用户名: 密码: 验证码:
基于多羧酸和氮杂环衍生物的新型配位聚合物的合成、结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于利用多种柔性长链多羧酸及咪唑、三氮唑、吡啶类氮杂环衍生物与过渡金属盐或碱土金属盐,通过水热法反应制备具有良好荧光、磁性或气体吸附性能的新型金属-有机配位聚合物。研究这类配合物的合成条件及规律,考察网络的拓扑类型及所属缠结类型,进一步探索分子自组装原理及新物质结构和性能之间的关系。
     利用水热技术,合成了31个由多羧酸和咪唑、三氮唑、吡啶类氮杂环衍生物配体及金属离子构筑的新型金属-有机配位网络。通过各种测试方法,如元素分析、ICP、IR、单晶X-射线衍射和粉末X-射线衍射分析(XRPD)对其晶体结构进行表征,并对它们的热稳定性(TG)、荧光或磁学特性进行了初步研究。
     1.利用柔性长链多羧酸与不同种类氮杂环衍生物及过渡金属盐或碱土金属盐在水热条件下反应,共合成了18种具有不同缠结类型的缠结金属-有机配位网络:[Mn4(sdba)4(bim)(H2O)4]·2H2O (1)[Ni(sdba)(bim)(H2O)2]·2H2O (2)[Co(sdba)(bim)(H2O)2]·2H2O (3)[Co3(sdba)2(Hsdba)2(2,2'-bpy)2](4)[Mn3(sdba)2(Hsdba)2(2,2'-bpy)2](5)[Mn2(sdba)2(btb)0.5(H2O)](6)[Co(sdba)(bim)](7)[Cd(sdba)(bim)](8)[Cd(sdba)(bimp)](9)[Co2(odpa)(bim)2]·3H2O (10)[Zn(sdba)(Htpim)](11)[Cd2(sdba)2(Htpim)2(H2O)2]·5H2O (12)[Mn4(μ2-OH2)2(sdba)4(bpp)4](13)[Zn2(btec)(Htpim)2]·2H2O (14)[Ba(μ2-OH2)(sdba)(btb)0.5] (15)[Ni2(stba)(bim)2(H2O)]·2H2O (16)[Ni2(bpda)2(bim)2]·H2O (17)[Cd(sdba)(H2O)] (18)
     化合物1-5代表了一系列目前缠结体系比较少见的同时具有多轮烷和多连锁特征的(2D→2D)平行互穿网络。化合物6代表了目前缠结体系第一例基于四链带的2D多连锁网络,也可以看成是由包含有[3]轮烷部件的1D多轮烷所组成。化合物7-10都是基于2D螺旋层的(2D→3D)多插指结构。化合物11是基于含侧臂1D管状结构的(1D→3D)多插指排列。化合物12是缠结体系首例基于3D自线穿网络的二重互穿结构,代表了配位聚合物领域第一例同时具有互穿和自线穿特征的配位网络。化合物13是一个包含有三折螺旋的2D自线穿网络,它代表了金属-有机配位聚合物领域中首例具有双边36-hxl (hexagonal lattice)拓扑的2D配位网络。化合物14代表了缠结体系首例基于手臂式2D双层模型的(2D→3D)多线穿网络。化合物15是金属-有机配位网络领域中第一例(5,12)-连接的3D自穿网络,代表了目前缠结体系最高连接的自穿网络。化合物16是缠结体系少见的包含有Z字链与2D螺旋层缠结的4-连接点3D自穿网络。化合物17展现出两个不同CdSO4网络的二重互穿结构。化合物18展现出两个金红石网络的双重互穿结构。
     2.利用4,4'-磺酰基二苯甲酸和碱土金属钡盐在不同种类有机溶剂或含氮配体存在的条件下,水热合成了7种微孔金属-有机配位聚合物:[Ba(μ2-OH2)(sdba)(H2O)3]·0.5H2O (19)[Ba(μ2-OH2)(sdba)(H2O)3]·0.5ben·H2O (20)[Ba(μ2-OH2)(sdba)(H2O)3]·0.5tolu·H2O (21)[Ba(μ2-OH2)(sdba)(H2O)3]·0.5(2,2'-bpy)·H2O (22)[Ba(μ2-OH2)(sdba)(H2O)3]·0.25bim·H2O (23)[Ba(μ2-OH2)(sdba)(H2O)3]·0.5dfb·0.25H2O (24)[Ba(μ2-OH2)(sdba)(H2O)3]·3.5H2O (25)
