用户名: 密码: 验证码:
核因子κB在神经干细胞增殖过程中的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义:
     脑缺血及脑损伤是严重威胁人类生命健康的多发病,其主要的病理损害是神经元的损伤和缺失,导致神经功能缺损。直到上世纪90年代,神经再生与神经干细胞(neural stem cells,NSCs)的发现为中枢神经系统损伤的修复带来了希望。NSCs具有强大的增殖能力和多分化潜能,病理情况下,内、外源性的NSCs能够增殖并向病灶区迁移,最终分化成各种类型的神经元和神经胶质细胞,以修复损伤的神经系统。但研究发现内、外源性NSCs的存活、增殖能力有限,并且易分化为胶质细胞;而微环境对NSCs的增殖、分化起着决定性作用。因而,如何调控NSCs的增殖及分化方向,是应用NSCs治疗神经系统疾病之前急需解决的问题。近年来研究发现,核因子-κB(nuclear factor-kappa B,NF-κB)信号系统与中枢神经系统疾病发生发展密切相关,并且可能参与了NSCs增殖分化的调控,但其确切机制尚不清楚。
     本实验通过观察NF-κB信号通路激活剂(肿瘤坏死因子α,tumor necrosis factor-alpha,TNF-α)、NF-κB信号通路抑制剂(四氢化吡咯二硫代氨基甲酸盐,pyrrollidine dithiocarbamate,PDTC)对体外培养的NSCs增殖状况的影响,探讨NF-κB在NSCs增殖过程中的调控作用;同时初步探讨稀土化合物氯化镧(Lanthanum chloride,LaCl3)对体外培养的NSCs增殖状况的可能影响,以进一步了解NSCs增殖分化的调控机制,为更好地利用NSCs治疗神经系统疾病提供理论依据。
     方法:
     1、小鼠神经干细胞(mouse neural stem cells,mNSCs)的分离培养及鉴定:采用成球悬浮法分离培养mNSCs,至第三代后,行细胞冰冻切片,免疫组化方法鉴定NSCs标志蛋白nestin。
     2、实验分组:将生长状态良好的第3代mNSCs分为空白对照组、TNF-α组、PDTC组,分别采用常规NSCs培养液、含10ng/ml TNF-α的NSCs培养液、含0.1mmol/l PDTC的NSCs培养液培养30分钟、4小时和72小时;另设一组氯化镧组,以含氯化镧2.5μmol/L的NSCs培养液培养NSCs 1~3天。
     3、观察指标及方法:采用免疫荧光细胞化学方法及Western Blotting方法检测NSCs NF-κB活化状况(即P65在细胞中的分布变化);采用免疫荧光细胞化学方法检测与细胞增殖相关的指标(包括CyclinD1、Ki-67)及神经球计数、神经球体积测量方法观察NSCs的增殖状况。
     结果:
     1、mNSCs的生长状况及鉴定结果:mNSCs原代培养时,镜下见培养2天后细胞分裂增殖逐渐形成呈悬浮生长的形态规则的神经球,球周边不断有分裂增殖的细胞凸出。5~7天后球体积不断增大,球中央的细胞因营养缺乏而逐渐变黑,予以传代。免疫细胞荧光法鉴定神经球中大部分为Nestin表达阳性细胞。
     2、NSCs的NF-κB活化状况:细胞免疫荧光染色结果显示,TNF-α组可见明显的p65活化由胞浆转位至胞核;而PDTC组P65仍表达在胞浆,未见核转位。Western Blotting结果显示,TNF-α组胞核NF-κB/p65蛋白含量显著高于对照组,而PDTC组胞核p65蛋白含量极少。结果表明,TNF-α能使mNSCs NF-κB活化。
     3、NSCs的增殖状况:神经球计数和神经球体积测量结果显示,TNF-α组和氯化镧(2.5μmol/L)组神经球数量分别为[(74.56±2.6)个/瓶]和[(62.32±2.8)个/瓶],较对照组[(42.28±3.5)个/瓶]明显增多,P<0.05;神经球体积分别为[(0.82±0.16)×106(μm3)]和[(0.66±0.12)×106(μm3)],较对照组[(0.26±0.08)×106(μm3)]明显增大,P<0.05。细胞免疫荧光染色结果显示,TNF-α组和空白对照组中,CyclinD1阳性细胞率分别为(68.6±4.2)%和(38.8±3.7)%,明显高于PDTC组的(24.2±2.8)%,p<0.01;Ki-67阳性细胞率分别为(48.2±3.6)%和(35.2±4.7)%,明显高于PDTC组的(18.7±1.8)%,p<0.01。
     以上研究结果表明,TNF-α可使mNSCsNF-κB活化,并促进NSCs增殖;PDTC能抑制mNSCs NF-κB的活化,从而抑制NSCs增殖;一定浓度的氯化镧可促进mNSCs增殖。
     结论:
     1、NF-κB的激活或抑制可促进或抑制NSCs的增殖,NF-κB在NSCs的增殖过程中可能起着重要的调控作用。
     2、一定浓度的氯化镧具有促进NSCs增殖的作用。
Objective
     Ischemic cerebrovascular disease and brain injury have become one of the main dangerous for the mankind health and lives. The main pathological lesions is the losses and the injury of neuron,which causes the losses of neural function.But in 1990s of last century, the discoveries of neural neogenesis and neural stem cells broght the hope for repairing the central nervous system damage. Neural stem cells have the capacity of self-renewal and multi-differentiation. In Many pathological conditions, the endogenous neural stem cells have the capacity of proliferation to migrate and to differentiate into multiple cell types such as glial cells and neurons, in order to repair the central nervous system damage.But the research find that the capacity of proliferation is limited. and