1. [地质云]滑坡
硫化镉—石墨烯复合物的可见光催化分解水产氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是二十一世纪人类面临和亟待解决的两大世界性的问题。自从1972年日本科学家Fujishima和Honda在二氧化钛电极上发现光催化分解水以来,太阳光诱导光催化反应被普遍认为是一种将太阳能转化为氢能源的有效途径,可以有效解决能源短缺问题;随后,人们又发现光催化反应还拥有速度快、条件温和、无二次污染、降解有机物完全等优越性能而成为一种理想的环境污染治理技术。因此采用半导体化合物进行光催化分解水产氢(能源光催化)以及光催化降解污染物(环境光催化)受到了人们的普遍关注。本论文就能源光催化与环境光催化两个方面分别对硫化镉与二氧化钛的光催化活性的提高进行了研究。
     在能源光催化方面,我们通过简便的溶剂热法制备出一种硫化镉-石墨烯纳米复合材料,然后对其做了以下的表征和测试:X射线衍射分析、透射电子显微分析、比表面积和孔径分析、紫外-可见漫反射光谱分析、X射线光电子能谱分析、红外光谱分析和可见光催化分解水产氢活性分析。结果发现,复合物中的石墨烯促进了硫化镉半导体的结晶,增大了其比表面积,且适量的石墨烯可大大增加复合物的催化活性。原料中,氧化石墨烯与二水醋酸镉的最佳质量比为1.0wt%,此时复合物以乳酸为牺牲剂,在0.5wt%贵金属Pt的的共催化作用下的可见光催化分解水产氢速率可高达1.12mmol·h-1,420nm处相应的表观量子效率为22.5%。结果说明石墨烯不仅可以作为半导体纳米颗粒的良好载体,还能作为电子的捕获者和传输者,大大延长光生载流子的寿命。这一研究不仅说明了石墨烯作为半导体材料的载体在光催化分解水制氢方面的作用,还揭示了石墨烯基材料在能源转化领域中的潜在应用。
     在环境光催化方面,我们利用阴离子掺杂的方法对二氧化钛进行改性,先将钛酸丁酯和一种BMIM+BF4-离子液体的水溶液进行水热处理,再对所制得的粉体进行短时间的不完全煅烧,得到新型的氟化硼碳共掺杂二氧化钛纳米颗粒。我们对所制得的催化剂做了以下的表征和测试:X射线衍射分析、透射电子显微分析、比表面积和孔径分析、X射线光电子能谱分析、紫外-可见漫反射光谱分析和可见光催化降解罗丹明B染料活性分析。结果发现,离子液体在制备过程中可同时作为二氧化钛的形貌控制剂和掺杂剂。表面氟化可以增强二氧化钛对阳离子染料罗丹明B的表面吸附;硼掺杂可以在二氧化钛中生成Ti3+能级和氧空位,延长光生载流子的寿命;而碳掺杂有利于催化剂的可见光响应。因此,优化的形貌和氟、硼、碳共掺杂的协同作用共同导致所制备的催化剂拥有理想的可见光催化活性,其中最佳样品的降解表观速率常数为2.78×10-2min-1,比商用P25的速率常数(1.110-2min-1)高了140%。这种新型的氟化硼碳共掺杂锐钛矿二氧化钛纳米颗粒的制备方法及其优异的光催化活性和高稳定性为形貌可控的多元素掺杂半导体材料的合成提供了新的思路,更进一步的促进了光催化在环境方面的应用。
In the21st century, energy and environment are the two major global problems to be solved. Since Japanese scientists Fujishima and Honda found the photocatalytic splitting of water on titanium dioxide electrode in1972, sunlight induced photocatalytic reaction has been generally considered to be a way to convert solar energy into hydrogen energy, which can effectively solve the energy shortage; then, it has been found that the photocatalytic reaction also has many advantages like mild conditions, no secondary pollution, complete degradation of organic matters, and so on, which can become an ideal environment pollution control technology. Therefore, the semiconductor photocatalytic hydrogen production (energy photocatalysis) and photocatalytic pollutant degradation (environmental photocatalysis) are in a widespread concern. In this paper, the improvement of the photocatalytic activity of cadmium sulfide and titanium dioxide for energy and environmental photocatalysis, respectively, were studied.