     化合物19-25是一系列包含有相同基本骨架的3D多孔配位聚合物,都是基于含侧臂2D双层模型的(2D→3D)多插指结构,只是在它们的孔道中包含有不同种类的客体分子。正是由于孔道中客体分子的不同从而导致这一系列配位化合物微观结构参数的规律性变化,如层间距、sdba配体苯环间的二面角、各孔道尺寸大小及晶体有效空腔体积等,这些微观结构参数的变化很好地展现了由客体引导的多孔配位聚合物的孔道膨胀和收缩效应,在一定程度上体现了骨架的动力学特征。此外,化合物19-25展现出强烈且有规律性的荧光发射峰变化。
     3.利用抗炎性药物奥沙拉嗪和线型氮杂环衍生物1,4-双(咪唑)丁烷及过渡金属盐第一次水热合成了两例基于柱形-SBU的3D柱层金属-奥沙拉嗪配位聚合物:[Co2(osa)(bim)(H2O)2](26)[Cd2(osa)(bim)(H2O)2](27)
     变温磁化率数据显示化合物26中CoⅡ离子之间主要表现为反铁磁性行为,而化合物27展现出良好的荧光性质。
     4.由有机多羧酸和芳香二齿含氮配体邻菲啰啉及过渡金属盐水热合成了4种金属-有机配位超分子网络:[Cd(bqdc)(phen)](28)[Cd2(bctc)(phen)2(H2O)]·3H2O (29)[Mn2(cptc)(phen)3]·4.5H2O (30)[Zn(H2btc)(phen)2]+-H2btc-·3.5H2O (31)
     化合物28是由包含有meso-螺旋的2D(4,4)网络通过phen芳香环间的π-π堆积及C-H…O氢键作用连接形成的3D超分子网络。化合物29是由包含有四边形[Cd4(bctc)4(phen)4]建筑单元的2D网络进一步通过phen芳香环间的π-π堆积作用形成的3D超分子网络。化合物30和31仅表现出组分分别为[Mn4(cptc)2(phen)6]和[Zn2(H2btc)2(phen)4]2+的零维结构,这些零维组分与游离分子一起在三维空间平行排列形成3D超分子网络。
The aim of this thesis is to synthesize novel metal-organic coordination polymers which perhaps exhibit well photoluminescence, magnetic or gas adsorption/desorption properties, on the basis of flexible long-chain polycarboxylate, diverse N-heterocyclic derivatives of imidazole, triazol, or pyridyl ligands, and transition metal salts or alkaline-earth metal salts by hydrothermal techniques, to study the synthetic conditions and rules for these compounds, to analysize the topological types and entangled types, and to further explore the principle of self-assembley as well as the relationships between structures and properties for these new compounds.
     Thirty-one new metal-organic coordination polymers have been synthesized by hydrothermal reactions of polycarboxylate and metal ions in the presence of diverse N-heterocyclic derivatives of imidazole, triazol, or pyridyl ligands. Their structures were characterized by elemental analyses, ICP analyses, IR spectra, single-crystal X-ray diffraction analyses and X-ray powder diffraction (XRPD); while the thermal stabilities (TG), fluorescent and/or magnetic properties of these compounds have also been studied.
