用户名: 密码: 验证码:
风电机组建模仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电机组建模仿真是一种研究风电机组基本原理、控制技术、协调优化的重要手段,近年来基于建模仿真的风电技术研究得到了越来越多的关注。随着风电机组单机容量的增大、风轮半径的增加,大型风电机组风轮受风不均匀特性和叶片不平衡特性对风电机组机械部件振动以及并网电能质量的影响越来越严重,因此,本文围绕风切变、塔影效应、叶片不平衡对风电机组性能的影响展开研究。
     首先,建立了风电机组模型。根据风电机组的基本结构和运行原理,分别建立了风力机、传动链、发电机、变流器、控制系统的模型。其中重点建立了基于叶素动量理论的风力机模型、变流器的简化功率模型及直流环节功率电压模型。
     其次,分析了气动载荷特性。分别建立了风切变、塔影效应、叶片不平衡的模型,并根据所建风力机模型计算得到三种因素单独作用时及联合作用时的气动载荷(切向转矩、轴向推力、主轴作用力),并从时域和频域两个角度,定量分析了三种因素造成的切向转矩波动和主轴作用力波动,进而分析了其对风电机组相关机械部件振动的影响,为机械降载设计提供依据。
     最后,研究了并网功率平稳控制技术。利用所建立的变流器模型和直流环节模型,根据气动载荷特性分析得出的结论,对传统的并网控制策略进行改进,提出了基于输入功率前馈的并网控制策略,通过在直流电压指令中叠加功率波动信息来吸收输入功率的波动,从而利用直流电容的储能作用抑制并网功率的波动。将传统并网控制策略与改进并网控制策略进行对比分析,仿真结果验证了改进控制策略的有效性。
     本文通过建模仿真的手段,定量分析三种因素造成的切向转矩波动;进而一方面分析转矩波动对相关机械部件振动的影响,为机械降载设计提供依据,另一方面针对切向转距波动引起的输入功率波动,提出改进的并网控制策略,抑制三种因素造成的并网功率波动,提高并网电能质量。仿真结果验证了理论分析的正确性和所提出控制策略的有效性。
Modeling and simulation have been an important method for the study on the basic principle, the control technology, and the coordinated optimization for wind turbines. At present, the influence of uneven wind speed and unbalanced blades on the wind turbine characteristics and the grid connected power quality is more and more serious, so this paper analyzes the influence of uneven wind speed and unbalanced blades on the wind turbines and puts forward an improved grid connected control strategy to mitigate the fluctuation of the grid connected power based on the wind turbine model by simulation.
     First of all, the wind turbines models are built. The wind turbine aerodynamic part, driving chain, generator, converter and control system are modeled based on the structure and operating principle of wind turbines. The wind turbine aerodynamic model based on the BEM (Blade Element Momentum theory), the equivalent power model of converter and the power-voltage model of DC link are modeled especially according to the study purpose of this paper.
     Secondly, the aerodynamic characteristics are analyzed. Considering wind shear, tower shadow effect and the unbalanced blades, the aerodynamic loads model of large scale wind turbine are built based on the BEM; by analyzing the simulation results of aerodynamic loads in time domain and frequency domain, the influence of wind shear, tower shadow effect and unbalanced blades on the aerodynamic loads characteristics and the resonance characteristic of relative mechanical components are obtained.
     Finally, the stable control strategy of grid connected power is studied. The influence of wind shear, tower shadow effect, and unbalances blades on grid connected power are analyzed based on the model built before, and the classical grid connected control strategy is improved to mitigate the influence of the three elements; the classical grid connected control strategy and the improved one are both simulated on the model platform, and the simulation results verify the validity of the improved control strategy.
引文
[1]Global wind energy council (GWEC).Global Wind Report:2012.
    [2]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计:2012.
    [3]尹潮鸿.基于dSPACE的风机智能控制半实物仿真研究[D].北京交通大学,2009.
    [4]陈锐,曾沅.风电机组建模仿真技术发展现状及研究进展[J].广东电力,2011(12):36-41.
    [5]金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007.
    [6]朱亮,徐希望,王祥旭.基于Matlab/Simulink的永磁直驱风力发电机组建模和仿真研究[J].电网与清洁能源,2011(9):93-99.
    [7]付勋波,郭金东,赵栋利,等.直驱式风力发电系统的仿真建模与运行特性研究[J].电力自动化设备,2009(2):1-5.
    [8]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007(15):61-65.
    [9]张梅.直驱永磁同步风电机组建模及其控制系统仿真研究[D].西安理工大学,2008.
    [10]严干贵,魏治成,穆钢,等.直驱永磁同步风电机组的动态建模与运行控制[J].电力系统及其自动化学报,2009(6):34-39.
    [11]马威.基于永磁同步发电机的直驱式风电系统建模与仿真[D].兰州理工大学,2010.
    [12]程昱舒.双馈风力发电机组的建模及其并网研究[D].太原理工大学,2010.
    [13]闫广新.变速双馈风电机组建模与并网稳定性研究[D].新疆大学,2008.
    [14]范晓旭.变速恒频风力发电机组建模、仿真及其协调优化控制[D].华北电力大学(北京)华北电力大学,2010.
    [15]Mcswiggan D., Littler T., Morrow D. J., et al. A study of tower shadow effect on fixed-speed wind turbines[C]. Universities Power Engineering Conference,2008. UPEC 2008.43rd International,2008:1-5.
