用户名: 密码: 验证码:
燕麦液体培养灵芝多糖的组分构成与抗氧化活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝多糖是灵芝中重要活性成分之一,具有抗氧化、免疫调节、抗肿瘤、降血糖、降血脂等多种功效。灵芝的人工栽培成本高、工艺复杂、生产周期长、过程不易控制,液体培养具有成本低、工艺简单、生产周期短、过程可控等优点。目前灵芝的液体培养所用的培养基多为合成或半合成培养基,鲜有以谷物为培养基的灵芝液体培养。论文研究了三种燕麦液体培养基(糊化燕麦、发芽燕麦、酶解燕麦)、一种半合成液体培养基和棉籽壳固体栽培所得菌丝体和发酵液(液体培养)或子实体(固体栽培)中多糖的组分构成及其抗氧化活性。研究中对多糖水提物和碱提物进行了分别研究。采用DPPH清除率、·OH自由基清除率和还原力三种方法对灵芝多糖的抗氧化活性进行分析。所得主要结果如下:
     (1)燕麦液体培养3~4天,灵芝菌体生长量即可达到最大值,而半合成培养基则需7天,固体培养获得子实体则需90~110天。燕麦液体培养可缩短灵芝菌丝体的培养时间。
     (2)与固体栽培所得灵芝子实体相比,燕麦液体培养所得菌丝体的多糖水提物的平均纯度为58.79%,是子实体的2.1倍,是半合成培养基所得菌丝体的90%;多糖碱提物的平均纯度为25.08%,是子实体的33%,是半合成培养基的89%。燕麦液体培养发酵液中的多糖产物的平均纯度为81.10%,是半合成培养基的1.01倍。相同多糖浓度条件下,燕麦液体培养所得菌丝体多糖水提物的平均抗氧化活性低于子实体,多糖碱提物的则高于子实体,两者均高于半合成培养基所得菌丝体多糖。三种燕麦培养基中,发芽燕麦培养所得各多糖提取物的抗氧化活性总体最高,其次为酶解燕麦,糊化燕麦最低。
     (3)经DEAE-纤维素分离纯化,固体栽培所得灵芝子实体多糖为四个组分,发芽燕麦培养所得菌丝体多糖水提物和碱提物为三个组分,其他多糖提取物均为两个组分。在所有培养方式中,不同多糖组分中的0.25mol/L NaCl洗脱组分的抗氧化活性最高,其次为0.1mol/L NaCl洗脱组分≈0.5mol/L NaCl洗脱组分,蒸馏水洗脱组分最低。
Ganoderma lucidum polysaccharide is a main effective component of Ganodermalucidum, which has many kinds of biological activities such as antioxidation, immuneregulation, antitumor, reduce blood sugar, reduce blood fat, et al. Artificial cultivation ofGanoderma lucidum is costly and complex, the production cycle of which is long and theprocess of which is hard to control. Liquid culture is a good method to produce Ganodermalucidum base on its advantages of lower cost, simpler technology, shorter production cycleand controllable process. At present, synthetic medium and semisynthetic medium are themain medium of liquid culture for Ganoderma lucidum, while grains are rarely used as themedium. The thesis studied the composition and antioxidant activity of Ganoderma lucidumpolysaccharides produced both in liquid culture with oats and solid culture with cottonseedhulls. Antioxidant activity of polysaccharides was evaluated by means of DPPH,·OH andreducing power. The primary results were as followed:
     (1) The cell biomass of Ganoderma lucidum achieve the maximum after cultivated for3-4days in oat culture, or7days in semisynthetic culture, while the maturity of fruit body ofGanoderma lucidum needs90-110days.
     (2) The average purity of water soluble polysaccharides produced from oat culture was58.79%, which was2.1times higher than those produced from solid culture and0.1timeslower than those produced from semisynthetic culture. The average purity of alkaline solublepolysaccharides produced from oat culture was25.08%, which was0.67times lower thanthose produced from solid culture and0.11times lower than those produce fromsemisynthetic culture. The average purity of extracellular polysaccharides was81.10%, whichwas1.01times higher than those produced from semisynthetic culture. In the sameconcentration, the average antioxidant activity of water soluble polysaccharides producedfrom oat culture was lower than those produced from solid culture, while the averageantioxidant activity of alkaline soluble polysaccharides produced from oat culture was higherthan those produced from solid culture. Both the water soluble polysaccharides and thealkaline soluble polysaccharides produced from oat culture had a higher antioxidant activitythan those produced from semisynthetic culture. Among the three kinds of oat culture, thegerminant oat culture could produce the highest antioxidant polysaccharides, secondly the zymolytic oat, finally the gelatinized oat.
