用户名: 密码: 验证码:
阳春砂HMGR和DXR基因在烟草萜类化合物生物合成中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳春砂Amomum villosum Lour.是中药砂仁来源植物之一,其性温,味辛,具有化湿开胃、温脾止泻、理气安胎之功效。砂仁化湿行气的主要药效物质为挥发油中的萜类化合物。药用植物中的萜类化合物具有广泛的药理作用和重要的生物活性。
     植物萜类化合物的生物合成主要有两条途径,一条是甲羟戊酸途径(mevalonate pathway, MVA途径),另一条是2-甲基赤藓糖醇-4-磷酸途径(2-C-methyl-D-erythritol-4-phosphate pathway, MEP途径)。3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)和1-去氧-D-木酮糖-5-磷酸还原异构酶(1-deoxy-D-xylulose-5-phos phate reductoisomerase, DXR)分别是MVA和MEP上游途径中的两个关键酶。通过调控HMGR和DXR基因的表达可以提高植物萜类化合物的含量。
     1目的
     利用阳春砂萜类化合物生物合成途径上游2个关键酶HMGR和DXR的基因——AvHMGR和AvDXR,进行萜类化合物生物合成调控研究,在模式植物烟草中分析AvHMGR和AvDXR的生物功能,为应用AvHMGR和AvDXR进行阳春砂萜类生物合成的基因工程调控,从根本上提高阳春砂的药效品质提供科学依据。
     2方法
     2.1AvHMGR、AvDXR转基因烟草T1代的筛选及形态观察
     以卡那霉素(kanamycin, Kan)初步筛选AvHMGR、AvDXR转基因烟草T1代植株,对转基因植株进行以Kan抗性基因nptⅡ和目的基因AvHMGR、AvDXR为靶标的PCR验证。观察转基因烟草和野生型对照烟草在形态和抗虫性方面的差异。
     2.2转基因烟草的AvHMGR、AvDXR表达量及酶活性分析
     用半定量RT-PCR法,分别检测转基因烟草中的AvHMGR和AvDXR表达量。对AvHMGR和AvDXR基因超表达植株及其对照,采用专一底物,通过分光光度计法检测辅酶NADPH (nicotinamide adenine dinucleotide phosphate)的氧化速率来测定HMGR和DXR活性。
     2.3超表达AvHMGR、AvDXR对烟草萜类生物合成的影响
     对AvHMGR、AvDXR转基因烟草及其野生型对照中的萜类化合物进行分类提取和定性定量分析。对光合色素中的类胡萝卜素(四萜类)和叶绿素(二萜类),采用丙酮提取,分光光度法测定含量;对挥发性萜类,主要是单萜、倍半萜和二萜类,采用顶空固相微萃取(HS-SPME)提取,气质联用色谱(GC-MS)进行定性分析;对非挥发性萜类化合物,主要是三萜类植物甾醇、维生素E及二萜类植醇,采用二氯甲烷提取,GC-MS进行定量分析。
     3结果
     3.1AvHMGR、AvDXR转基因烟草T1代的筛选
     通过Kan初步筛选和PCR验证,外源基因可能以单拷贝的形式遗传至AvHMGR转基因烟草的H1、H3、H4、H5株系及AvDXR转基因烟草的D1、D2株系基因组中。共筛选得到AvHMGR转基因烟草Tl代植株17株,AvDXR转基因烟草T1代植株12株。
     对植物形态进行观察发现,AvHMGR转基因烟草的H5株系的株高极显著高于野生型。AvDXR转基因烟草表现出抗虫性且茎有横向生长趋势。
     3.2转基因烟草的AvHMGR、AvDXR表达量及酶活性分析
     经过检测,11株AvHMGR及8株AvDXR转基因烟草T1代植株外源基因获得超表达。酶活性测定结果显示,与野生型对照比较,AvHMGR超表达植株中有5株HMGR活性显著提高;AvDXR超表达植株中有2株DXR活性显著提高。
     3.3超表达AvHMGR、AvDXR对烟草萜类生物合成的影响
     AvHMGR和AvDXR转基因烟草与对照比较,能检测到更多的挥发性单萜(薄荷烯)、倍半萜(檀香醇,AvDXR转基因烟草D2-1)及二萜(黑松醇,AvHMGR转基因烟草H3-3),并促进了光合色素(叶绿素和类胡萝卜素)、甾醇(豆甾醇、菜油甾醇)及植醇的合成。其中,AvDXR对MEP途径的光合色素生物合成的促进作用更为明显,同样,AvHMGR对MVA途径的甾醇生物合成的促进也更为明显。而超表达烟草中的β-谷甾醇和维生素E的含量与野生型比较有所降低。
     4结论
     本研究证实,通过对萜类合成途径的上游不同关键酶基因HMGR和DXR的调控,均可促进下游萜类产物的合成,阳春砂AvHMGR和AvDXR基因在萜类生物合成途径中发挥重要作用,而AvHMGR和AvDXR分别超表达对不同萜类化合物的促进程度并不完全一致,与其在细胞内的不同定位有关,证明2条萜类合成途径之间既具有相对独立性,又存在着相互的关联和交流。本研究为应用AvHMGR和AvDXR进行阳春砂萜类生物合成的基因工程调控,从根本上提高阳春砂的药效品质提供了依据。
Fructus Amomi is mainly from Amomum villosum Lour.,which is a Chinese medicine with warm property and pungent taste and has such effects as resolving dampness to improve appetite, warming spleen to arrest diarrhea, regulating Qi to prevent miscarriage etc. The isoprenoids in its volatile oil are the main medicinal compounds of Fructus Amomi.
