用户名: 密码: 验证码:
风能—太阳能—沼气集成系统的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能、生物质能、风能等是农村可广泛获取的可再生能源,它们的高效低成本开发利用对改善农村人居环境、生态环境和实现农村经济的可持续发展有重要价值和意义。
     太阳能低温集热技术、生物质厌氧发酵技术、户用风力发电技术是三项成熟的可再生能源技术,可分别满足人们对生活热水、生活燃气和电能的需求。然而,由于受到昼夜、季节、气候等不利因素的束缚,它们通常无法独立实现连续稳定供能。
     基于这三种能源在时间、空间和品位方面的互补性,本课题首先构建了风能—太阳能—沼气集成系统。系统主要由太阳能集热器、恒温沼气池和户用风力发电机组成:太阳能集热器除了将收集的太阳能通过热水实现沼气池恒温厌氧发酵外,还为用户提供生活热水;恒温沼气池为用户提供生活燃气;户用风力发电机除了满足集成系统自身用电外,还为用户提供生活用电。继而,本课题研究了系统的各项性能,具体研究内容和结果如下:
     (1)在景泰县民安新村搭建了集成系统试验台,研究了冬季工况和春季工况下系统的总体性能,基于热力学第一定律和第二定律分析了集成系统能量转换过程、能量输出量和能量转换效率。在冬季工况下,集成系统运行稳定。在料液TS为10.46%,发酵温度控制为26±2℃时,恒温沼气池日产气量平均为1.422m~3,池容产气率为0.647m~3/(m~3·d),甲烷平均含量达到51.45%;266L太阳能储热水箱中的热水温度均保持在25℃以上;风力机对外日平均输出2.5kWh电,集成系统热效率为38.84%,火用效率达到了56.68%。在春季工况下,在料液TS为13.03%,发酵温度控制为28±2℃时,恒温沼气池日产气量平均为1.28m~3,池容产气率为0.582m~3/(m~3·d),甲烷平均含量达到51.4%;266L太阳能储热水箱中的热水温度均保持在36℃以上;风力机对外日平均输出3.5kWh电,集成系统热效率为42.99%,火用效率达到了60.05%。新型集成系统满足了用户对生活热水、生活燃气和电能的需求。
     (2)选用动态投资回收期方法评价了风能—太阳能—沼气集成系统的经济效益,并选用净现值、投资回收期、益本比及内部收益率来评价该系统直接经济效益。结果表明:系统的财务净现值NPV(i=10%)为8958.72元,益本比为1.94,动态投资回收期为5.4年,内部收益率为24.29%。
     (3)装置每年可以节煤1351.63kg,减排CO_22930kg,SO211.49kg。
     本课题的创新点在于:构建了风能-太阳能-沼气集成系统并揭示了系统热力性能、经济效益和环境效益。
     风能-太阳能-沼气集成系统突破了北方地区时间、季节、气候变化对太阳能低温集热技术、生物质厌氧发酵技术、户用风力发电技术的束缚,多层次地满足了人们对生活热水、生活燃气和电能的需求,实现了电、沼气和生活热水的全年连续稳定供能。本课题的研究结果对改善农村人居环境、生态环境和实现农村经济的可持续发展有重要意义,具有巨大的推广应用前景。
     本课题研究得到了国家自然科学基金项目(51166008/E0607)、国家科技支撑计划课题(2011BAD15B03)、国家科技部星火计划重点项目(2010GA860004)、甘肃省教育厅项目(0803-06)、―陇原青年创新人才扶持计划‖项目(09-0165)、甘肃省建设科技攻关项目(JK2010-29)和兰州理工大学―红柳杰出人才计划‖(Q201101)的资助。
Solar, biomass and wind are rural widely available renewable energies, whichcost-efficient development and utilization has an important value and significance toimprove rural living environment, ecological environment and the rural e conomy,sustainable development.
     Solar low temperature collector technology, anaerobic fermentation of biomassand household wind power technology are the three mature renewable energytechnologies that can satisfy the demands for domestic hot water, living gas andelectricity, respectively. However, due to the circadian, seasons, climate and otheradverse factors, they usually can not continuous and stable supply energyindependently.