     (3) The polysaccharides were seperated using DEAE-cellulose. Polysaccharidesextracted from fruit body had4compositions. Water soluble polysaccharides and alkalinesoluble polysaccharides produced from germinant oat culture had3compositions. Otherpolysaccharides had2compositions. Of all the compositions, the0.25mol/L NaCl elutionfraction showed the highest antioxidant activity, Next were the0.1mol/L NaCl elution fractionand the0.5mol/L NaCl elution fraction, finally the water elution fraction.
引文
白芳静,章克昌.2001.利用酒糟深层发酵生产灵芝酸的培养基的优化.酿酒,28(4):66-68.
    陈国良.2011.食用菌生长发育机制的我见.中国食用菌,30:(5):92-103.
    陈留勇,孟宪军,贾薇.2004.黄桃水溶性多糖的抗肿瘤作用及清除自由基、提高免疫活性研究.食品科学,25(1):167-170.
    陈哲超,林宇野.1995.复合酶法提取香菇多糖的研究.生物工程进展,15(1):47-50.
    陈志玲,温鲁,贾智慧.2009.几种微量元素和维生素对灵芝多糖及灵芝酸含量的影响.安徽农业科学,37(5):2041-2043.
    储炬,李友荣.2002.现代发酵调控学.北京:化学工业出版社
    董昌金.2001.灵芝多糖的提取及对小鼠免疫功能影响的研究.湖北师范学院学报,3:72-77.
    方庆华,钟建江.2001.灵芝真菌发酵生产灵芝多糖和灵芝酸.华东理工大学学报,27(3):254-257.
    范晓,严小军,房国明.1999.高分子量褐藻多酚抗氧化性质研究.水生生物学报,23(5):494-499.
    高明侠,苗敬芝,曹译虹.2008.灵芝原生质体电融合选育高产多糖菌株的研究.江苏农业科学,(6):89-91.
    龚海,李成雄,王雁丽.1999.燕麦品种资源品质分析.山西农业科学,27(2):16-19.
    胡斌杰,陈金锋,王宫南.2007.超声波法与传统热水法提取灵芝多糖的比较研究.食品工业科技,2:190-192.
    胡新中,魏益民,罗勤贵.2006.燕麦面团流变学及加工特性研究.中国粮油学报,21(4):49-51.
    姜发堂,陆生槐.1997.方便食品原料学与工艺学.北京:中国轻工出版社
    李春花,梅春光.2010.燕麦的营养成分及营养保健价值的研究进展.现代农业,(5):134-135.
    李德海,王志强,孙常雁.2010.微波辅助提取黄伞多糖及其初步纯化工艺.东北林业大学学报,38(5):90-92.
    李刚,李宝健.1998.灵芝发酵培养基的研究.药用植物栽培,21(8):379-381.
    李平作,徐柔,夏结红.2000.灵芝深层发酵生产四环三萜酸的研究.工业微生物,30(1):15-17.
    李平作,徐柔,章克昌.2000.灵芝液体发酵过程中菌体形态与胞外多糖产量的关系.工业微生物,30(3):20-23.
    李荣芷.1991.灵芝抗衰老机理与活性成分灵芝多糖的化学与构效研究.北京医科大学学报,23(6):473.
    李瑞,赵浩如,陈乃林.2003.白花蛇舌草多糖除蛋白的方法研究.江苏中医药,24(10):56-57.
    李绪全,杨晓彤.2004.灵芝多糖研究新进展.中国新医药,3(9):57-60.
    李雁群,章克昌.2003.12味中药对灵芝菌液体培养的影响.食品与发酵工业,29(3)
    李扬汉.1979.禾本科作物的形态与解剖.上海:科学技术出版社:461-476.
    李云梅.2009.多糖的提取分离及纯化研究.中国民族民间医药,14:135-136.
    林汝法,柴岩,廖琴.2002.中国小杂粮.北京:中国农业科学技术出版社:126.
    林伟静,吴光锋,李春红.2011.品种与环境对我国裸燕麦营养品质的影响.作物学报,37(6):1087-1092.
    林宇野,杨虹.1995.酶法提取多糖的研究.食品与发酵工业,(1):13-17.
    林志彬.1999.灵芝的现代研究.北京:北京医科大学中国协和医科大学联合出版社.
    刘存芳.2008.灵芝营养成分综述.内江科技,5:20-21
    刘冬,李世敏,许柏球,赖国红.2001. pH值及溶解氧对灵芝多糖深层液态发酵的影响与控制.食品与发酵工业,27(6):7-10.