     In higher plants, isoprenoids are produced through two universal pathways:one is the mevalonate (MVA) pathway, the other is2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. The enzymes,3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and1-deoxy-D-xylulose5-phosphate reductase (DXR) are the upstream key-enzymes for MVA and MEP pathway, respectively. Overexpresstion of HMGR and DXR gene can enhance the biosynthesis of isoprenoids in plants.
     1Objective
     Using the upstream key-enzymes in isoprenoid biosynthesis pathway of HMGR and DXR gene from A villosum to analyze the biological function of AvHMGR and AvDXR in transgenic tobacco. Furthermore, using the metabolic engineering method, to manipulate the expresstion of AvHMGR and AvDXR in isoprenoid biosynthesis, can be of value to improve the medicinal quality of A. villosum.
     2Methods
     2.1Screening of T1transgenic tobacco plants and phenotypic comparation
     T1transgenic tobacco seeds were first screened by kanamycin, and then all kanamycin-resistance plants were screened by PCR for the presence of neomycin phosphotransferase Ⅱ (npt Ⅱ) and target genes of AvHMGR and AvDXR. Phenotypic differences were compared between the transgenic plants and untransformed plants.
     2.2Expression and enzymes activity analysis in AvHMGR and AvDXR transgenic tobacco plants
     RT-PCR (Reverse Transcription-Polymerase Chain Reaction) was used to analyze the expression level of AvHMGR and AvDXR in transgenic tobacco plants. Using the substrate specific method, HMGR and DXR activity were determined in AvHMGR and AvDXR transgenic tobacco plants and wild-type tobacco plants by spectrometer.
     2.3Overexpression of AvHMGR and AvDXR genes effect of isoprenoids producion in tobacco plants
     Extraction and qualitative analysis of isoprenoids contents in transgenic plants and wild-type plants. Chlorophylls (diterpene) and carotenoids (tetaterpene) were extracted by acetone and determined by spectrometer. Volatile isoprenoids, mainly of monoterpene, sesquiterpene and diterpene, were determinated by Head Space-SolidPhase Microextraction (HS-SPME), qualitative analysis was accomplished by GC-MS. Non-volatile isoprenoids, such as triterterpene of sterol, a-tocopherol, and diterpene of phytol, were extracted by dichloromethane and qualitative analysis by GC-MS.
     3Results
     3.1Screening of AvHMGR and AvDXR T1transgenic tobacco plants and phenotypic comparation
     AvHMGR and AvDXR transgenic tobacco plants were screened by Kan and verified by PCR, transgenic lines (H1, H3, H4, H5and D1, D2) were obtained, showed single-copy insertions, probably. Seventeen AvHMGR and twelve AvDXR transgenic tobacco plants were obtained.
     The height of AvHMGR transgenic plants (line H5) showed obvious phenotypic differences compared with wild-type plants. The stems of AvDXR transgenic plants presented horizontal growth and AvDXR transgenic tobacco suffered from less pests.