     For energy photocatalysis, a graphene-CdS nanocomposite material was prepared by a solvothermal method, followed with the characterizations and tests such as X-ray diffraction analysis, transmission electron microscopy, N2adsorption-desorption, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy and visible-light photocatalytic hydrogen production analysis. It was found that graphene nanosheets in the composite enhance the crystallinity and the specific surface areas of CdS clusters, and a low amount of graphene can dramatically improve the photocatalytic activity. The optimal weight percentage of graphene was found to be1.0wt%, which resulted in a high visible-light photocatalytic H2-production rate of1.12mmol-h-1and corresponding apparent quantum efficiency of22.5%at420nm with0.5wt%Pt as a cocatalyst. The results demonstrate that the unique features of graphene make it an excellent supporting material for semiconductor nanoparticles as well as an electron collector and transporter to separate photogene rated electron-hole pairs. This work not only demonstrates the potential of graphene as a support for CdS nanoparticles in photocatalytic hydrogen production, but also highlights more generally the potential application of graphene-based materials in the field of energy conversion.
     For energy photocatalysis, fluorinated B/C co-doped anatase TiO2nanoparticles were prepared by a hydrothermal method followed with a controlled calcination process. The characterizations and tests such as X-ray diffraction analysis, transmission electron microscopy, N2adsorption-desorption, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, and visible-light photocatalytic RhB degradation analysis were carried out. It was found that the ionic liquid (IL) BMIM+BF4-played dual roles in the formation of the photocatalyst. One is to control the structure, making TiO2crystals grow uniformly with large specific surface area due to the "capping effect" of IL; the other is to behave as the F, B, and C dopant sources. In the doped TiO2, the surface fluorination favors the absoroption of RhB molecules in the TiO2/dye system, B doping induces the formation of Ti3+level and oxygen vacancies and improves the quantum efficiency, and C doping is responsible for the strong visible-light response of the photocatalyst. Thus, the modified mophology and synergic contributions of F, B and C dopants result in the excellent visible-light photocatalytic degradation rate of RhB, which is140%higher than that of commercial P25. The novel fluorinated B/C co-doped anatase TiO2nanoparticles with outstanding photocatalytic performance and the proposed contributions of specific active species involved in the dye degradation could provide new insights on the design of morphology-controlled multi-doped semiconductor materials, and be very promising for wide environmental applications.
引文
[1]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
    [2]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-272.
    [3]Khan S U M, Al-Shahry M, Ingler Jr W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245.
    [4]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].2001,414:625-627.
    [5]Sato S. Effects of surface modification with silicon oxides on the photochemical properties of powdered titania[J]. Langmuir,1988,4(5):1156-1159.
    [6]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [7]Vorontsov A, Stoyanova 1, Kozlov D, et al. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide[J]. Journal of Catalysis,2000,189(2):360-369.
    [8]Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis,1990,122(1):178-192.
    [9]Miyauchi M, Nakajima A, Fujishima A, et al. Photoinduced surface reactions on TiO2 and SrTiO3 films:photocatalytic oxidation and photoinduced hydrophilicity[J]. Chemistry of Materials,2000,12(1):3-5.
    [10]Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems[J]. Journal of Physical Chemistry,1979,83(24):3146-3152.
    [11]高濂,郑珊,张青红,等.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [12]Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [13]Nada A, Barakat M, Hamed H, et al. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts[J]. International Journal of Hydrogen Energy, 2005,30(7):687-691.
    [14]Li Y, Lu G X, Li S. Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy[J]. Chemosphere,2003,52(5):843-850.
    [15]Lee S G, Lee S, Lee H I. Photocatalytic production of hydrogen from aqueous solution containing CN" as a hole scavenger[J]. Applied Catalysis A:General,2001,207(1-2):173-181.
    [16]Kida T, Guan G, Yamada N, et al. Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation[J]. International Journal of Hydrogen Energy,2004,29(3):269-274.