    刘冬,李世敏,许柏球.2000.灵芝菌丝体深层液体发酵培养基研究.微生物学杂志,21(2):16-17
    刘刚,刘英,陈季旺,田向东.2008.燕麦淀粉理化性质的研究.中国粮油学报,23(3):86-89.
    刘高强,丁重阳,章克昌.2009.药用昆虫蜣螂对灵芝多糖生物合成的影响.生物工程学报,25(6):914-919.
    刘思妤,王艳,何蓉蓉.2008.灵芝的化学成分.沈阳药科大学学报,25(3):183-187.
    刘文海.2000.袋栽灵芝高产新技术.北京:北京出版社:38-40.
    刘媛,丁重阳,章克昌.2008.10种中药对灵芝液体发酵的影响.食品与生物技术学报,27(2):123-126.
    刘政.2007.燕麦主要成分分离及其性质研究.[硕士学位论文].兰州:甘肃农业大学.
    陆文埃.1985.灵芝.北京:科学出版社
    路长喜,周素梅,王岸娜.2008.燕麦的营养与加工.粮油加工,(1):90-93.
    罗建成,史政海.2007.灵芝深层发酵工艺研究.化学与生物工程,24(10):41-45.
    马晓凤,刘森.2005.燕麦品质分析及产业化开发途径的思考.农业工程学报,21增刊:242-244.
    钮晓艳,张日俊,张功.2004.灵芝多糖的结构及功能研究.饲料研究,(12):37-39.
    钱先来.2010.不同条件下灵芝培养研究及相关检测.[硕士学位论文].保定:河北大学.
    史景熙,杨中汉,梅慧生.1988.燕麦降血脂有效成分探讨.营养学报,16(4):348-353.
    宋淑敏,王大鹏,李新华.1999.深层发酵灵芝生物工程技术与产品研究.食品科学,12:40-43.
    孙东平,潘锋,史小丽.2000.灵芝菌发酵培养的优化及灵芝胞外多糖的分离纯化.中草药,31(12):941-943.
    谭周进,谢达平.2002.多糖的研究进展.食品科技,3:10-12.
    涂国云,卜宗式,杜昱光.1998.酶法提取竹荪深层发酵菌丝体多糖的研究.中国食用菌,17(1):36-38.
    王谦,冀宏,汪虹.1999.灵芝营养液的发酵法制备及分析.河北大学学报,19(1):50-53.
    王淑华,孙翠焕,朱万琴.1994.灵芝液体深层发酵工艺初报.微生物学杂质,14(1):29-32.
    王淑珍,白晨.2000.灵芝孢子诱变与菌丝高长速菌株选育.中国食用菌,19(6):6-9.
    王玉红,丁重阳,徐鹏.2005.中药黄芪对发酵生产灵芝多糖的影响.食品与生物技术学报,24(2):38-40,45.
    魏决,郭玉蓉,金小培,刘晨,赵敏.2006.燕麦油脂的理化性质研究及脂肪酸组成分析.食品科技,(7):204-207.
    吴水英.2006.发酵生产灵芝菌种的应用研究.[硕士学位论文].赣州:江西理工大学.
    肖静怡,黄可龙,洪涌.2007.阳离子树脂对香菇多糖中色素的吸附性能研究.中国生化药物杂质,28(6):386-390.
    邢燕,杨晓彤,杨庆尧.2007.灵芝液体深层发酵研究进展.工业微生物,37(3):63-67.
    徐翠莲,杜林洳,樊素芳.2009.多糖的提取、分离纯化及分析鉴定方法研究.河南科学,27(12):1524-1529.
    徐格非,庞秀炳,高向东.2007.微波辅助法提取灵芝多糖.药学与临床研究,15(4):297-299.
    鄢嫣,张汇,聂少平.2009.黑灵芝子实体水溶性多糖的理化性质及抗氧化活性的研究.食品科学,30(19):55-60.
    杨晓彤,糜可,杨庆尧.1997.香菇菌丝体多糖的分离纯化和分析.微生物学报,37(2):119-120.
    杨晓彤,周月琴,李绪全.2005.不同灵芝菌株菌丝体乙醇提取物体外抑瘤活性的比较和机理.菌物学报,24(2):251-258.
    杨焱,刘艳芳,张劲松.2004.赤芝G2深层发酵优化模式的研究.食用菌学报,11(3):43-49.
    姚强,高兴喜,宫志远,孔明,任鹏飞,刘岩,韩建东,任海霞.2010.不同脂肪酸对灵芝液体发酵的影响.食用菌学报,17(3):55-59.