     3.2Expression and enzymes activity analysis in AvHMGR and AvDXR transgenic plants
     The results showed that eleven AvHMGR and eight AvDXR T1transgenic tobacco plants were overexpressed. Compared with wild-type tobacco plants, the HMGR and DXR activity of five AvHMGR and two AvDXR transgenic plants had been significant increased,
     respectively.3.3Overexpression of AvHMGR and AvDXR genes effect of isoprenoids producion in tobacco plants
     Compared with wild-type plants, AvHMGR and AvDXR overexpressing plants can detected more volatile terpenoids, such as monoterpene (m-Mentha-4,8-diene), sesquiterpene (D2-1of AvDXR transgenic tobacco plants showed the production of santalol), diterpene (H3-3of AvHMGR transgenic tobacco plants showed the production of thunbergol).Furthermore, the overexpression of AvHMGR and AvDXR, resulted in elevated levels of photosynthetic pigments (chlorophylls and carotenoids), phytol, stigmasterol and campesterol. However, the contents of β-sitosterol and α-tocopherol had decreased, compared with wild-type plants.
     4Conclusion
     The results verified that regulation of HMGR and DXR can enhance biosynthesis of isoprenoids. AvHMGR and AvDXR genes play important role in isoprenoid biosynthesis pathway. However, all isoprenoids did not increase equally, each isoprenoid biosynthetic pathway could have its own localization in cells. Indicating that the MVA pathway and MEP pathway did not independent, cross-talk between the two pathways had also been documented. The study documented that using metabolic engineering, manipulate upstream key-enzymes of AvHMGR and AvDXR in isoprenoid biosynthesis, can improve the medicinal quality of Amomum villosum Lour.
引文
[1]中华人民共和国卫生部药典委员会.中国药典(一部)[s].北京:化学工业出版社,2010:177.
    [2]张丹雁.阳春砂种质资源研究.硕士论文.广州中医药大学,2008.
    [3]胡玉兰,张忠义,林敬明.中药砂仁的化学成分和药理活性研究进展[J].中药材,2005,28(1) :72.
    [4]Cane D E. Biosynthetic Pathways:Biosynthesis Meets Bioinformatics[J]. Science,2000, 287:818.
    [5]Lange B M, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proc Natl Acad Sci,2000,97(13):172.
    [6]罗永明,刘爱华,李琴,等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,3(15):45-51.
    [7]蔡宏伟,谭秀娟,王云柱,等.甘草酸对缺血再灌注大脑线粒体ATP酶活性的影响[J].中国药理学通报,1996,12(6):549.
    [8]汤敏燕,汪洪武,孙凌峰.具有抗肿瘤活性的天然萜类化合物[J].林产化学与工业,1997,17(2):56-59.
    [9]Halfmann H M R, Rahe J. Synthesis and biological activity of amethylene butyrolac tones[J]. Angew Chem,1985,24(2):94.
    [10]孙燕,储大同.中国临床肿瘤学教育专辑[M].北京:中国医药科技出版社,2000:72.
    [11]刈米达夫.植物化学[M].北京:科学出版社,1985:162.
    [12]姚庆生.天然药物化学[M].第3版.北京:人民卫生出版社,2002:257-268.
    [13]王杰军,王兵,郭静,等.熊果酸体外抑制血管形成的研究[J].第二军医大学学报,2002,21(2):1071.
    [14]白木公康.甘草酸抗乙肝病毒的作用机理[J].和汉医药学杂志(日),1995,12(1):24.
    [15]吴锡铭,甘利颀.一种新型抗肝炎制剂的研究[J].现代应用药学,1995,12(4):52.
    [16]宋星宏.甘草甜紊治疗慢性乙型肝疗技观察[J].中国中西医结台杂志,1997,17(8):494.
    [17]贾钰华.艾滋病的治疗-甘草制剂SNMC大量疗法的体会[J].国外医学中医:中药分册,1990,12(1):13.
    [18]Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, anactive component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet,2003,361(9374):2045-2046.
    [19]He Z D, Qiao C F, Hail Q B, et al. New triterpenoid saponins fromthe roots of platycodon grandiflorum[J]. Tetrahedron,2005,61(2):2211-2215.