    [17]Gurunathan K, Maruthamuthu P, Sastri M. Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution[J]. International Journal of Hydrogen Energy,1997,22(1):57-62.
    [18]Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution:a comparison of activities of Au-TiO2 and Pt-TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,1995,89(2):177-189.
    [19]Koca A, Sahin M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution[J]. International Journal of Hydrogen Energy,2002,27(4):363-367.
    [20]Abe R, Sayama K, Domen K, et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator[J]. Chemical Physics Letters,2001,344(3):339-344.
    [21]Lee K, Nam W S, Young Han G. Photocatalytic water-splitting in alkaline solution using redox mediator.1:Parameter study[J]. International Journal of Hydrogen Energy,2004,29(13): 1343-1347.
    [22]Bamwenda G R, Arakawa H. The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+[J]. Solar Energy Materials and Solar Cells, 2001,70(1):1-14.
    [23]马丽丽,余颖,王恩科.可见光响应的纳米Cu2O, CdS的制备及其光催化性质研究[D].武汉:华中师范大学,2008.
    [24]Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [25]Iliev V, Tomova D, Bilyarska L, et al. Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid[J]. Journal of Molecular Catalysis A: Chemical,2007,263(1):32-38.
    [26]Sun B, Vorontsov A V, Smirniotis P G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation[J]. Langmuir,2003,19(8):3151-3156.
    [27]Sakthivel S, Shankar M, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research,2004,38(13):3001-3008.
    [28]Xin B, Jing L, Ren Z, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. The Journal of Physical Chemistry B,2005, 109(7):2805-2809.
    [29]Haruta M. Catalysis of gold nanoparticles deposited on metal oxides[J]. Cattech,2002, 6(3):102-115.
    [30]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal of Catalysis,2003,216(1-2): 505-516.
    [31]Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration[J]. Journal of the American Chemical Society, 2004,126(15):4943-4950.
    [32]Kobayakawa K, Murakami Y, Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea[J]. Journal of Photochemistry and Photobiology A: Chemistry,2005,170(2):177-179.
    [33]Gole J, Burda C, Fedorov A, et al. Enhanced reactivity and phase transformation at the nanoscale:efficient formation of active silica and doped and metal seeded TiO2[J]. Revew of Advanced Material Science,2003,5:265-269.
    [34]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters,2002,81:454.
    [35]Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J]. The Journal of Physical Chemistry B,2003,107(24):5709-5716.
    [36]Okada M, Yamada Y, Jin P, et al. Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity[J]. Thin Solid Films,2003, 442(1):217-221.
    [37]Chen S Z, Zhang P Y, Zhuang D M, et al. Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering[J]. Catalysis Communications, 2004,5(11):677-680.
    [38]Torres G R, Lindgren T, Lu J, et al. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation[J]. The Journal of Physical Chemistry B,2004,108(19): 5995-6003.
    [39]Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles[J]. The Journal of Physical Chemistry B,2004,108(40):15446-15449.
    [40]Bi Z C, Ti Tien H. Photoproduction of hydrogen by dye-sensitized systems[J]. International Journal of Hydrogen Energy,1984,9(8):717-722.
    [41]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters,2003,32(4):364-365.
    [42]Zhao W, Ma W, Chen C, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xbx under Visible Irradiation[J]. Journal of the American Chemical Society,2004, 126(15):4782-4783.
    [43]Tachikawa T, Tojo S, Kawai K, et al. Photocatalytic oxidation reactivity of holes in the sulfur-and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy[J]. The Journal of Physical Chemistry B,2004,108(50):19299-19306.
    [44]Yu J G, Xiong J J, Cheng B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. Journal of Solid State Chemistry,2005,178(6): 1968-1972.
    [45]Yu J C, Yu J G, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chemistry of Materials,2002,14(9): 3808-3816.
    [46]张利娟.分等级海绵状大孔/介孔二氧化钛的水热制备与光催化活性[D].武汉:武汉理工大学,2008.
    [47]胡冬娜.可见光响应型光催化剂的制备及其降解有机污染物的研究[D].北京:北京交通大学,2007.
    [48]O'regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353(6346):737-740.