    叶盛权,吴晖,余以刚,陈娜,李金燕.2011.不同金属离子对灵芝多糖液态发酵的影响.生物工程,32(1):106-108.
    于淑娟,高大维,李国基.1998.超声波酶法提取灵芝多糖的机理研究.华南理工大学学报(自然科学版),26(2):123-127.
    余竟光.1979.薄盖灵芝深层发酵菌丝体化学成分的研究.药学学报,14(6):374.
    余强,聂少平,李文娟.2009.黑灵芝多糖对D-半乳糖致衰老小鼠的作用研究.食品科学,30(17):305-307.
    余素萍,张劲松,唐庆九.2004.不同发酵阶段的灵芝菌丝三萜类成分与抗肿瘤作用的相关性研究.菌物学报,23(4):548-554.
    曾晓希,周洪波,符波.2007.灵芝多糖液体发酵条件的研究.现代生物医学进展,7(6):830-832.
    张锦雀,黄丽英,苏聪枚.2008.中草药多糖提取分离纯化研究进展.中药材,31(11):1760-1765.
    张丽萍,翟爱华.2004.燕麦的营养功能特性及综合加工利用.食品与机械,20(2):55-57
    张庆丽.2011.燕麦的营养成分及保健价值.贮藏加工,(4):67-69.
    张晓静,刘会东.2003.植物多糖提取分离及药用作用的研究进展.时珍国医国药,14(8):495-496.
    张志军,李淑芳,刘建华.2005.灵芝多糖提取-水浸提条件的研究.天津农学院学报,12(1):12-15.
    张志军,刘建华,李淑芳,杨丽维.2006.灵芝多糖含量的苯酚硫酸法检测研究.食品工业科技,(2):55-62.
    赵国华.1999.抗性淀粉.粮食与油脂,(2):3-6.
    赵继鼎,张小青.2000.中国真菌志:2000版.北京:北京科学出版社.
    郑建梅,曹莹莉,胡新中,徐明.2012.不同地区不同裸燕麦品种淀粉品质分析.麦类作物学报,32(1):74-78中国农学会遗传资源学会.1994.中国作物遗传资源.北京:中国农业出版社:198-200.
    中华人民共和国农业部.2008.食用菌中粗多糖含量的测定.中华人民共和国农业行业标准,NY/T1676-2008.
    周月琴,杨晓彤,李绪全.2005.灵芝属真菌乙醇提取物抑瘤活性比较和机制探索.上海师范大学学报(自然科学版),34(2):77-81.
    庄毅.1995.药用菌新型固体发酵与中药生物工程.南京中医药大学学报,10(4):1-2.
    Aroa, H., Jarvenpaa, E., Konko, K., Huopalahti, R., Hietaniemi, V.2007. The characterisation of oatlipids produced by supercritical fluid technologies. Journal of Cereal Science,45(1):116-119.
    Babitskaya VG, Shcherba VV, Puchkova TA.2005. Polysaccarides of Ganoderma Lucidum: FactorsAffecting Their Production. Applied Biochemistry and Microbiology,41(2):169-173.
    Cai Y Z, Luo Q, Sun M.2004. Antioxidant Activity and Phenolic compounds of112Traditional ChineseMedicinal Plants Associated with Anticancer. Life Sci,74:2157-2184.
    Chang MY, Tsai GJ, Houng JY.2006Optimization of the medium composition for the submerged cultureof Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme and MicrobialTechnology,38(3-4):407-414.
    Cheung LM, Cheung CK, Vincent EC.2003. Antioxidant Activity and Total Pheolics of EdibleMushroom Extracts. Food Chem,81:249-255.
    Fang QH, Zhong JJ.2002.c Submerged fermentation of higher fungus Ganoderma lucidum forproduction of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochemical EngineeringJournal,10:61-65.
    Fang QH, Zhong JJ.2002a. Effect of initial pH on production of ganoderic acid and polysaccharide bysubmerged fermentation of Ganoderma lucidum. Process Biochemistry,37(7):769-774.
    Fang QH., Zhong JJ.2002b. Two-Stage Culture Process for Improved Production of Ganoderic Acid byLiquid Fermentation of Higher Fungus Ganoderma lucidum. Biotechnology progress,18:51-54.
    Fang Y Z, Yang S, Wu G Y.2002. Free Radicals, Antioxidants, and Nutrition. Nutrition,18(10):872.
    Fukushima Y, Itoh H, Fukase T.1991. Stimulation of protease production by Aspergillus oryzae with oilsin continuous culture. Appl Microbiol Biotechnol,34:586-590.
    Gidley M. J Cooke D, Drake A H, Hoffmann R A.1995. Molecular order and structure in enzyme-rearyand retrograted starch. Carbohyder Polym,28:23.