    [16]Hughes F. M., Anaya-Lara O., Ramtharan G., et al. Influence of Tower Shadow and Wind Turbulence on the Performance of Power System Stabilizers for DFIG-Based Wind Farms[J]. Energy Conversion, IEEE Transactions on,2008,23(2):519-528.
    [17]Fadaeinedjad R., Moschopoulos G., Moallem M. The Impact of Tower Shadow, Yaw Error, and Wind Shears on Power Quality in a Wind Diesel System[J]. Energy Conversion, IEEE Transactions on,2009,24(1):102-111.
    [18]Sakasegawa E., Shinohara K., Yamamoto K., et al. Characteristic analysis of a wind power system with doubly fed induction generator in considering of the tower shadow effect[C]. Power Electronics Conference (IPEC),2010 International,2010:3225-3229.
    [19]杨涛,任永,刘霞,等.风力机叶轮质量不平衡故障建模及仿真研究[J].机械工程学报,2012(6):130-135.
    [20]姚兴佳,宋俊,等.风力发电机组原理与应用[M].北京:机械工业出版社,2009.
    [21]Munteanu I.,Bratcu A. I.,Cutululis N. A.,等.风力发电系统优化控制[M].北京:机械工业出版社,2010.
    [22]Tao S., Zhe C., Blaabjerg F. Voltage recovery of grid-connected wind turbines after a short-circuit fault[C]. Industrial Electronics Society,2003. IECON '03. The 29th Annual Conference of the IEEE,2003:2723-2728.
    [23]芮晓明,柳亦兵,马志勇.风力发电机组设计[M].北京:机械工业出版社,2010.
    [24]Burton T., Sharpe D., Jenkins N. Wind energy handbook[M]. England:John Wiley & Sons Ltd,2008.
    [25]高峰,徐大平,吕跃刚.基于叶素理论的风力发电机组风轮建模[J].现代电力,2007(6):52-57.
    [26]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006.
    [27]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008(10):11-15.
    [28]Akhmatov V. Analysis of Dynamic Behavior of Electric Power Systems with Large Amount of Wind Power [M]. Copenhagen,Denmark:Electric Power Engineering, Technical University of Denmark,2003.
    [29]陈建伟.基于双PWM变换器的直驱永磁同步风力发电系统建模与控制策略研究[D].新疆大学,2010.
    [30]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [31]IEC 61400-1-2005 Wind Tuibines-part 1:Design Requirements[S].2005.
    [32]GB/T 19960.1-2005风力发电机组第1部分:通用技术条件[S].2005.
    [33]宋海辉,等.风力发电技术及工程[M].北京:中国水利水电出版社,2009.
    [34]Bianchi F. D.,Battista H. D.,Mantz R. J风力机控制系统原理、建模及增益调度设计[M].北京:机械工业出版社,2009.
    [35]Dolan D. S. L., Lehn P. W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow[J]. Energy Conversion, IEEE Transactions on,2006,21(3):717-724.
    [36]JB/T 10194-2000风力发电机组风轮叶片[S].2000.
    [37]毛火军,石可重,李宏利,等.大型风电叶片的模态测试与数值模拟[J].工程热物理学报,2009(4):601-604.
    [38]周鹏展,肖加余,曾竟成,等.基于ANSYS的大型复合材料风力机叶片结构分析[J].国防科技大学学报,2010(2):46-50.
    [39]何玉林,苏东旭,黄帅,等.变速变桨风力发电机组的桨距控制及载荷优化[J].电力系统保护与控制,2011(16):95-100.
    [40]杜静,冯博,何玉林.风力发电机组塔筒的横向振动分析[J].现代制造工程,2011(9):116-118.
    [41]陈严,田鹏,刘雄,等.水平轴风力机锥形塔筒的静动态特性研究[J].太阳能学报,2010(10):1359-1365.
    [42]王纯琦.大型风力发电场接入电网电能质量问题研究[D].新疆大学,2007.
    [43]赵海翔.风电引起的电压波动和闪变研究[D].中国电力科学研究院,2005.
    [44]Vilar Moreno C., Amaris Duarte H., Usaola Garcia J. Propagation of flicker in electric power networks due to wind energy conversions systems[J]. Energy Conversion, IEEE Transactions on,2002,17(2):267-272.
    [45]Weihao H., Zhe C., Yue W., et al. Flicker study on variable speed wind turbines with permanent magnet synchronous generator[C]. Power Electronics and Motion Control Conference,2008. EPE-PEMC 2008.13th,2008:2325-2330.
    [46]Thiringer T., Dahlberg J. A. Periodic pulsations from a three-bladed wind turbine[J]. Energy Conversion, IEEE Transactions on,2001,16(2):128-133.
    [47]Melicio R., Mendes V. M. F., Catalao J. P. S. Electrical grid integration and power quality studies of a variable-speed wind energy conversion system[C]. PowerTech,2009 IEEE Bucharest,2009:1-6.
    [48]Weihao H., Zhe C., Yue W., et al. Wind power fluctuations mitigation by DC-Link voltage control of variable speed wind turbines[C]. Universities Power Engineering Conference,2008. UPEC 2008.43rd International,2008:1-5.
    [49]Weihao H., Zhe C., Yue W., et al. Flicker study on variable speed wind turbines with permanent magnet synchronous generator[C]. Power Electronics and Motion Control Conference,2008. EPE-PEMC 2008.13th,2008:2325-2330.
    [50]Weihao H., Zhe C., Yue W., et al. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters[J]. Energy Conversion, IEEE Transactions on,2009,24(3):640-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700