    [20]李平亚,赫秀华,赵春芳,等.人参皂甙Rg3抗病毒作用的研究[J].中国老年学杂志,2001,21(3):215-216.
    [21]王志洁,黄铁牛.黄芪多种成分对豚鼠皮肤I型人病毒感染的治疗作用[J].中国现代应用药学杂志,2003,20(6):452-455.
    [22]成兰英,唐琳,颜钫,等.苦瓜茎叶总皂甙的提取及抗HSV-2型疱疹病毒作用研究[J].四川大学学报:自然科学版,2004,41(3):641-643.
    [23]董娟娥,张靖.植物中环烯醚萜类化合物研究进展[J].西北林学院学报,2004,19(3):131-135.
    [24]陈葆仁,杨义芳,田如美,等.赣皖乌头生物碱的研究[J].药学学报,1981,16(1):70-72.
    [25]李淑惠,李晓辉,张海港,等.三七叶皂苷抗炎作用机理的实验研究[J].哈尔滨商业大学学报,2002,18(1):30-33.
    [26]Kwak W.金银花中的抗炎皂苷忍冬苦苷C[J].国外医学:中医中药分册,2004,26(2):114.
    [27]Giner-Larza E M, Manezs S, Recio M C, et al. Oleanonicacid, a 3-oxotriterpene from pistacia,inhibits leukotrienesynthesis and has anti-inflammatory activity[J]. Eur J Pharmacol, 2001,428(1):137-143.
    [28]苏印泉,马希汉,杨宗英.日本杜仲研究进展[J].西北林学院学报,1996,11(2):94-99.
    [29]莫建初,程家安.瑞香属植物生物活性研究进展[J].天然产物研究与开发,2003,15(2):167-170.
    [30]陈泗英,蒋子华.日产乌头属和翠雀属药用植物资源[J].云南植物研究,1988,12(1):599-611.
    [31]Katerere David R, Gray Alexander I, Nash Robert J, et al. Antimicrobial Activity of pentacydict, fiterpenes isolated from African Combretaceae[J]. Phytochemistry,2003,63(1): 81-88.
    [32]Bate-Smith E C. Age and distribution of galloyl esters, iridoidsand certain other repellents in plants[J]. Phytochemistry,1984,23(5):945-950.
    [33]汤臣廉,许青嫒.藁本中挥发油对耐缺氧的影响[J].中国中药杂志,1992,17(12):745.
    [34]Chung Y K, Heo H J, Kim E K, et al. Inhibitory effect ofursolic acid purified from Origanuvn majorana L. on the acetyicholinesterase[J]. Mol Cells,2001,11(2):137-143.
    [35]易剑峰,王珏,林色奇,等.青蒿素及其衍生物免疫调节研究概况[J].江西中医学院学报,2006,18(1):69-71.
    [36]Martin-Aragon S, Delas Heras B, Sanchez-Reus M I, et al. Pharmacological modification of endogenous an tioxidantenzymes by ursolic acid on tetrachiorlde induced liver damagein rats and primary cultures of rat hepatocytes[J]. ExpToxicol Pathol,2001,53(2-3):199-206.
    [37]赵鹏,姚思宇,李彬,等.皂甙对乙醇性肝损伤的保护作用[J].中国临床康复,2004,30(8): 6686-6687.
    [38]Kim H J, Chau Y J, Park J D, et al. Protection of rat liver micro somes aginst carbon tetrachloride-induced lipid peroxidation by red ginseng saponin throush cochrome P450 inhibition [J]. Planta Med,1997,63(5):415-418.
    [39]乔卫,张彦文.天然环烯醚萜类化合物的生物活性[J].国外医药:植物药分册,2001,16(2):65-67.
    [40]Sang S M, Lao A N, Leng Y, et al. Segetoside F a new triterpenoidsaponin with inhibition of luteal cell from the seeds of Vaccaria segetalis[J]. Tetrahedron Lett,2000,41(1):9205-9207.
    [41]张强,谢根法,崔淑香.灵芝孢子粉胶囊提高小鼠免疫功能实验的研究[J].山东医药工业,1998,17(24):25.
    [42]顾清,刘业茂,牟福昌.红豆杉属植物的成分药理及临床应用进展[J].基层中药杂志,2000,14(5):45-46.