     1. Eighteen new metal-organic coordination networks with different types of entanglement have been hydrothermally synthesized by self-assembly of flexible long-chain polycarboxylate and transition metal salts or alkaline-earth metal salts in the presence of different N-heterocyclic derivatives, that are,[Mn4(sdba)4(bim)(H2O)4]-2H2O (1)[Ni(sdba)(bim)(H2O)2]-2H2O (2)[Co(sdba)(bim)(H2O)2]-2H2O (3)[Co3(sdba)2(Hsdba)2(2,2'-bpy)2](4) [Mn3(sdba)2(Hsdba)2(2,2'-bpy)2](5)[Mn2(sdba)2(btb)o.5(H20)](6)[Co(sdba)(bim)](7)[Cd(sdba)(bim)](8)[Cd(sdba)(bimp)](9)[Co2(odpa)(bim)2]-3H2O (10)[Zn(sdba)(Htpim)](11)[Cd2(sdba)2(Htpim)2(H2O)2]-5H2O (12)[Mn4(μ2-OH2)2(sdba)4(bpp)4](13)[Zn2(btec)(Htpim)2]·2H2O (14)[Ba(μ2-OH2)(sdba)(btb)0.5](15)[Ni2(stba)(bim)2(H2O)]·2H2O (16)[Ni2(bpda)2(bim)2]·H2O (17)[Cd(sdba)(H2O)](18)
     Compounds1-5are all uncommon (2D→2D) parallel interpenetrating arrays with coexistence of polyrotaxane and polycatenane, which are still quite rare in entangled systems up to now. Compound6represents the first example of2D polycatenated framework formed by1D quadruple chains, which could equally well be considered as formed by interconnected1D polyrotaxane columns involving unusual [3]rotaxane components. All of compounds7-10exhibit (2D→3D) interdigitated architectures assembled from different2D layers with helical structures. Compound11exhibits a novel (1D→3D) interdigitated architecture that is obtained from the self-assembly of1D tubelike structures. Compound12is the first case of interpenetration of two identical3D self-threading frameworks for entangled syatems, which represents the first entangled coordination polymer containing both interpenetration and self-threading feature. Compound13is a peculiar2D self-threading network containing unusual triflexural helical motifs, which can be rationalized as a6-connected2D36-hxl (hexagonal lattice) net with double edges. Compound14displays a new (2D→3D) polythreaded network that is obtained for the first time from the self-assembly from2D bilayer frameworks with dangling lateral arms. Compound15defines a new self-penetrating topology for binodal (5,12)-connected3D network, and represents the highest connected topology presently known for self-penetrating system. Compound16is a new4-connected3D self-penetrating network containing unusual entangled motifs, which are the interlock of Z-shaped chains and2D layers with helical structures. Compound17represents an unusual mode of interpenetration of two distinct3D frames both with CdSO4topology. Compound18exhibits an unusual twofold interpenetrating array with (3,6)-connected rutile topology.
     2. Seven porous metal-organic coordination polymers have been prepared by self-assembly of4,4'-sulfonyldibenzoic acid and alkaline-earth barium(II) ions in the presence of organic solvent molecules or assistant N-containing ligands, that are,[Ba(μ2-OH2)(sdba)(H2O)3]0.5H2O (19)[Ba(μ2-OH2)(sdba)(H2O)3]0.5ben-H2O (20)[Ba(μ2-OH2)(sdba)(H2O)3]0.5tolu-H2O (21)[Ba(μ2-OH2)(sdba)(H2O)3]-0.5(2,2'-bpy)-H2O (22)[Ba(μ2-OH2)(sdba)(H2O)3]-0.25bim-H2O (23)[Ba(μ2-OH2)(sdba)(H2O)3]0.5dfb-0.25H2O (24)[Ba(μ2-OH2)(sdba)(H2O)3]-3.5H2O (25)
     Compounds19-25are a series of3D porous coordination polymers exhibitting the same (2D→3D) interdigitated arrays assembled from unusual sidearm-containing2D bilayer motifs, which possess similar interlayer channels but encapsulate various species of guest molecules. These compounds show a series of variable parameters associated with the change of the species of guest molecules in their channels, including interlayer distance, dihedral angle of phenyl groups of sdba, dimension of channels and effective free volume, which well indicate the effect of guest-induced expanding and shrinking porous modulationm, and give a clue to a dynamic arrangement in this system. Furthermore, compounds19-25exhibits a series of intense and regular change of the luminescence behaviors.
     3. Two three-dimensional (3D) pillared metal-olsalazine complexes based on infinite rod-shaped secondary building units (SBUs) have been firstly isolated by hydrothermal reactions of anti-inflammatory drug olsalazine with a linear N-heterocyclic derivative1,4-bis(imidazol-l-yl)butane and transition metal salts, that are,[Co2(osa)(bim)(H2O)2](26)[Cd2(osa)(bim)(H2O)2](27)
     The variable-temperature magnetic data of compound26indicate a strong antiferromagnetic interaction between the CoⅡ ions. However, compound27displays good luminescent property.
