及其在水文中的应用..水力学报.37(2):160-165.
    范嘉泉,郑剑非.1984.帕尔默气象干旱研究方法介绍.气象科技.(01):63-71.
    符淙斌,延晓冬,郭维栋.2006.北方干旱化与人类适应:以地球系统科学观回答面向国家重大需求的全球变化的区域响应和适应问题.自然科学进展.16(10):1216-1223.
    汉森.1991.能源部.水利部水利水电西北勘测设计院编.干旱研究译文集.西北勘测设计院出版社:108.华东水利学院主编.1981.水文学的概率统计基础.南京:水利电力出版社:288.
    郭生练,闫宝伟,肖义.2008. Copula函数在多变量水文分析计算中的应用及研究进展.水文.28(3):1-3.
    李喆,谭德宝,秦其明.2010.基于特征空问的遥感干旱监测方法综述.长江科学院院报.27(1):37-38.
    刘庚山,郭安红,安顺清.2004.帕默尔干旱指标及其应用研究进展.自然灾害学报.13(4):21-26.
    刘巍巍,安顺清,刘庚山.2004.帕默尔旱度模式的进一步修正.应用气象学报.15(2):207-216.
    路京选,曲伟,付俊娥.2009.国内外干旱遥感监测技术发展动态综述.中国水利水电科学研究院学
    报.7(2):104-105.
    陆桂华,闫桂霞,吴志勇.2010.基于Copula函数的区域干旱分析方法.水科学进展.21(2):188-189.
    马明卫,宋松柏.2010.椭圆型Copulas函数在多西安站干旱特征分析中的应用.水文.30(4):36-42.
    莫淑红,沈冰,张晓伟.2009.基于Copula函数的河川径流丰枯遭遇分析.西北农林科技大学学报(自然科学版).37(6):131-132.
    宋松柏,聂荣.2011.基于非对称阿基米德Copula的多变量水文干旱联合概率研究.水力发电学报.3(4):20-29.
    宋松柏,蔡焕杰,粟晓玲.2005.专门水文学.西安:西北农林科技大学出版社:102.
    王英.2006.阜新地区干旱指标计算及干旱预测[硕士学位论文].沈阳:沈阳农业大学.
    王占海,陈元芳,黄琴.2009. M-Copula函数在洪水遭遇中的应用研究.水电能源科学.27(1):69-70.
    王浩,宋羽,马艳明.2007.新疆干旱荒漠区日光温室高产番茄生长发育动态分析.新疆农业科学.44
    (5):567-570.
    王双银,宋孝玉.2008.水资源评价.郑州:黄河水利出版社:83.
    王海青,张勃.2007.黑河流域干旱化驱动力机制及其趋势预测..干旱区资源与环境.21(9):68-72.
    卫捷,张庆云,陶诗言.2004.1999年及2000年夏季华北严重干旱的物理成因分析.大气科学.28(1):125-137.
    徐向阳.2006.水灾害.中国水利水电出版社:95.
    肖义,郭生练,刘攀.2007.基于Copula函数的设计洪水过程线方法.武汉大学学报(工学版).40(4):13-14.
    熊立华,郭生练,肖义.2005. Copula联结函数在多变量水文频率分析中的应用.武汉大学学报(工学版).38(6):16-17.
    徐羹慧,毛炜峄,陆帼英.重要战略机遇期新疆防灾减灾对策综合研究[J].气象软科学,,(1):33-39.
    易丹辉.1996.非参数统计—方法与应用.北京:中国统计出版社:25.
    姚玉璧,董安祥,王毅荣.2007.基于帕默尔干旱指数的中国春季区域干旱特征比较研究.干旱区地
    理.30(1):22-23.
    姚玉璧,张存杰,邓振镛.2007.气象、农业干旱指标综述.干旱地区农业研究.25(1):185-186.
    杨益党,罗羡华.2007Copula函数的参数估计.新疆师范大学学报(自然科学版).26(2):15-24.
    姚宇飞,周国良,宋建华.2006.论新疆干旱农业.新疆农业科学.43(4):46-48.
    袁文平,周广胜.2004.干旱指标的理论分析与研究展望.地球科学进展.19(6):982-991.
    曾少聪.2010.生态人类学视野中的西南干旱—以云南旱灾为例.贵州社会科学.251(11):24-29.
    张景书.1993.干旱的定义及其逻辑分析.干旱地区农业研究.11(3):3-4.
    张慧媛.2011.我们共同经历的那些事.http://www.weather.com.cn/zt/tqzt/589584.shtml[2012-3-11].
    张娜,郭生练,闫宝伟.2008. Copula函数在分期设计洪水中的应用研究.水文.28(5):28-29.
    张娜,郭生练,刘攀.2008.基于Copula函数法推求分期设计洪水和汛限水位.武汉大学学报(工学
    版).41(6):33-34.
    张雨,宋松柏.2010. Copulas函数在多变量干旱联合分布中的应用.灌溉排水学报.29(3):63-64.
    张钰,徐德辉.2001.关于干旱与旱灾概念的探讨.发展.9:14-16.
    张涛,赵春伟,雒文生.2008.基于Copula函数的洪水过程随机模拟.武汉大学学报(工学版).41(4):1-2.
    张世法,苏逸深,宋德敦.2008.中国历史干旱(1949-2000).南京:河海大学出版社:204.
    Artem Prokhorov.2008.A Goodness-of-fit Test for Copulas. Computational Statistics&Data Analysis.9.
    Annie Poulin,David Huard,Anne-Catherine Favre Ph.D.2007. Importance of Tail Dependence in BivariateFrequency Analysis DOI:10.1061/ASCE,1084-0699.12(4):394.