     Based on these three complementary natures of the energy in time, space andtaste, this project built the integrated system with wind energy and solar e nergy andbiogas at first. The device structure consists of three parts, respectively, for the solarcollector device, digesters and household wind turbines: Solar collectors can not onlycollect solar hot water to achieve the digester temperature anaerobi c fermentation, butalso to provide users with hot water of life; constant temperature digesters provide gasfor users; the household wind turbines in addition to satisfy electricity consumption ofthe integrated system, provides users the electricity. And then, we study theperformance of the system. The contents and results are as follows:
     (1) The integrated system test bed was built in Jingtai Minanxincun. We studiedthe overall system performance, and analysis the integrated system energy conversionprocesses, it's energy output and it's energy conversion efficiency, basing on the firstlaw of thermodynamics and second law. In winter conditions and stable operation,digesters in the TS of the solid to liquid to10.46%control of fermentationtemperature of26±2℃, the stable operation of the system when the average daily gasproduction1.422m~3pool capacity gas production rate of0.647m~3/(m~3·d), averagemethane content of51.45%. Solar heat storage tank hot water temperature ismaintained at above25℃with266L. The wind turbine can produce2.5kWh ofelectricity in the local conditions, the system thermal efficiency of38.84%, the exergyefficiency of56.68%, with system conditions and stable operation in the winter. Inspring, the TS and the controlling temperature are13.03%and28±2℃. The averagebiogas production is1.28m~3containing51.4%methane, production rate of 0.582m~3/(m~3·d). Solar heat storage tank hot water temperature is maintained at above36℃. The output electrical energy is3.5kWh.
     (2) Economic benefits of wind energy and solar energy and biogas integratedsystems is evaluated using financial net present value, benefit cost ratio, dynamicinvestment recovery period and internal rate of return. The financial net present valueof the NPV of the system devices (i=10%) was8958.72yuan, benefit cost ratio is1.94,the dynamic investment recovery period is5.4years, the internal rate of return is24.29%.
     (3) Devices each year the economizer1351.63kg, reduction of CO_22930kg andSO_211.49kg.
     The subject innovation is: building a wind energy and solar energyand biogasintegrated system and revealing the system thermal performance, economic andenvironmental benefits.
     The integrated system with wind energy and solar energyand biogasbreakthroughs time of the northern region, season, climate change, biomass, anaerobicfermentation bound to solar low temperature collector technology, anaerobicfermentation of biomass and household wind power technology, and satisfies thedemands for domestic hot water, living gas and electricity. The electricity, biogas anddomestic hot water are continuous and stable energy supply a full year.
     The results of this study have a great significance for achieving the sustainabledevelopment of rural economy, and great application prospects.
     This work was supported by National Natural Science Foundation of China(51166008/E0607), Key Technologies R&D Program of China (2011BAD15B03),China Spark Program (2010GA860004), Research Foundation of Education Bureau ofGansu (0803-06), Longyuan Youth Innovative Support Program (09-0165),Construction Science and Technology Development Program of Gansu (JK2010-29),Tamarisk Outstanding Talent Program of Lanzhou University of Technology(Q201101).
引文
[1]华泽澎.能源经济学[M].山东东营:石油大学出版社,1991.
    [2] Hansen J, Sato M, Ruedy R, et al.Global temperature Change[J].PNAS,2006,103:142888-14293.
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [4]王婧,徐旭,张旭.村镇能源系统的低成本要素量化研究[J].同济大学学报:自然科学版,2010,(10):1556-1560.
    [5]太阳能世界http://www.csolar.cn/redian/528.html
    [6]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社.2005:4-7.
    [7]黄爱霞,邹晓庭.集约化畜禽养殖污染的现状及解决方法.甘肃畜牧兽医:2006,2:42~44
    [8] Guangqing Liu,Ruihong Zhang,Hamed M. El-Mashadc,et al. Effect of feed toinoculum ratios on abiogas yields of food and green wastes[J]. BioresourceTechnology,2009,100(21):5103–5108.
    [9] Kingery W L,Wood C W,Delaney D P,et al.Impact of long-term laod application ofbroiler littcr on environmental1y related soilproperties.J.Environ.Qual,1994.23(1):139~147
    [10]何丽红.畜禽粪便高温厌氧干发酵关键参数优化研究[D].武汉:华中农业大学,2004.