    Hirotani M.1987. Phytochemistry,26:2797.
    Hoover, R., Smith, C., Zhou, Y., Ratnayake, R. M.2003. Physicochemical properties of canadian oatstarches. Carbohydrate Polymers,3(52):253-261.
    Hsieh CY, Tseng MH, Liu CJ.2006. Production of polysaccharides from Ganoderma lucidum (CCRC36041) under limitation of nutrients. Enzyme&Microbial Technology,38(1/2):109-117.
    Humfeld H.1952. Mycologia,66(5):605-620.
    Kohda H, Tokumoto W, Sakamoto K.1985. The biologically active constituents of Ganodermalucidum(Fr.) Karst. Histamine release-inhibitory triterpenes. Chem Pharm Bull,33(4):1367-1374.
    Leung MYK, Fung KP, Choy YM.1997. The isolation and characterization of an immunomodulatoryand anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology,35(3):255-263.
    Lin YL, Liang YC, Lee SS.2005. Polysaccharide purified from Ganoderma lucidum induced activationand maturation of human monocyte-derived dendritic cells by the NF-kappa B and p38mitogen-activatedprotein kinase pathways. Journal of Leukocyte Biology,78(2):533-543.
    Min B. S.1998. Triterpenes from spores of Ganoderma lucidum and their inhibitory activity againstHIV-1protease. Chem Pharm Bull,46(10):1607-1612.
    Misaki A, Kawaguchi K, Miyaji H.1984. Structure of pestalotan, a highly branched(1→3)-beta-D-glucan elaborated by Pestalotia sp.815, and the enhancement of its antitumor activity bypolyol modifacation of the side chains. Carbohydrate Research,129:209-227.
    Miyazaki T, Nishijima M.1981. Studies on fungal polysaccharides. ⅩⅩⅦ. Structural examination of awater-soluble, antitumor polysaccharide of Ganoderma lucidum. Chemical&Pharmaceutical Bulletin,29(12):3611-3616.
    Peterson, D.M., Wood, D.F.1997. Composition and structure of high-oil oat. Journal of Cereal Science,26(1):121-128
    Russell R, Paterson.2006, Phytochemistry,69:1469-1495.
    Skendi A, Biliaderis CG, Lazaridou A, et al.2003. Structure and rheological properties of water solubleβ-Glucan from oat culivars ofAvenasativa andAvenabysantina. Cereal Science,38:15-31.
    Smirnoff N, Cumbes Q J.1989. Hyroxyl Radical Scavenging Activity of Compatible Solut.Phytochemistry,28(4):1057-1060.
    Stasinopoulos SJ, Seviour RJ.1990. Stimulation of exopolysaccharide production in the fungusAcremonium persicinum with fatty acids. Biotechnol Bioeng,36:778-782.
    Tang YJ. Zhong JJ.2003. Scale up of a Liquid Culture Process for Hyperproduction of Ganoderic Acidby the Medicinal Mushroom Ganoderma lucidum. Biotechnology progress,19:1842-1846.
    Toth JO.1983. Les acides ganoderiques T a A:triterpenes cytotoxiques de Ganodermalucidum(Polyporacee).Tetrahedron Lett,24(10):1081.
    Unursaikhan S, Xu XJ, Zeng FB.2006. Antitumor activities of O-sulfonated derivatives of(1→3)-alpha-D-glucan from different Lentinus edodes. Biosciense Biotechnology&Biochemistry,70(1):38-46.
    YANG F C, KE Y F, KUO SS.2000. Effect of fatty acids on the mycelial growth and polysaccharideformation by Gandoerma lucidum in shake flask culture. Enzyme and Microbial Technology,27:295-301.
    Yang FC, Liu CB.2000. The company influence of environmental conditions on polysaccharideformation by Ganoderma lucidum in shake flask culture. Enzyme and Microbial Technology,27:295-301.
    Yang QY.1997. YunZhi Polysaccharopeptide (PSP) and the general aspects of its research. FungiScience,12(1-2):1-8.
    Zhang L, Li XL, Xu XJ.2005. Correlation between antitumor activity, molecular weight, andconformation of lentinan. Carbohydrate Research,340(8):1515-1521.
    Zhang YH, Zhong JJ, Yu JT.1995. Effect of osmotic pressure on cell growth and production of ginsengsaponin and polysaccharide in suspension cultures of panax notoginseng. Biotechnology Letter,17:1347-1350.
    Zhu M, Chang Q, Wong LK.1999. Triterpene antioxidants from Ganoderma lucidum. Phytother Res,13(6):529-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700