    [43]Kupchan S M, Sweeny J G, Baxter R L, et al. Gnididin, gniditrin and gnidicin, novel potent antileukemic diterpenoidesters from Gnidia lamprantha[J]. JAm chemsoc,1975,97(3): 672-673.
    [44]俞宜年,俞宜霞.冬凌草片治疗急性咽炎一例[J].中国药物与临床,2002,2(3):171.
    [45]冯子彦,张福兰,田效杰.复方冬凌草含片治疗急性咽炎、扁桃体炎的疗效观察[J].右江医学,2006,34(6):599-601.
    [46]陈敏光,王其豪,林玉冰,等.高乌甲素硬膜外注射术后镇痛的临床研究[J].中国中西医结合杂志,1995,15(5):274-276.
    [47]Cadnot P. Effects of the PAF antagonists, BN52063, BN52021 in various clinical indicatiom [J]. Lipid Mediators Cell Signalling,1994,10(1-2):141.
    [48]肖建如,侯铁胜,陆永坚,等.银杏苦内酯治疗急性颈髓损伤患者疗效观察[J].中国危重病急救医学,1998,10(4):21.
    [49]马靓,丁鹏,杨广笑.植物类萜生物合成途径及关键酶的研究进展[J].生物技术通报,2006,21-29.
    [50]Rodriguez Concepcion M, Fores O, Martinez-Garcia J F, et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development[J]. Plant Cell,2004,16(1):144-156.
    [51]Newman J D, Chappell J. Isoprenoid biosynthesis in plants:carbon part it ioning within the cytoplasmic pathway[J]. Crit Rev BiochemMol Biol,1999,34:95.
    [52]Christianson D W. Roots of biosynthetic diversity [J]. Science,2007,316(5821):60-61.
    [53]Schilmiller A L, Schauvinhold I, et al. Monoterpenes in the glandular trichomes of tomato are synthesize from a neryl diphosphate precursor rather than geranyl diphosphate[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(26): 10865-10870.
    [54]:Laule O,Furholz A, Chang H S, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2003.100: 6866-6871.
    [55]Hemmerlin A,Hoeffler J F, Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells[J]. J Biol Chem,2003,278:26666.
    [56]刘智,余龙江,李春艳,等.磷甘霉素和洛伐它汀处理对中国红豆杉悬浮培养细胞生物合成紫杉醇的影响[J].植物生理与分子生物学学报,2005,31(2):199-204.
    [57]Bach T J, Rogers D H, Rudney. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase form radish seedings[J]. Eur J Biochem,1986,154(1):103-111.
    [58]杨锦芬,王永炎,陈蔚文.阳春砂萜类生物合成途径上游功能基因的克隆及表达分析[R].广州中医药大学博士后出站研究工作报告,2008:1.
    [59]Liao Zhihua, Chen Min, Gong Yifu, et al. Isoprenoid biosynthesis in plants:pathway, genes, regulation and metabolic engineering[J]. J Bio Sci,2006(6):209-219.
    [60]Wang Yechun, Guo Binhui, Zhang Fei, et al. Molecular cloning and functional analysis of the gene encoding 3-hydroxy-3methylglutaryl coenzyme A reductase from hazel(corylusavellana L. Gasaway) [J]. J Biochem Mol Biol,2007,40(6):861-869.
    [61]Suzuki M, Muranaka T. Molecular genetic of plant sterol backbone synthesis[J]. Lipids, 2007,42(1):47-54.
    [62]Schaller H, Grausem B, Benveniste P, et al. Expression of the Hevea brasiliensis (H. B. K) Mull Arg 3-hydroxy-3-methylglutaryl coenzyme A reductase in tabacco result in sterol overproduction[J]. Plant Physiobogy,1995,109(3):1401-1403.
    [63]Chappell J, Nable R Induction of sesquiterpernoid biosynthesis in togacco cell suspension culture by fungal elicitor[J]. Plant Phsysiology,1987,85:469-473.
    [64]Enfissi E M A, Praser P D, Lois L M, et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoid in tamato[J]. Plant Biotechnol J,2005,3(1):17-27.