    Box G,Cox D.1964.An analysis of transformatiens[J].Journal of the Royal Statistical Society.B26:211-252.
    Christian Genest,Anne-Catherine Favre.2007.Everything You Always Wanted to Know about CopulaModeling but Were Afraid to Ask. DOI:10.1061/ASCE,1084-0699.12(4):347.
    Christian Genest, Jean-Fran ois Quessy, and Bruno Rémillard.2007.Asymptotic local efficiency ofCramér–von Mises tests for multivariate independence.Ann. Statist. Volume35, Number1:166-191.
    Christian Genest,Bruno R emillard,David Beaudoin.2009.Goodness-of-fit tests for copulas: A review anda power study. Insurance: Mathematics and Economics.44:199–213.
    Dupuis D.2007. Using Copulas in Hydrology: Benefits, Cautions, and Issues. DOI:10.1061/ASCE,1084-0699.12(4):381.
    Eckhard Liebscher.2008.Construction of asymmetric multivariate copulas. Journal of MultivariateAnalysis.99:2234–2250.
    Fabrizio Durante,Jose Antonio Rodriguez-Lallena,Manuel Ubeda-Flores.2009.New constructions ofdiagonal patchwork copulas. Information Sciences.179:3383–3391.
    Francesco Serinaldi,Salvatore Grimaldi.2007.Fully Nested3-Copula: Procedure and Applicationon Hydrological Data. DOI:10.1061/ASCE,1084-0699.12(4):390.
    Genest C,Favre AC.2007. Everything you always wanted to know about copula modeling but were afraidto ask. Journal of Hydrologic Engineering.12(4):347-367.
    Jadran Dobri, Friedrich Schmid.2007.A goodness of fit test for copulas based on Rosenblatt’stransformation. Computational Statistics&Data Analysis.51:4633–4642.
    Kao S C,Govindaraju RS.2008.Trivariate statistical analysis of extreme rainfall events via the Plackettfamily of copulas.Water Resources Research..44(2):W02415.Doi:10.1029/2007WR006261.
    Kjersti Aas,Claudia Czado,Arnoldo Frigessi,Henrik Bakken.2009.Pair-copula constructions of multipledependence. Insurance: Mathematics and Economics.44:182–198.
    Long D,Krzystofowicz R.1992. Farlie-Gumbel-Morgenstern bivariate dendities:are they applicable inhydrology.stochastic hydrology and hydraulics.6(1):47-54.
    Lettenmaier,D P,Potter K W.2006.Testion flood frequency estimation methods using a regional floodgencration model.Water Resources Research, Vol.21,No.12,1988.
    Mekonnen Gebremichae,Witold F. Krajewski.2007.Application of Copulas to Modeling TemporalSampling Errors in Satellite-Derived Rainfall Estimates. DOI:10.1061/ASCE,1084-0699.12(4):405.
    Michele C,Salvadori G,Canossi. M.2005. Bivariate Statistical Approach to Check Adequacyof Dam Spillway. DOI:10.1061/ASCE,1084-0699.1(50):10.
    Michele C,Salvadori G.2003.A generalized Pareto intensityduration model of storm rainfall exploiting2-copulas.Journal of Geophys Resources.108(D2):4067.Doi:10.1029/2002JD002534.
    Nelson B.1998. An introduction to Copulas.New York: Sp ringer.
    Oganathan I,Kuo C Y,Yannaccone J.1987.Joint of streamflows and tides in Estuaries[J].NordicItydrology.18:237-246.
    Palmer W C.1965. Meteorological drought US. Weather Bureau Research Paper:45-48.
    Preprints.1995.Eighth Conf. on Applied Climatology,Anaheim,CA,Amer.Meteor1Soc.179-184.
    Renard B,Lang M.2007.Use of a Gaussian copula for multivariate extreme value analysis:Some casestudies in hydrology. Advances in Water Resources.30:897-912.
    Salvadori G,Michele C.2007. On the Use of Copulas in Hydrology: Theory and Practice. DOI:10.1061/ASCE,1084-0699.12(4):369.
    Shiau,J. T.2003.Return period of bivariate distributed hydrological events. Stochastic EnvironmentalResearch and Risk Assessment.17(1-2):42-57.
    Song Songbai,Vijay P Singh.2010. Frequency Analysis of droughts using the Plackett copula andparameter estimation by genetic algorithm.Stochastic Environmental Research and Risk Assessment.
    Springer.D0I10.1007/s00477-0101-0364-5.
    Song Songbai,Vijay P Singh.2009.Meta-elliptical copulas for drought frequency analysis of periodichydrologic data. Stochastic Environmental Research and Risk Assessment. Springer. D0I101007/s00477-009-0331-1.
    Valentyn Panchenko.2005.Goodness-of-fit test for copulas. Physica A355.176-182.
    Woong Tae, Juan B. Valdés, F.ASCE.2006. Nonparametric Approach for Bivariate DroughtCharacterization Using Palmer Drought Index. DOI:10.1061/ASCE,1084-0699.11(2):134.
    Wilhite D A,Hayes M J,Knutson C.2000. Planning for drought: Moving from crisis to risk management.Water Resour. Assoc.36(4):697-710.
    Zhang L,Vijay P Singh.2007b Gumbel-Hougaard copula for trivariate rainfall frequency analysis.Journalof Hydrologic Engineering.12(4):409-419.
    Zhang L,Vijay P Singh.2007c.Trivariate Flood Frequency Analysis Using the Gumbel-Hougaard Copula.Journal of Hydrologic Engineering. July/August:431-439.
    Zhang L,V. P. Singh,F.ASCE.2006.Bivariate Flood Frequency Analysis Using the Copula Method. DOI:10.1061/ASCE,1084-0699.2(150):11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700