    [11]中华人民共和国国务院新闻办公室.中国能源状况与政策[M].北京:外文出版社,2007.
    [12]喜文华,魏一康,张兰英.太阳能实用工程技术[M].兰州:兰州大学出版社.2001:512-544.
    [13]张无敌,宋洪川,韦小岿,等.21世纪发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [14]孙孝仁.21世纪世界能源发展前景[J].中国能源,2001,(2):19-20.
    [15]李京京,庄幸.我国新能源和可再生能源政策及未来发展趋势分析[J].中国能源,2001,(4):5-9.
    [16]闫强,陈毓川,王安建,王高尚,于汶加,陈其慎.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31(5):759-767.
    [17]李虹,董亮,段红霞.中国可再生能源发展综合评价与结构优化研究[J].资源科学,2011,33(3):431-440.
    [18]黄其励.中国可再生能源现状和发展路线图[J].电网与清洁能源,2009,(4):1-4.
    [19]中国科学院能源领域战略研究组.中国至2050年能源科技发展路线图[M].北京:科学出版社,2009.
    [20]孙永明,李国学,张夫道,等.中国农业废弃物资源化现状与发展战略[J].农业工程学报,2005,21(8):169-173.
    [21]王天津,赵海云.环境资源产业经济学原理和应用[M].北京:中央民族大学出版社,2007.
    [22]赵玉文.21世纪我国太阳能利用发展趋势[J].中国电力,2000,33(9):73-77.
    [23]常振明,韩平,曲春洪.可再生能源利用现状与未来展望[J].当代石化,2004,12(12):19-23.
    [24]钱莉,刘明春,杨永龙,闫国华,兰晓.1960年至2009年河西走廊东部太阳辐射变化规律及太阳能资源利用分析[J].资源科学,2011,33(5):823-828.
    [25]霍志刚,罗振涛.中国太阳能热利用产业发展研究(2008-2010)[M].编辑部出版社,2010.
    [26]高峰,孙成权,刘全根.太阳能开发利用的现状和发展趋势.科技前沿和学术评论,2001,23(4):35-39.
    [27]朱建华.农户沼气池建设成本效益评价方法的讨论[J].中国沼气,2004,16(3):45~47.
    [28] Balat M. Global bio-fuel processing and production trends. Energy ExplorExploit,2007,25:195218.
    [29] Deng LW, Chen ZA, Gong JJ. Comparison of biogas plant between China andGermany. Renewable Energy Res,2008,26(1):110114.
    [30]郭祥冰.世界可再生能源发展概况和我国发展目标[J].福建能源开发与节约,2001,(3):6-9.
    [31]国家自然科学基金委员会工程与材料科学部.工程热物理与能源利用学科发展战略研究报告[M].北京:科学出版社,2011.
    [32] X. Zeng, Y. Ma, L. Ma. Utilization of straw in biomass energy in China.Renewable and Sustainable Energy Reviews.2007,11:976–987
    [33]姚兴佳.风力发电技术的研究现状[J].太阳能,2006,1:47-51
    [34] G. Giebel, L. Landberg, G. Kariniotakis and R. Brownsword2003State-of-the-arton methods and software tools for short-term prediction of wind energyproduction[C]. European Wind Energy Conference&Exhibition EWEC.
    [35]国家发展改革委员会.可再生能源中长期发展规划[EB].http://www.sdpc.gov.cn/,2008.3.28
    [36] T.M. Alkhamis, R. El-khazali, M.M. Kablan,M.A. Alhusein. Heating ofa biogas reactor using a solarenergy system with temperature control unit[J].Computers&Operations Research,2002,29(4):387–402
    [37] Andreas Ch. Yiannopoulos, Ioannis D. Manariotis, Constantinos V. Chrysikopoulos. Design and analysis of a solar reactor for anaerobic wastewatertreatment[J].Bioresource Techonology,2008,99(16):7742-7749.
    [38] K. Vinoth Kumar,R. Kasturi Bai. Solar greenhouse assisted biogas plant in hillyregion–A field study[J]. Solar Energy,2008,82(10):911-917.