    [65]Lois L M, Campos N, Putra S R,et al. Cloning and characterization of a gene from Escherichia coli encoding a transketolas-like enzyme that catalyzes the synthesis of 1-deoxy-D-xylulose-5-phosphate, a common precursor of isprenoid, thiamin, and pyridoxol biosynthesis[J]. Proc Natl Acad Sci USA,1998,95:2105-2110.
    [66]Gong Y F, Liao Z H, Guo B H, et al. Molecular cloning an d expression profile analysis of Ginkgo biloba Dxsgene encoding 1-deoxy-Doxylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Planta Med,2006, 72(4):329-335.
    [67]Lois L M, Rodriguez-Concepcion M, Gallego F, et al. Carotenoid biosynthesis during tomato fruit development regulatory role of 1-deoxy-D-xylulose-5-phosphate synthase[J]. The Plant Journal,2000,22:503-513.
    [68]Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology,2003,21:796-802.
    [69]Munoz-Bertomeu J, Arrillaga I, Ros R, et al. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender[J]. Plant Physiol, 2006,142(3):890-900.
    [70]Takahashi S, Kuzuyama T, Watanabe H, et al. 1-deoxy-D-xylubose-5-phosphate reductoisomerase catalyzing formation of 2-C-Methyl-D-erythritol-4phosphate in an alternative nonmevalonate pathway for treenpenoid biosynthesis[J]. Proc Natl Acad Sci USA,1998, 95(17):9879-9884.
    [71]李嵘,王喆之.植物萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的分子结构特征与功能预测分析[J].植物研究,2007,27(1):59-67.
    [72]杨锦芬,陈蔚文,何国振,等.阳春砂1-去氧-D-木酮糖-5-磷酸还原异构酶基因的克隆及分析[J].广州中医药大学学报,2010,27(5):510.
    [73]Sharkey T D, Yeh S, Wieberley A E, et al. Evolution of the Isoprene Biosynthesis Pathway in Kudzu[J]. Plant Physiol,2005,137(2):700-712.
    [74]Lange B M, Croteau R. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants:clonig and heterobogous expression of 1-deoxy-D-xylulose-5-phosphate reductosiomerase from peppermint[J]. Arch Biochem Biophys,1999,365(14):170-174.
    [75]Rodriguez-concepcion M, Ahumada I, Diez-juez E, et al. 1-deoxy-D-xylulose-5-phosphate reductosiomerase and plastid isoprenoid biosynthesis during tomato fruit ripening[J]. Plant Journal,2001,27(3):213-222.
    [76]Hans J, Hause B, Strack D, et al. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose-5-phosphate reductosiomerase in arbuscule-containing cells of maize[J]. Plant Physiol,2004,134(2):614-624.
    [77]Gong Y F, Liao Z H, Chen M, et al. Molecular cloning and characterization of a 1-deoxy-D-xylulose-5-phosphate reductosiomerase gene from Ginkgo biloba[J]. DNA Seq, 2005,16(2):111-120.
    [78]马靓.烟草5-磷酸脱氧木酮糖还原异构酶(DXR)基因全长cDNA的克隆及序列分析.硕士论文.华中科技大学,2004:50.
    [79]Seetang-Nuna Y, Sharkey T D, Suvachittanonta W. Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose-5-phosphate reductosiomerase from Hevea brasiliensis[J]. Plant Physiol,2008,165(2):203-213.
    [80]Carretero-Paulet L, Cairo A, Botella-Pavia P. et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase[J]. Plant Mol Biol,2006,62(4-5):683-695.
    [81]Mahmoud S S, Croteau R B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reducoisomerase and menthofuran synthase[J]. Proc Natl Acad Sci USA,2001,98(15):8915-8920.
    [82]Wu S J, Shi M, Wu J Y. Cloning and characterization of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots[J]. Biotechnol Appl Biochem,2009,52(1):89-95.
    [83]Carretero-Paulet L, Ahumada I, Cunillera N, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Plant Physiol, 2002,129(4):1581-1591.
    [84]Yao H, Gong Y, Zuo K, et al. Molecular cloning, expression profiling and function analysis of a DXR gene encoding 1-deoxy-D-xylulose-5-phosphate reductosiomerase from Camptotheca acuminata[J]. J Plant Physiol,2008,165(2):203-213.