     4. Four new metal-organic coordination supramolecular networks have been hydrothermally synthesized by using aromatic bidentate chelating ligand 1,10-phenanthroline with different polycarboxylate and transition metal salts, that are,[Cd(bqdc)(phen)](28)[Cd2(bctc)(phen)2(H2O)]·3H2O (29)[Mn2(cptc)(phen)3]-4.5H2O (30)[Zn(H2btc)(phen)2]+-H2btc-·3.5H2O (31)
     Compound28is comprised of2D(4,4) layers containning meso-helix motifs, which further connected by aromatic π-π stacking and C-H···O hydrogen-bonding interactions to form a3D supramolecular network. Compound29is composed of2D layers obtained by extending of quadrangle building blocks [Cd4(bctc)4(phen)4], which further connected by aromatic π-π stacking interactions to form a3D supramolecular network. Both compounds30and31exhibit0D structures of composition [Mn4(cptc)2(phen)6] and [Zn2(H2btc)2(phen)4]2+, respectively, which are further arranged with free molecules in spatial space to form3D supramolecular networks.
引文
[1]Prosperio D M, Hoffman R, Preuss P. Possible hard materials based on interpenetrating diamond-like networks [J]. J. Am. Chem. Soc.1994,116(21):9634-9637.
    [2]Miller J S. Interpenetrating lattices-materials of the future advanced materials [J]. Adv. Mater. 2001,13:525-527.
    [3]Ermer O. Sevenfold diamond structure and conductivity of copper dicyanoquinonediimines Cu(DCNQI)2 [J]. Adv. Matter.1991,3:608-611.
    [4]Sauvage J-P. Transition metal-containing rotaxanes and catenanes in motion:toward molecular machines and motors [J]. Acc. Chem. Res.1998,31:611-619.
    [5]Kitaura R, Seki K, Akiyama G, Kitagawa S. Porous coordination-polymer crystals with gated channels specific for supercritical gases [J]. Angew. Chem.2003,115:444-447; Angew. Chem. Int. Ed.2003,42:428-431.
    [6]Carlucci L, Ciani G, Moret M, Proserpio D M, Rizzato S. Polymeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture:a nanoporous network with spongelike behavior [J]. Angew. Chem.2000,112:1566-1570; Angew. Chem. Int. Ed.2000,39: 1506-1510.
    [7]Bourne S A, Lu J, Moulton B, Zaworotko M J. Coexisting covalent and noncovalent nets: parallel interpenetration of a puckered rectangular coordination polymer and aromatic noncovalent nets [J]. Chem. Commun.2001:861-862.
    [8]Li Y H, Su C Y, Goforth A M, Shimizu K D, Gray K D, Smith M D, zur Loye H C. The first 'two-over/two-under'(2O/2U) 2D weave structure assembled from Hg-containing 1D coordination polymer chains [J]. Chem. Commun.2003:1630-1631.
    [9]Reineke T M, Eddaoudi M, Moler D, O'Keeffe M, Yaghi O M. Large free volume in maximally interpenetrating networks:the role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO] [J]. J. Am. Chem. Soc.2000,122:4843-4844.
    [10]Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Acc. Chem. Res.2002,35:511-522.
    [11]Fujita M, Sasaki O, Watanabe K, Ogura K, Yamaguchi K. Self-assembled molecular ladders [J]. New J. Chem.1998,22:189-191.
    [12]Carlucci L, Ciani G, Moret M, Proserpio D M, Rizzato S. Polimeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture:a nanoporous network with sponglike behavior [J]. Angew. Chem. Int. Ed.2000,39:1506-1510.
    [13]Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies [J]. Chem. Soc. Rev.2002,31:96-107.
    [14]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord. Chem. Rev.2003,246:247-289.
    [15]Batten S R, Robson R. Interpenetrating nets:ordered, periodic entanglement [J]. Angew. Chem. Int. Ed.1998,37:1460-1494.
    [16]Batten S R. Topology of interpenetration [J]. CrystEngComm 2001,3:67-72.
    [17]Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in 'polycatenated'coordination polymers:re-examination of some puzzling networks [J]. CrystEngComm 2003,5(47):269-279.
    [18]Qin C, Wang X L, Yuan L, Wang E B. Chiral self-threading frameworks based on polyoxometalate building blocks comprising unprecedented tri-flexure helix [J]. Cryst. Growth Des.2008,8(7):2093-2095.
    [19]Blake A J, Champness N R, Khlobystov A, Li W-S, Schroder M, Khlobystov A, Lemenovskii D A. Polycatenated copper(Ⅰ) molecular ladders:a new structural motif in inorganic coordination polymers [J]. Chem. Commun.1997:2027-2028.