easily differentiate into glial cells..The surrounding plays a crucial role in control of neural stem cell proliferation and differentiation. Thus,how to regulate neural stem cell proliferation and the direction of differentiation is the problem needs to solve for the neural stem cells applys to treat the central nervous system diseases. Recent studies find that nuclear factor-kappa B signal pathway is correlated closely with the generation and developing in the central nervous system diseases. and likely participate regulating the neural stem cell proliferation and differentiation. However, the mechanism is not clear.
     In the experiments, we observed that the nuclear factor-kappa B signal pathway activating stimuli such as tumor necrosis factor and the repressors such as PDTC have effect on the neural stem cells proliferative situation so as to approach the Role of nuclear factor kappa B in the proliferation of neural stem cells.In same, we explored the effects of lanthanum chloride on the neural stem cells proliferative situation so as to furtherly know the redulation mechanisms of the proliferation and differentiation of neural stem cells.And offer the experimental rationale that the transplant of neural stem cells treat central nervous system disease.
     Methods
     1.Isolation,culture and identification of mouse neural stem cells: Mouse neural stem cells were cultured by Neural stem cell suspension method to the third passage,and identified by immunofluorescence with nestin.
     2.Experiment group:NSCs applied to experiment were the third passage cells and were randomly divided into the control group,TNFgroup and PDTCgroup,which were cultured in common NSCs medium , in NSCs medium supplemented with 10ng/ml TNF-αand in NSCs medium supplemented with 0.1mM PDTC for thirty minuters,four hours ,seventy-two hours, respectively. Anothor Lanthanum chloride group were cultured in NSCs medium supplemented with 2.5μmol/L LaCl3.
     3.Observation index and method:To detect NF-κB activity situationin of neural stem cells (that is distribution change of p65)by Immunocytochemistry and Western Blotting technique. To detect the related cell proliferation index (including CyclinD1 and Ki-67) by Immunocytochemistry and observe the proliferation situation of the neural stem cells by neurosphere counting and neurosphere volume measurement.
     Results
     1.Growth situation and identification findings of mouse neural stem cells:In primary culture, the cells proliferated into the clusters and continued to increase in size, forming small, uniform neurosphere after 2 days incubation, they will detach from the surface and floated in suspension. 5 to 7 days later, neurospheres reach a diameter hindering sufficient central nutrient supply, passaging of cells is required. Immunofluorescence analysis showed that a large number of nestin positive cells resided in neurospheres.