    [49]Nguyen T V, Kim S S, Yang O B. Water decomposition on TiO2-SiO2 and RuS2/TiO2-SiO2 photocatalysts:the effect of electronic characteristics[J]. Catalysis Communications,2004,5(2): 59-62.
    [50]Li D, Haneda H, Ohashi N, et al. Synthesis of nanosized nitrogen-containing MOx-ZnO (M= W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition[J]. Catalysis Today,2004,93(895-901.
    [51]Keller V, Garin F. Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase[J]. Catalysis Communications,2003,4(8):377-383.
    [52]Kang M G, Han H E, Kim K J. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2[J]. Joumal of Photochemistry and Photobiology A:Chemistry,1999,125(1):119-125.
    [53]Doong R A, Chen C H, Maithreepala R, et al. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions[J]. Water Research,2001,35(12):2873-2880.
    [54]So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4[J]. International Journal of Hydrogen Energy, 2004,29(3):229-234.
    [55]Bessekhouad Y, Robert D, Weber J. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. Journal of photochemistry and photobiology A, Chemistry,2004,163(3):569-580.
    [56]Inoue T, Watanabe T, Fujishima A, et al. Suppression of surface dissolution of CdS photoanode by reducing agents[J]. Journal of Electrochem Society,1977,124(5):719-722.
    [57]Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
    [58]Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
    [59]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
    [60]Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
    [61]Nhut J M, Pesant L, Tessonnier J P, et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis[J]. Applied Catalysis A:General,2003,254(2):345-363.
    [62]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Applied Catalysis A:General,2003,253(2):337-358.
    [63]Yao Y, Fu Q, Zhang Z, et al. Structure control of Pt-Sn bimetallic catalysts supported on highly oriented pyrolytic graphite (HOPG)[J]. Applied surface science,2008,254(13): 3808-3812.
    [64]Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20(14):2255-2262.
    [65]Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry,2010,20(14):2801-2806.
    [66]Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J].2002,418:964-967.
    [67]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [68]O'regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].1991,353,737-740.
    [69]Liu S W, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed﹛001﹜ facets[J]. Journal of the American Chemical Society,2010,132(34):11914-11916.
    [70]Bard A, Fox M. Artificial photosynthesis:solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research,1995,28(3):141-145.
    [71]Park J, Kim S, Bard A. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano Letters,2006,6(1):24-28.
    [72]Sojic D, Despotovi V, Abramovi B, et al. Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2[J]. Molecules,2010,15(5): 2994-3009.
    [73]Yang H G, Liu G, Qiao S Z, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant﹛001﹜ facets[J]. Journal of the American Chemical Society,2009, 131(11):4078-4083.
    [74]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414(6864):625-627.
    [75]Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1_x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures[J]. Journal of the American Chemical Society,2004,126(41):13406-13413.
    [76]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38(1):253-278.
    [77]Bao N, Shen L, Takata T, et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light[J]. Chemistry of Materials,2008,20(1):110-117.
    [78]Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis,2009,266(2): 165-168.
    [79]Silva L, Ryu S, Choi J, et al. Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS[J]. The Journal of Physical Chemistry C,2008,112(32):12069-12073.
    [80]Li Y, Ma G, Peng S, et al. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1.x.0.5yOx(OH)y) under visible light irradiation[J]. Applied Catalysis A:General,2009, 363(1-2):180-187.
    [81]Matsumura M, Furukawa S, Saho Y, et al. Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite:effect of crystal structure and preparation method of the catalyst[J]. The Journal of Physical Chemistry,1985,89(8):1327-1329.
    [82]Reber J, Rusek M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide[J]. The Journal of Physical Chemistry,1986,90(5):824-834.
    [83]Hoffman A, Mills G, Yee H, et al. Q-sized cadmium sulfide:synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers[J]. The Journal of Physical Chemistry,1992,96(13):5546-5552.
    [84]Li Y, Xie Y, Peng S, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2[J]. Chemosphere,2006,63(8):1312-1318.
    [85]Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlay er[J]. Journal of Physical Chemistry B,2002,106(47):12227-12230.