    [85]张艳霞,史玲玲,戴向辰,等.茉莉酸及其衍生物:一类重要的植物次生代谢诱导子[J].海南师范大学学报,2008,21(3):323-327.
    [86]Burke C C, Wildung M R,Crot eau R. Geranyl diphosphat esynthase:Cloning,expression and charact erization of this prenylt ransferase as a heterodimer[J]. PNAS,1999.96:13062.
    [87]Delourme D, Lacrout e F, Karst F. Cloning of an Arabidopsisthaliana cDNA coding for farnesyl diphosphat esynthase by functional complementation in yeast[J]. Plant Mol Biol, 1994,26:1867.
    [88]Homann V, Mende K, Arntz C, et al. The isoprenoid pathway cloning and characterization of fungal FPPS genes[J]. Curr Genet,1996,30:232.
    [89]陈建,赵德刚.植物萜类合成相关酶类及其编码基因的研究进展[J].分子植物育种,2004,2(6):757-764.
    [90]Wildung M R, Crot eau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the commit tedstep of taxolbiosynthesis[J]. J Biol Chem,1996,271(9):201
    [91]师彦平.单萜和倍半萜化学[M].北京:化学工业出版社,2008,1:254-258.
    [92]马聪,刘佳佳,杨栋梁.湿地松树皮挥发油中的萜类化学成分分析[J].广东化工,2007,3(34):81-87.
    [93]罗金岳,王贝贝.超临界CO2提取野菊花中的精油[J].生物质化学工程,2007,6(41): 11-14.
    [94]崔星明,王勇为,陈光宇.超临界流体萃取芦笋中熊果酸的研究[F].上海农业学报,2004,21(1):123.
    [95]雒廷亮,张景伟,曹文豪,等.山茱萸中熊果酸提取工艺研究进展[J].河南化工,2005,22(2):628.
    [96]Jennings D W. Supercritical extraction of taxol from thebark of Tax us breviolia[J]. JS upercritic Flu,1992,5(1):1.
    [97]黄书铭,杨新林,张自强,等.超声循环提取灵芝中三萜类化合物的研究[J].中草药,2004,35(5):508-510.
    [98]Vereen D A, McCall J P, Butcher D J. Solid phase microextraction for the deter mination of volatile organics in the foliage of Fraser (Abiesfraseri) [J]. Microchem J,2000,62:269-276.
    [99]Zini C A, Augusto F, Christensen E, et al. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME[J]. Anal Chem,2001,73:4729-4735.
    [100]Augusto F, Valente A L P, dos Santos Tada E, et al. Screening of Brazilian fruit aromas using solid-phase microextraction-gas chromatography-mass spectrometry[J]. J Chromatogr A, 2000,873:117-127.
    [101]刘艳琴,王浩,杨红梅.高效液相色谱-串联四极杆质谱联用测定水果和蔬菜中赤霉素残留量[J].现代农业科技,2009,16:330-331.
    [102]黄龙,王进元,罗诚浩.烟草中游离植物甾醇的GC/MS/SIM分析[J].烟草科技,2006,10: 41-45.
    [103]杨锦芬,Megha Nath Adhikari,黄琼林,等.表达阳春砂HMGR及DXR基因的转基因烟草的构建[J].广州中医药大学学报,2011,28(3):295.
    [104]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:527-606.
    [105]李长福,吴振廷,王学林,等.利用标记基因检测转Bt基因棉种子纯度的研究[J].安徽农业大学学报.2003,30(1):26-27.
    [106]宋锋,孙敏,罗克明.一种基于PCR技术鉴定单拷贝转基因烟草的方法[J].中国生物工程杂志,2010,30(4):83-88.
    [107]赵爽,雷建军,陈国菊,等.卡那霉素在转基因芥菜中的应用[J].遗传,2008,30(4):501.
    [108]Register J C, Peterson D J. Structure and function of selectable and non-selectable transgenes in maize after introduction by particlebombardment [J]. Plant Mol Biol,1994,25:951.
    [109]华志华,朱雪峰,林鸿生,等.基因枪转化获得的转基因水稻中外源基因整合与表达规律研究[J].遗传学报,2001,28(11):1012-1018.