    [20]Fujita M, Kwon Y J, Sasaki O, Yamaguchi K, Ogura K. Interpenetrating molecular ladders and bricks [J]. J. Am. Chem. Soc.1995,117:7287-7288.
    [21]Su C-Y, Goforth A M, Smith M D, zur Loye H-C. Assembly of large simple 1D and rare polycatenated 3D molecular ladders from T-shaped building blocks containing a new, long N,N'-bidentate ligand [J]. Chem. Commun.2004:2158-2159.
    [22]Carlucci L, Ciani G, Proserpio D M. Parallel and inclined (ID→2D) interlacing modes in new polyrotaxane frameworks [M2(bix)3(SO4)2] [M= Zn(II), Cd(II); Bix= 1,4-bis(imidazol-1-ylmethyl)benzene] [J]. Cryst. Growth Des.2005,5(1):37-39.
    [23](a) Zaworotko M J. Superstructural diversity in two dimensions:crystal engineering of laminated solids [J]. Chem. Commun.2001:1-9. (b) Biradha K, Mondal A, Moulton B, Zaworotko M J. Coexisting covalent and non-covalent planar networks in the crystal structures of{[M(bipy)2(NO3)2]-arene}n (M= Ni,1; Co,2; arene= chlorobenzene, o-dichlorobenzene, benzene, nitrobenzene, toluene or anisole) [J]. J. Chem. Soc. Dalton Trans.2000:3837-3844.
    [24]Carlucci L, Ciani G, Proserpio D M. Three-dimensional architectures of intertwined planar coordination polymers:the first case of interpenetration involving two different bidimensional polymeric motifs [J]. New J. Chem.1998:1319-1321.
    [25]Zeng M-H, Zhang W-X, Sun X-Z, Chen X-M. Spin canting and metamagnetism in a 3D homometallic molecular material constructed by interpenetration of two kinds of cobalt(ii)-coordination-polymer sheets [J]. Angew. Chem. Int. Ed.2005,44:3079-3082.
    [26]Yang Q-Y, Zheng S-R, Rui Yang, Pan M, Cao R, Su C-Y. An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets [J]. CrystEngComm 2009,11:680-685.
    [27]Li D, Shi W J, Hou L. Coordination polymers of copper(I) halides and neutral heterocyclic thiones with new coordination modes [J]. Inorg. Chem.2005,44:3907-3913.
    [28]Lan Y-Q, Li S-L, Fu Y-M, Xu Y-H, Li L, Su Z-M, Fu Q. d10-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid:influence of flexible and angular characters of neutral ligands on structural diversity [J]. Dalton Trans. 2008:6796-6807.
    [29]Liu C-S, Wang J-J, Chang Z, Yan L-F, Bu X-H. Cadmium(II) coordination polymers based on a bulky anthracene-based dicarboxylate ligand:crystal structures and luminescent properties [J]. CrystEngComm 2010,12:1833-1841.
    [30]Wang X-L, Qin C, Wu S-X, Shao K-Z, Lan Y-Q, Wang S, Zhu D-X, Su Z-M, Wang E-B. Bottom-up synthesis of porous coordination frameworks:apical substitution of a pentanuclear tetrahedral precursor [J]. Angew. Chem. Int. Ed.2009,48(29):5291-5295.
    [31]Sharma M K, Lama P, Bharadwaj P K. Reversible single-crystal to single-crystal exchange of guests in a seven-fold interpenetrated diamondoid coordination polymer [J]. Cryst. Growth Des.2011,11(4):1411-1416.
    [32]Carlucci L, Ciani G, Proserpio D M, Rizzato S. Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(Ⅰ) salts [J]. Chem. Eur. J. 2002,8(7):1519-1526.
    [33]Zhang H-X, Yao Q-X, Jin X-H, Ju Z-F, Zhang J. An unprecedented 9-fold [3×3] interpenetrated diamondoid network coordination polymer containing Cu(II)-based "paddlewheels" as connecting node [J]. CrystEngComm 2009,11:1807-1810.
    [34]Reddy D S, Dewa T, Endo K, Aoyama Y. Charge-trarisfer diamortdOid lattices.-an unprecedentedly huge and highly catenating diamondoid network arising from a tetraphenol as a tetrahedfal node and benzoquinone as a linear spacer [J]. Angew. Chem. Int. Ed.2000,39: 4266-4268.