    [86]Enea O, Bard A. Photoredox reactions at semiconductor particles incorporated into clays. Cadmium sulfide and zinc sulfide+cadmium sulfide mixtures in colloidal montmorillonite suspensions[J]. The Journal of Physical Chemistry,1986,90(2):301-306.
    [87]Sato T, Okuyama H, Endo T, et al. Preparation and photochemical properties of cadmium sulphide-zinc sulphide incorporated into the interlayer of hydrotalcite[J]. Reactivity of Solids, 1990,8(1-2):63-72.
    [88]Hirai T, Okubo H, Komasawa I. Size-selective incorporation of CdS nanoparticles into mesoporous silica[J]. The Journal of Physical Chemistry B,1999,103(21):4228-4230.
    [89]Wu J L, Bai S, Shen X P, et al. Preparation and characterization of graphene/CdS nanocomposites[J]. Applied Surface Science,2010,257(3):747-751.
    [90]Nethravathi C, Nisha T, Ravishankar N, et al. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide[J]. Carbon,2009,47(8): 2054-2059.
    [91]Cao A N, Liu Z, Chu S, et al. A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials[J]. Advanced Materials, 2010,22(1):103-106.
    [92]Lerf A, He H, Forster M, et al. Structure of Graphite Oxide Revisited[J]. The Journal of Physical Chemistry B,1998,102(23):4477-4482.
    [93]Meyer J, Geim A K, Katsnelson M, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63.
    [94]Shen L, Zeng M, Yang S W, et al. Electron Transport Properties of Atomic Carbon Nanowires between Graphene Electrodes[J]. Journal of the American Chemical Society,2010, 1289.
    [95]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology,2008,3(5):270-274.
    [96]Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society,2008, 130(18):5856-5857.
    [97]Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J]. Thin Solid Films,2000,379(1-2):7-14.
    [98]Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[J]. The Journal of Physical Chemistry C,2010, 114(30),13118-13125.
    [99]Yu J G, Zhang J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution[J]. Green Chemistry,2010,12(9):1611-1614.
    [100]Williams G, Seger B, Kamat P. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS nano,2008,2(7):1487-1491.
    [101]Dahn J, Sleigh A, Shi H, et al. Dependence of the Electrochemical Intercalation of Lithium in Carbons on the Crystal Structure of the Carbon[J]. Electrochimica Acta,1993,38(9): 1179-1191.
    [102]Yu J G, Yu H G, Cheng B, et al. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment[J]. Journal of Molecular Catalysis A:Chemical,2006,253(1-2): 112-118.
    [103]Sing K, Everett D, Haul R, et al. Reporting physisorption data for gas/solid systems[J]. Pure Applied Chemistry,1985,57(4):603-619.
    [104]Stankovich S, Dikin D, Piner R, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [105]Stankovich S, Piner R, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-158.
    [106]Szabo T, Tombacz E, Illes E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon,2006,44(3):537-545.
    [107]Zhang W, Zhong Z, Wang Y, et al. Doped solid solution:(Zn0.95Cu0.05)i-xCdxS nanocrystals with high activity for H2 evolution from aqueous solutions under visible light[J]. The Journal of Physical Chemistry C,2008,112(45):17635-17642.
    [108]Alonso-Vante N, Colell H, Stimming U, et al. Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes[J]. The Journal of Physical Chemistry,1993,97(29):7381-7384.
    [109]Bamwenda G, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution:a comparison of activities of Au-TiO2 and Pt-TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,1995,89(2):177-189.
    [110]Li Q, Guo B D, Yu J G, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. Journal of the American Chemical Society,2011,133(28):10878-10884.
    [111]Ren Z, Kim E, Pattinson S, et al. Hybridizing photoactive zeolites with graphene:a powerful strategy towards superior photocatalytic properties[J]. Chemical Science,2011,3(1): 209-216.
    [112]YuH G, Liu R, Wang X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst[J]. Applied Catalysis B:Environmental,2011, 111-112:326-333.
    [113]Maeda K, Ohno T, Domen K. A copper and chromium based nanoparticulate oxide as a noble-metal-free cocatalyst for photocatalytic water splitting[J]. Chemical Science,2011,2(7): 1362-1368.