    [110]董燕,易浪,周联,等.转抗菌肽基因鱼腥草的筛选及稳定性分析[J].广州中医药大学学报,2011,28(3):260-263.
    [111]农业知网:农业病虫害图文数据库:http://www.cnak.net/bccsjknew/CropContent.aspx?id =2658
    [112]张润志.扶桑绵粉蚧Phenacoccus solenopsis Tinsley [J].应用昆虫学报,2011,2(48):434.
    [113]Xin GUAN, Yongyue LU, Ling ZENG. Study on Developmental Durations and Fecundity of Phenacoccus solenopsis Tinsley on FourSpecies of Hosts [J]. Agricultural Science & Technology,2012,13(2):408-411.
    [114]Aharoni A, Jongsma M A, Bouwmeester H J. Volatile science Metabolic engineering of terpenoids in plants[J]. Trends Plant Sci,2005,10:594-602.
    [115]陈素华,顾和平,陈新,等.植物毒素及其在农业上的应用[J].安徽农学通报,2008,14(17):68-70.
    [116]胡平,姚国新,盛继群.转基因作物安全性研究进展[J].安徽农业科学,2006,34(16):3955-3956.
    [117]Tomoki S, Chika T, Yukio M, et al. Cloning and Characterization of Mevalonate Pathway Genes in a Natural Rubber Producing Plant. Hevea brasiliensis[J]. Biosci. Biotechnol. Bio chem.2008,72(8):2049-2060.
    [118]Xiuchen Ge, Jiangyong Wu. Tanshinone production and isoprenoid pathway in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor[J]. Plant Science,2005,168: 487-491.
    [119]Toroser D, Huber S C,3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activitiesin cauliflower florets:Ca2+ dependence and substrate specificities[J]. Arch. Biochem. Biophys,1998,355:291-300.
    [120]Hasunuma T, Takeno S, Hayashi S, et al. Overexpression of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production[J]. J Biosci Bioeng,2008,105(5):51.
    [121]Miller B, Heuser T, Zimmer W. Functional involvement of a deoxy-D-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis[J]. FEBS Letters,2000,481(3):221.
    [122]李恒.萜类化合物MEP生物合成途径中dxr基因的克隆表达及酶活性分析.硕士论文.西安:西北大学,2009:1.
    [123]Lichtenthaler H K, Schwender J, Disch A, et al. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway[J]. FEBS Lett,1997,400(3): 271-274.
    [124]Schwender J, Seemann M, Lichtenthaler H K, et al. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus[J]. Biochem J,1996,316 (1):73-80.
    [125]Lichtenthaler H K, Buschmann, C. Extraction of Photosynthetic Tissues:Chlorophylls and Carotenoids[M]. Current Protocols in Food Analytical Chemistry, Wiley Publish on Line, 2001:F4.2.
    [126]Lichtenthaler, H. K., Buschmann, C. Chlorophylls and Carotenoids:Measurement and Characterization by UV-VIS Spectroscopy[M]. Current Protocols in Food Analytical Chemistry, Wiley Publish on Line,2001:F4.3.
    [127]Trapp S C, Croteau R B. Genomic organization of plant terpene synthases and molecular evolutionary implications[J]. Genetics,2001,158:811-832.
    [128]Pichersky E, Gershenzon J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense[J]. Curr Opin Plant Biol,2002,5:237-243.
    [129]张长波,孙红霞,巩中军,等.植物萜类化合物的天然合成途径及其相关合酶[J].植物生理学通讯,2007,43(4):779-786.
    [130]Hampel D, Mosandl A, Wust M, et al. Biosynthesis of mono-and sesquiterpenes in carrot roots and leaves(Daucus carota L.):metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways[J]. Phytochemistry,2005,66(3):305-311.
    [131]陈大华,叶和春,李国凤,等.植物类异戊二烯生物合成途径的分子生物学研究进展[J].植物学报,2000,42(6):551.
    [132]Schuler G, Goerls H, Boland W.6-Substituted indanoyl isoleucine conjugates mimic the b iologcal activity of coronatine [J]. Eur J Org Chem,2001(9):1663-1668.
    [133]胡群;刘志华;王建,等.6-取代茚满酰异亮氮酸共轭物对烟草挥发性成分及吸味品质的影响[J].烟草科技,2007,296(6):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700