    [35]Hsu Y-F, Lin C-H, Chen J-D, Wang J-C. A novel interpenetrating diamondoid network from self-assembly of N,N'-di(4-pyridyl)adipoamide and copper sulfate:an unusual 12-fold, [6+6] mode [J]. Cryst. Growth Des.2008,8(4):1094-1096.
    [36]Sun H L, Ma B Q, Gao S, Batten S R. A novel three-dimensional network containing Mn(II) ions and tricyanomethanide with rare 46.64 topology [J]. Cryst. Growth Des.2005,5(4): 1331-1333.
    [37]Su S Q, Qin C, Guo Z Y, Guo H D, Song S Y, Deng R P, Cao F, Wang S, Li G H, Zhang H J. Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals [J]. CrystEngComm 2011,13:2935-2941.
    [38]Fang Q R, Shi X, Wu G, Tian G, Zhu G S, Wang R W, Qiu S L. The synthesis and characterization of a new 3-D inorganic-organic hybrid framework porous material Zn3(bbdc)3(4,4'-bpy)-2(DMF)-4(H2O) [J]. J. Solid State Chem.2003,176(1):1-4.
    [39]Qin L, Hu J-S, Huang L-F, Li Y-Z, Guo Z-J, Zheng H-G. Syntheses, characterizations, and properties of six metal-organic complexes based on flexible ligand 5-(4-pyridyl)-methoxyl isophthalic acid [J]. Cryst. Growth Des.2010,10(9):4176-4183.
    [40]Xu G-J, Zhao Y-H, Shao K-Z, Lan Y-Q, Wang X-L, Su Z-M, Yan L-K. Three novel 3D (3,8)-connected metal-organic frameworks constructed from flexible-rigid mixed ligands [J]. CrystEngComm 2009,11:1842-1848.
    [41]Guo J, Ma J-F, Liu B, Kan W-Q, Yang J. A series of 2D and 3D metal-organic frameworks based on a flexible tetrakis(4-pyridyloxymethylene)methane ligand and polycarboxylates: syntheses, structures, and photoluminescent properties [J]. Cryst. Growth Des.2011,11(8): 3609-3621.
    [42](a) Li D-S, Fu F, Zhao J, Wu Y-P, Du M, Zou K, Dong W-W, Wang Y-Y. Unique 3D self-penetrating CoⅡ and NiⅡ coordination frameworks with a new (44.610.8) network topology [J]. Dalton Trans.2010,39:11522-11525. (b) Xin L-Y, Liu G-Z, Li X-L, Wang L-Y. Structural diversity for a series of metal(II) complexes based on flexible 1,2-phenylenediacetate and dipyridyl-type coligand [J]. Cryst. Growth Des.2012,12(1):147-157.
    [43](a) Chen P-K, Batten S R, Qi Y, Zheng J-M. Two 3-D cluster-based frameworks:highly eight-connected molecular topology and magnetism [J]. Cryst. Growth Des.2009,9(6): 2756-2761. (b) Wang X-L, Qin C, Wang E-B, Su Z-M, Xu L, Batten S R. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks [J]. Chem. Commun.2005:4789-4791.
    [44]Zhai Q-G, Niu J-P, Li S-N, Jiang Y-C, Hu M-C, Batten S R. An unusual uninodal 10-connected self-penetrating network built from sixteen-nuclear hybrid cadmium clusters [J]. CrystEngComm 2011,13:4508-4511.
    [45](a) Liu G-X, Zhu K, Xu H-M, Nishihara S, Huang R-Y, Ren X-M. Construction of hybrid d10 metal-organic frameworks by flexible aromatic dicarboxylate and N-donor ligands:syntheses, structures and physical properties [J]. CrystEngComm 2009,11:2784-2796. (b) Qi Y, Luo F, Che Y X, Zheng J M. Hydrothermal synthesis of metal-organic frameworks based on aromatic polycarboxylate and flexible bis(imidazole) ligands [J]. Cryst. Growth Des. 2008,8(2):606-611.