    [39] P. Axaopoulos, P. Panagakis. Simulation and experimental performance of a solarheated anaerobic digester[J]. Solar Energy,2001,70(2):155-164.
    [40] Hamed M. El-Mashad, Wilko K.P. van Loon1,et al.A Model of solar energyutilisation in the anaerobic digestion of cattle manure[J]. BiosystemsEngineering,2003,84(2):231–238.
    [41] G. Kocar, A. Eryasar. An application of solar energy storage in the gas:solarheated biogas plants[J]. Energy Sources,2007,29(16):1513-1520.
    [42]李传峰,徐小明.新型太阳能恒温沼气反应装置的运行试验分析[J].农机化研究,2010,1:170-172.
    [43]司传海.利用太阳能的污泥高效厌氧消化技术研究[D].北京:北京化工大学,2007.
    [44]丁羽,周岭,李传峰.新型太阳能恒温沼气反应罐的设计[J].农机化研究,2007,(3):49-53.
    [45]王晓超,贺光祥,邱凌等.太阳能热管加热系统在沼气工程中的应用[J].农机化研究,2008,(7):207-207.
    [46]李小骥.太阳能沼气池的试验研究[D].昆明:昆明理工大学,2008.
    [47] Rong Dai, Chang Cun, Zhibin Xu, et al;. Application of solar heating system inbiogas production [A].In: D. Yogi Goswami. Proceedings of ISES WorldCongress2007(1-5)[C]. Springer Berlin Heidelberg,2009.2388-2392.
    [48]孙秀丽.太阳能辅助加热沼气系统的研究[D].上海:同济大学,2009.
    [49]赵金辉,谭羽非,白莉.寒区太阳能沼气锅炉联合增温沼气池的设计[J].中国沼气,2009,27(3):34-39.
    [50]薄军.太阳能沼气工程无线监测系统设计[D].重庆:西南大学,2010.
    [51]张培栋,杨艳丽.基于太阳能和生物质能的半干旱地区农村生态住宅设计[J].可再生能源,2008,26(5):101-104.
    [52]谢列先.利用太阳能热水器加热沼气池的实验研究[J].广西林业科学,2010,39(1):37-40
    [53] Onder Ozgener,A small wind turbine system(SWTS)application and its
    [1]华泽澎.能源经济学[M].山东东营:石油大学出版社,1991.
    [2] Hansen J, Sato M, Ruedy R, et al.Global temperature Change[J].PNAS,2006,103:142888-14293.
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [4]王婧,徐旭,张旭.村镇能源系统的低成本要素量化研究[J].同济大学学报:自然科学版,2010,(10):1556-1560.
    [5]太阳能世界http://www.csolar.cn/redian/528.html
    [6]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社.2005:4-7.
    [7]黄爱霞,邹晓庭.集约化畜禽养殖污染的现状及解决方法.甘肃畜牧兽医:2006,2:42~44
    [8] Guangqing Liu,Ruihong Zhang,Hamed M. El-Mashadc,et al. Effect of feed toinoculum ratios on abiogas yields of food and green wastes[J]. BioresourceTechnology,2009,100(21):5103–5108.
    [9] Kingery W L,Wood C W,Delaney D P,et al.Impact of long-term laod application ofbroiler littcr on environmental1y related soilproperties.J.Environ.Qual,1994.23(1):139~147
    [10]何丽红.畜禽粪便高温厌氧干发酵关键参数优化研究[D].武汉:华中农业大学,2004.
    [11]中华人民共和国国务院新闻办公室.中国能源状况与政策[M].北京:外文出版社,2007.
    [12]喜文华,魏一康,张兰英.太阳能实用工程技术[M].兰州:兰州大学出版社.2001:512-544.
    [13]张无敌,宋洪川,韦小岿,等.21世纪发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [14]孙孝仁.21世纪世界能源发展前景[J].中国能源,2001,(2):19-20.
    [15]李京京,庄幸.我国新能源和可再生能源政策及未来发展趋势分析[J].中国能源,2001,(4):5-9.
    [16]闫强,陈毓川,王安建,王高尚,于汶加,陈其慎.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31(5):759-767.
    [17]李虹,董亮,段红霞.中国可再生能源发展综合评价与结构优化研究[J].资源科学,2011,33(3):431-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700