     2. NF-κB activity in neural stem cells: Immunofluorescence analysis showed that TNF group remarkblely activated the translocation of NF-κB /p65 from cytoplasm to nuclear ,while PDTC group did not occurre and expressed p65 in cytoplasm. Western Blotting analysis showed that a higher expression of p65 in TNF group compared with control group, while the P65 protein content in PDTC group is mostly none.The findings shows that TNF activates NF-κB in mouse neural stem cells.
     3 The proliferation situation of Neural stem cell: neurosphere counting shows that TNFgroup and 2.5μmol/L Lanthanum chloride group were 74.56±2.6 piece/bot and 62.32±2.8 piece/bot ,significantly increased more than control group (42.28±3.5 piece/bot),P<0.05;and neurosphere volume measurement shows that TNFgroup and 2.5μmol/L Lanthanum chloride group were(0.82±0.16)×106(μm3)and(0.66±0.12)×10(6μm3), significantly increased larger than control group(0.26±0.08)×10(6μm3),P<0.05. Immunofluorescence analysis showed that the percentage of CyclinD1 positive cells were(68.6±4.2)% and (38.8±3.7)%in TNF group and control group were remarkblely higher than PDTC group,which was (24.2±2.8)%,p<0.01.while the percentage of ki-67 positive cells were(48.2±3.6)% and (35.2±4.7)%in TNF group and control group were remarkblely higher than PDTC group,which was (18.7±1.8)%,P<0.01。
     The upper results show that TNF activates NF-κB in mouse neural stem cells and significantly activated NSC proliferation,while PDTC inhibits NF-κB in mouse neural stem cells and significantly inhibited NSC proliferation 2.5μmol/L LaCl3.can promote the proliferation of mouse neural stem cells.
     Conclusions
     1. The activation or inhibition of the NF-κB can activate or inhibit neural stem cells proliferation and NF-κB is a crucial regulator of NSCs proliferation
     2. 2.5μmol/L Lanthanum chloride can activate neural stem cells proliferation
引文
[1] Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adultmammalian central nervous system [J].Science,1992, 255(5052):1707-1710.
    [2] Chen X,Li Y,Wang L,et a1. Ischemic rat brain extracts induce human marrow stromal cell growth factor production [J].Neuropathology,2002,22(4):275-279.
    [3] 孙勇,侍坚,陆佩华.神经营养因子与神经干细胞[J].生理科学进展,2002;33(4):313-317.
    [4] Chi-Hsien Peng ,Shih-Hwa Chiou,Shih-Jen Chen,Yueh-Ching Chou,Hung-Hai Ku,Cheng-Kuo Cheng,,et al. Neuroprotection by Imipramine against lipopolysaccharide induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway European Neuropsychopharmacology,Volume 18,Issue 2, February 2008,Pages 128-140.
    [5] Sommer L, Rao M. Neural stem cells and regulation of cell number [J].Prog Neurobiol,2002; 66(1):1-18.
    [6] Nakatomi H, Kuriu T, Okabe S et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002; 110:429-441.
    [7] Lee HY,Kleber M,HariL,et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science,2004;303(5660):1020-3.
    [8] Li Q,Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002, 2(10):725–734.
    [9] Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest,2001,107(1):3–6.
    [10] Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol,2002,3(3): 221–227.
    [11] Kaltschmidt B, Widera D, Kaltschmidt C. Signaling via NF-kappaB in the nervous system. Biochim Biophys Acta,2005,1745(3):287-299.
    [12] Shingo T, Sorokan ST, Shimazaki T,et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci,2001, 21(24): 9733– 9743.
    [13] Wennersten A, Meier X, Holmin S,et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg, 2004,100 (1):88–96.
    [14] Hang CH, Shi JX, Li JS, et al. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol, 2005,11(8):1149–1154.
    [15] Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke,2004,35 (4):987–991.
    [16] Widera D, Mikenberg I, Kaus A, etal. Nuclear factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro. Eur Cell Mater,2006,11:76-85.
    [17] Mondal D, Pradhan Larussa VF. Signal transduction pathways involved in the lineage- differentiation of NSCs: can the knowledge gained from blood be used in the brain? Cancer Invest,2004,22 (6):925–943.