    [46](a) Lan Y-Q, Wang X-L, Li S-L, Su Z-M, Shao K-Z, Wang E-B. An unprecedented (6,8)-connected self-penetrating network based on two distinct zinc clusters [J]. Chem. Commun.2007:4863-4865. (b) Wang X L, Li J, Tian A X, Liu G C, Gao Q, Lin H Y, Zhao D. A 3D organopolymolybdate polymer with unusual topology functionalized by 1,4-bis(1,2,4-triazol-1-yl)butane through Mo-N bond [J]. CrystEngCom 2011,13:2194-2196.
    [47]Wang X-L, Qin C, Wang E-B. Polythreading of infinite 1D chains into different structural motifs:two poly(pseudo-rotaxane) architectures constructed by concomitant coordinative and hydrogen bonds [J]. Cryst. Growth Des.2006,6(2):439-443.
    [48]Sun H L, Lu Z J, Han J L, Pan Y. Molecular ladders with finite arms:the first 1D→2D polythreading with finite components based on flexibly long ligand [J]. Inorg. Chem. Commun. 2010,13:1131-1133.
    [49](a) Wang X-L, Qin C, Wang E-B, Li Y-G, Su Z-M, Xu L, Carlucci L. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angew. Chem. Int. Ed.2005,44:5824-5827. (b) Xu B, Lii J, Cao R. Anion-assisted structural variation of cadmium coordination polymers: from 2D→3D inclined polycatenation to 2D→3D polythreading [J]. Cryst. Growth Des.2009, 9(7):3003-3005. (c) Yang Y, Du P, Ma J-F, Kan W-Q, Liu B, Yang J. A series of metal-organic frameworks based on different salicylic derivatives and 1,1'-(1,4-butanediyl)bis(imidazole) ligand: syntheses, structures, and luminescent properties [J]. Cryst. Growth Des.2011,11(12): 5540-5553.
    [50]Wang X-L, Qin C, Wang E-B, Xu L. An unusual 3D interdigitated architecture self-assembled from sidearm-containing 2D bilayer motifs with a cuboidal framework [J]. Eur. J. Inorg. Chem. 2005:3418-3421.
    [51]Guo H-D, Guo X-M, Batten S R, Song J-F, Song S-Y, Dang S, L Zheng G-, Tang J-K, Zhang H-J. Hydrothermal synthesis, structures, and luminescent properties of seven d10 metal-organic frameworks based on 9,9-dipropylfluorene-2,7-dicarboxylic acid (H2DFDA) [J]. Cryst. Growth Des.2009,9(3):1394-1401.
    [52]Cao X-Y, Zhang J, Li Z-J, Cheng J-K, Yao Y-G. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, selfthreading and (3,6)-connected nets [J]. CrystEngComm 2007,9: 806-814.
    [53]Qin C, Wang X-L, Yuan L, Wang E-B. Chiral self-threading frameworks based on polyoxometalate building blocks comprising unprecedented tri-flexure helix [J]. Cryst. Growth Des.2008,8(7):2093-2095.
    [54]Wang S, Qin J, Wang X-L, Qin C, Li T-T, Su Z-M. Two unusual self-threading frameworks self-assembled from mixed ligands and cobalt/zinc ions [J]. CrystEngComm 2011,13: 325-329.
    [55]Qin C, Wang X-L, Wang E-B, Su Z-M. Catenation of loop-containing 2D layers with a 3D pcu skeleton into a new type of entangled framework having polyrotaxane and polycatenane character [J]. Inorg. Chem.2008,47(13):5555-5557.
    [56](a) Lan Y-Q, Li S-L, Qin J-S, Du D-Y, Wang X-L, Su Z-M, Fu Q. Self-assembly of 2D→2D interpenetrating coordination polymers showing polyrotaxane-and polycatenane-like motifs: influence of various ligands on topological structural diversity [J]. Inorg. Chem.2008,47(22): 10600-10610. (b) Cao X-Y, Yao Y-G, Batten S R, Ma E, Qin Y-Y, Zhang J, Zhang R-B, Cheng J-K. Unusual parallel entanglement of metal-organic 2D frameworks with coexistence of polyrotaxane, polycatenane and interdigitation [J]. CrystEngComm 2009,11:1030-1036. (c) Ma L-F, Wang Y-Y, Liu J-Q, Yang G-P, Du M, Wang L-Y. Delicate substituent effect of isophthalate tectons on the structural assembly of diverse 4-connected metal-organic frameworks (MOFs) [J]. CrystEngComm 2009,11:1800-1802. (d) Liu Y-Y, Wang Z-H, Yang J, Liu B, Liu Y-Y, Ma J-F. A series of coordination polymers based on reduced Schiff base multidentate anions and bis(imidazole) ligands:syntheses, structures and photoluminescence [J]. CrystEngComm 2011,13:3811-3821.