    [114]Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Review,2012,41:782-796.
    [115]Thompson T L, Yates Jr J T. Surface science studies of the photoactivation of TiO2 new photochemical processes[J]. Chemical Reviews,2006,106(10):4428-4453.
    [116]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A:General,2004, 265(1):115-121.
    [117]Yu J G, Dai G P, Xiang Q J, et al. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed﹛001﹜ facets[J]. Journal of Materials Chemistry,2010,21(4):1049-1057.
    [118]Liu G, Zhao Y, Sun C, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J]. Angewandte Chemie International Edition,2008, 47(24):4516-4520.
    [119]Wu Y, Xing M, Zhang J, et al. Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant[J]. Applied Catalysis B:Environmental, 2010,97(1):182-189.
    [120]Wang Q, Chen C, Zhao D, et al. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation[J]. Langmuir, 2008,24(14):7338-7345.
    [121]Liu S W, Yu J G, Wang W G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2[J]. Physical Chemistry Chemical Physics,2010, 12(38):12308-12315.
    [122]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews,1999,99(8):2071-2084.
    [123]Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews,1993, 93(1):341-357.
    [124]Hu S W, Zhu J, Wu L, et al. Effect of Fluorination on Photocatalytic Degradation of Rhodamine B over In(OH)ySz:Promotion or Suppression?[J]. The Journal of Physical Chemistry C,2011,115:460-467.
    [125]Zhuang J, Dai W, Tian Q, et al. Photocatalytic Degradation of RhB over TiO2 Bilayer Films:Effect of Defects and Their Location[J]. Langmuir,2010,26(12):9686-9694.
    [126]Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Angewandte Chemie International Edition,2004,43(38):4988-4992.
    [127]Sing K S W, Everett D H, Moscou L, et al. IUPAC recommendations[J]. Pure and Applied Chemistry,1985,57:603-619.
    [128]Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials,2001,13(10):3169-3183.
    [129]Yu J G Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis,2003,217(1):69-78.
    [130]Yu J G, Wang W G, Cheng B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment[J]. The Journal of Physical Chemistry C,2009,113(16):6743-6750.
    [131]Wu Y M, Xing M Y, Zhang J L. Gel-hydrothermal Synthesis of Carbon and Boron Co-doped TiO2 and Evaluating of Its Photocatalytic Activity [J]. Journal of Hazardous Materials, 2011,192(1):368-373.
    [132]Khan R, Kim S W, Kim T J, et al. Comparative study of the photocatalytic performance of boron-iron co-doped and boron-doped TiO2 nanoparticles[J]. Materials Chemistry and Physics,2008,112(1):167-172.
    [133]Park D R, Zhang J, Ikeue K, et al. Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O[J]. Journal of Catalysis,1999,185(1):114-119.
    [134]Suriye K, Praserthdam P, Jongsomjit B. Control of Ti3+ surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis[J]. Applied Surface Science,2007,253(8):3849-3855.
    [135]Di Valentin C, Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide[J]. Chemistry of Materials,2005,17(26):6656-6665.
    [136]Gu D, Lu Y, Yang B. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition[J]. Chemical Communications,2008,21:2453-2455.
    [137]Wu Z, Dong F, Zhao W, et al. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity[J]. Nanotechnology,2009,20:235701.
    [138]Xiang Q J, Yu J G, Jaroniec M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed﹛001﹜ facets:synthesis, characterization and visible-light photocatalytic activity[J]. Physical Chemistry Chemical Physics,2011,13:4853-4861.
    [139]Xiang Q J, Yu J G, Wang W G, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity [J]. Chemical Communication,2011,47:6906-6908.
    [140]Xu T H, Song C L, Liu Y, et al. Band structures of TiO2 doped with N, C and B[J]. Journal of Zhejiang University-Science B,2006,7(4):299-303.
    [141]Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. The Journal of Physical Chemistry B,1998,102(30):5845-5851.
    [142]Zhao J, Wu T, Wu K, et al. Photoassisted degradation of dye pollutants.3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO2 particles[J]. Environmental Science & Technology,1998,32(16):2394-2400.