    [18] Feng Z, Porter AG. NF-kappaB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. J Biol Chem, 1999, 274 (43):30341–30344.
    [19] 王玺,安丽芝,章净霞.铈和钆对体外培养正常二倍体细胞的作用.中国稀土学报, 1998, 16(3): 253
    [20] 杨频,魏春英.稀土与细胞、器官、组织的作用及其生理效应.化学通报, 1996, 58(7): 1
    [21] Szasz I, Sarkadi B, SchubertA,et al. Effects of lanthanumon calcium-dependent phenomena in human red cells. Bio-chim BiophysActa, 1978, 512(2): 331
    [22] 凤志慧,王玺,张孙曦等.稀土元素 La、Gd 和 Ce 对培养大鼠细胞生物学效应的研究.中华核医学杂志, 2001, 21(2): 111
    [23] 杨晓波,魏幼璋.稀土离子与钙离子在生物体内的相互作用机制及应用[J].生命科学研究,1999,3(1):30-35.
    [24] 汪泱,胡峰,郭菲等.氯化镧拮抗内毒素效应的小鼠体内研究. 中华医学杂志,2004,84(3):242-247
    [25] 宋书欣,邓志锋,汪泱等.氯化镧对大鼠脑缺血细胞凋亡保护作用的研究.江西医学院学报,2003,43(6)
    [26] McKayR. Stem cells in the central nervous system [J]. Science,1997, 276 (5309): 66-71
    [27] Modo M, Rezaie P ,Heuschling P , et al . Transplantation of neural stem cells in a rat model of stroke: assessment of short2term graft survival and acute host immunological response[J].Brain Research,2002,958(8):70-82.
    [28] Amar AP , Zlokovic BV , Apuzzo MLJ .Endovascular restorative neuro2 surgery: A novel concept for molecular and cellular therapy of the ner2vous system [J]. Neurosurgery ,2003,52(2):402-413.
    [29] Lendahl U,Zimmerman LB,McKay RD.CNS Stem cells express a new class of intermediate filament protein.Cell,1990,60(4):585-595.
    [30] Kaneko Y,Sakakibara S,lmai T.et a1.Musashi1:aII evolutionally conserved marker for CNS progenitor cells including neural stem cells.Dev Neurosci,2000,22(1-2):139-153.
    [31] Abrahams JM , Gokhan S, F lamm ES, et al. De novo neurogenesisand acute stroke: are exogenous stem cells really necessary?N euro surgery, 2004,54(1):150- 155.
    [32] Shyu WC, Lin SZ, Chiang MF, et a1.Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci. 2006 Mar 29;26(13):3444-53
    [33] Wang L, Zhang ZG, Zhang RL, Gregg SR, et a1. Matrix Metalloproteinase 2 (MMP2) and MMP9 Secreted by Erythropoietin-Activated Endothelial Cells Promote Neural Progenitor CellMigration ,J Neurosci. 2006 May 31;26(22):5996-6003
    [34] NishinoH, Hida H, Takei N,et al. Mesencephalic neuralstem cells develop to dopamlmeergic neuronsmore strongly indopamine- depleted striatum than in intact striatum. ExpNeuro,l 2000, 164(1):209~214.
    [35] Gray JA,Grigoryan G,Virley D,et al. Conditionally immor-talized muti-potential and multifunctional neural stem cell1ines as an approach to clinkal transplantation.CellTransp-lallt, 2000,9(2):153~168.
    [36] Freeman TB,CicchettiF,HauserRA,et al.Transplanted fe-tal striatum inHuntington’s disease: phenotypic developmentand 1ack of patho1ogy. Proc NatlAcad SciUSA, 2000, 97(25): 13877~ 13882.
    [37] Akerud P, Canals JM, Snyder EY,et al. Neuroprotetionthrough delivery of cglial cell line derived neurotrophic factorby neural stem cell in amousemodelofParkinson’s disease.JNeurosc,i 2001,21(20):8108~8118.
    [38] GentaRM.ThesadNSAIDco1on. Adv Anat Patho1,1999,6(4):213~217.
    [39] Zhang ZG,[J]iang Q, Zhang R, et al. Magnetic resonance imagingand neurosphere therapy of stroke in rat[J].Ann Neurol,2003,53(2):259-263.
    [40] Savitz SI, Rosenbauto DM, Dinsmore JH,et al. Cell trans-plantation for stroke.Am Neuro,l 2002, 52(3): 266~275
    [41] TarasenkoYI, Yu Y, Jordan PM, et al Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells.[J].NeurosciRes,2004, 78(5):625-636.
    [42] Bicario2Abejon C , Collin C , Tsoulfas P , et al. Hippocampalstem cells differentiate into excitatory and inhibitory neurons[J ] Eur J Neurosci ,2000 ,12(2) :677 —688.
    [43] 谭雪锋,金国华,田美玲,等.白介素-1α 及与白介素-11、白血病抑制因子和胶质细胞源性神经生长因子联合诱导人神经干细胞向多巴胺神经元的分化[J].解剖学报,2005, 36(4):351-355.
    [44] GroszerM,Erickon R, Scripture-Adams DD, etal.Negative regulation of neural stem /proganitor cell pro1iferation by the PTEN tumor suppressor gene in vivo.Science,2001,294 (5549):2186~2189.
    [45] zhongW, JiangMM, SchonemannMD,et al.Mouse numb is an essential gene mvo1ved in conical neurogenesis. Proc Natl Acad SciUSA,2000,97(12):6844~6849.
    [46] SakuradaK,Ohshima-SakuradaM, PalmerTD,et al.Nurr,l an orphan nuclear receptor, is an transcriptional activatorofen dogenous tyrosine hydroxylase in neuralprogenitor cells derlved fromtheadultbrain.Development,1999,126(18):4017~4026.
    [47] Bray S. Notch [J]. CurrBio,2000,10(12):R433-435.
    [48] Bonizzi G, Karin M. The two NF-kappaB activation pathwaysand their role in innate and adaptive immunity [J]. Trends Im-munol,2004,25(6):280-288.
    [49] Lindstrom TM, Bennett PR. The role of nuclear factor kappaB in human labour [J]. Reproduction,2005,130(5):569-581.
    [50] Brazel, C.Y., Limke, T.L., et al. Sox2 expression defines a heterogeneous population ofneurosphere-forming cells in the adult murine brain. Aging Cell,2005,4(4):197–207.
    [51] Harada J, Foley M, et al. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. [J].Neurochem,2004,88(4):1026–1039.
    [52] Chen, X.L., Grey, J.Y., et al.,. Sphingosine kinase-1 mediates TNF-alpha induced MCP-1 gene expression in endothelial cells: upregulation byoscillatory flow. Am.[J].Physiol. Heart Circ. Physiol. 2004,287(4), H1452–H1458.
    [53] Xu SZ, Shan CJ, et al .Pb2+ reduces PKCs and NF-kappaB in vitro [J].2006,22(3):189-198.
    [54] Ferguson, K.L., Callaghan, S.M., et al. The Rb-CDK 4/6 signaling pathway is critical in neural precursor cell cycle regulation. [J]. Biol Chem,2000,275 (43):33593–33600
    [55] Guttridge, D.C., Albanese, C., etal., 1999. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell.Biol.19 (8),5785–5799.
    [56] Hang CH, Shi JX, Tian J, et al. Effect of systemic LPSinjection on cortical NF-kappaB activity and inflammatoryresponse following traumatic brain injury in rats[J]. BrainRes, 2004,1026(1):23-32.
    [57] Kim JM, Oh YK, Lee JH, et al. Induction ofproinflammatory mediators requires activation of the TRAF,NIK, IKK and NF-kappaB signal transduction pathway inastrocytes infected with Escherichia coli [ J ]. Clin ExpImmunol, 2005,140(3):450-460.
    [58] 申治国,雷衡毅,杜柳涛,等.铈对培养肝细胞的影响.中山大学学报(自然科学版),1999, 38(3):110.
    [59] Jeon KI, Byun MS, Jue DM. Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med,2003;35(2):61~66.
    [60] Kudrin AV. Trace elements in regulation of NF-kappaB activity. J Trace Elem Med Biol, 2000,14(3):129~142.
    [1] Gage,F.H. Mammalian neural stem cells.Science,2000,287(5457):1433-1438.
    [2]Sun Z, Andersson R. NF-kappaB activation and inhibition.a review[J]. Strock,2002, 18(2):99-106.
    [3] Brazel, C.Y., Limke, T.L., et al. Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell,2005, 4 (4): 197–207.
    [4] Widera D, Mikenberg I, Elvers M, et al. Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling. BMC Neurosci,2006,7: 64.
    [5] Harada J, Foley M, et al. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. [J]. Neurochem, 2004,88 (4):1026–1039.
    [6] Shingo, T., Sorokan, S.T.,et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. [J]. Neurosci,2001,21 (24):9733–9743.
    [7] Xu SZ, Shan CJ, et al .Pb2+ reduces PKCs and NF-kappaB in vitro [J]. 2006 ,22(3):189-198.
    [8] Matarredona, E.R., Murillo-Carretero, M., et al. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res, 2004,995 (2):274–284.
    [9] Zhu LL,Wu LY,et al.Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 2005,31(1-3):231-242.
    [10] Limoli CL,Rola R. Cell-density-dependent regulation of neural precursor cell function. Proc Natl Acad Sci USA 2004,101 (45): 16052-16057.
    [11] Hu X, Nesic-Taylor O, et al. Activation of nuclear factor -kappaB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rathippocampus and cortex. [J].Neurochem , 2005,93 (1): 26-37.
    [12] Zhang, B., Wang, R.Z., et al. Proliferation and differentiation of neural stem cells in adult rats after cerebral infarction. [J]. Chin Med. Sci,2004,19 (2):73–77.
    [13] Hang CH, Shi JX, Li JS, et al. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol, 2005,11(8): 1149–1154.
    [14] Guo, Q., Robinson, N., et al. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. [J].Biol. Chem.,1998,273(20):12341–12351.
    [15] Dasgupta, B., Gutmann, D.H. Neurofibromin regulates neural stem cellproliferation, survival, and astroglial differentiation in vitro and in vivo. [J].Neurosci.,2005,25 (23): 5584–5594.
    [16] Ferguson, K.L., Callaghan, S.M., et al. The Rb-CDK 4/6 signaling pathway is critical in neural precursor cell cycle regulation. [J]. Biol. Chem., 2000,275 (43):33593–33600.
    [17] Aarum, J., Sandberg, K., et al. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA, 2003, 100 (26): 15983–15988.
    [18]Arvidsson A,Collin T.Neuronal replacement from endogenous precursors in the adult brain after stroke.Nat Med ,2000,8(9):963-970
    [19]Parent JM,Valentin VV.Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. [J]. Neurosci, 2002,22(8):3174-3188.
    [20] Schwamborn, J., Lindecke, A., et al. Microarray analysis of tumor necrosis factor alpha induced gene expression in U373 human glioblastoma cells. BMC Genom, 2003,4 (1), 46.
    [21] Sun, L., Lee, J., et al. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. [J]. Clin Invest , 2004,113 (9), 1364–1374.
    [22]Imitola J,Raddassi k.Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA, 2004,101(52):18117-18122.
    [23] Mondal D,Pradhan L.Signal transduction pathways involved in the lineage-differentiation of NSCs:can the knowledge gained from blood be used in the brain? Cancer Invest, 2004,22(6):925-943.
    [24] Johe KK,Hazel TG.Single factors direct the differentiation of stem cells from the fetal andadult central nervous system. Genes Dev, 1996,10(24):3129-3140.
    [25] Fan Z,Bau B.IL-1beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK,p38 and NFkappaB signaling pathways.Cytokine ,2004,28(1):17-24.
    [26]Feng Z,Porter AG.NF-kappaB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. [J]. Biol Chem ,1999,274(43):30341-30344.
    [27] Bryan B,kumar V.GEFT,a Rho family guanine nucleotide exchange factor,regulates neurite outgrowth and dendritic spine formation. [J]. Biol Chem,2004,279(44):45824-45832.
    [28] Li W,Cogswell CA.Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. [J]. Neurosci, 1998,18 (21):8853-8862. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700