    [57]Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds [J]. Chem. Soc. Rev.2005,34:109-119.
    [58]Uemura K, Kitagawa S, Kondo M, Fukui K, Kitaura R, Chang H-C, Mizutani T. Novel flexible frameworks of porous cobalt(II) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups [J]. Chem. Eur. J. 2002,8(16):3586-3600.
    [59]Kitagawa S, Kitaura R, Noro S-I. Functional porous coordination polymers [J]. Angew. Chem. Int. Ed.2004,43:2334-2375.
    [60](a) Jung O-S, Kim Y J, Lee Y-A, Park J K, Chae H K. Smart molecular helical springs as tunable receptors [J]. J. Am. Chem. Soc.2000,122(41):9921-9925. (b) Muthu S, Yip J H K, Vittal J J. Coordination networks of Ag(I) and N,N'-bis(3-pyridinecarboxamide)-1,6-hexane:structures and anion exchange [J]. J. Chem. Soc. Dalton Trans.2002:4561-4568.
    [61]Khanpour M, Morsali A. Solid-state reversible anion exchange and irreversible anion replacement in 1D zinc(II) coordination polymers:precursors for the preparation of zinc(Ⅱ) nanostructures [J]. Eur. J. Inorg. Chem.2010:1567-1571.
    [62]Biradha K, Hongo Y, Fujita M. Crystal-to-crystal sliding of 2D coordination layers triggered by guest exchange [J]. Angew. Chem. Int. Ed.2002,41(18):3395-3398.
    [63]Horike S, Matsuda R, Kitaura R, Kitagawa S, Iijima T, Endo K, Kubota Y, Takata M. Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions [J]. Chem. Commun.2004:2152-2153.
    [64]KumarMaji T, Uemura K, Chang H-C, Matsuda R, Kitagawa S. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption [J]. Angew. Chem. Int. Ed.2004,43:3269-3272.
    [65]Fernandez C A, Thallapally P K, Motkuri R K, Nune S K, Sumrak J C, Tian J, Liu J. Gas-induced expansion and contraction of a fluorinated metal-organic framework [J]. Cryst. Growth Des.2010,10(3):1037-1039.
    [66]Ma J-F, Yang J, Zheng G-L, Li L, Liu J-F. A porous supramolecular architecture from a copper(Ⅱ) coordination polymer with a 3D four-connected 86 net [J]. Inorg. Chem.2003, 42(23):7531-7534.
    [67]Pandey J, Tiwari V K, Verma S S, Chaturvedi V, Bhatnagar S, Sinha S, Gaikwad A N, Tripathi R P. Synthesis and antitubercular screening of imidazole derivatives [J]. Eur. J. Med. Chem. 2009,44:3350-3355.
    [68]Torres J, Lavandera J L, Cabildo P, Claramunt R M, Elguero J. Synthesis and physicochemical studies on 1,2-bisazolylethanes [J]. J. Heterocyc. Chem.1988,25(3):771-782.
    [1]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord. Chem. Rev.2003,246:247-289.
    [2]Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in 'polycatenated'coordination polymers:re-examination of some puzzling networks [J]. CrystEngComm 2003,5(47):269-279.
    [3]Sauvage J-P. Transition metal-containing rotaxanes and catenanes in motion:toward molecular machines and motors [J]. Acc. Chem. Res.1998,31:611-619.
    [4]Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies [J]. Chem. Soc. Rev.2002,31:96-107.
    [5]Fujita M, Sasaki O, Watanabe K-Y, Ogura K, Yamaguchi K. Self-assembled molecular ladders [J]. New J. Chem.1998:189-191.
    [6]Batten S R, Robson R. Interpenetrating nets:ordered, periodic entanglement [J]. Angew. Chem. Int. Ed.1998,37:1460-1494.
    [7]Batten S R. Topology of interpenetration [J]. CrystEngComm 2001,3:67-72.
    [8]Wang X-L, Qin C, Wang E-B, Su Z-M, Xu L, Batten S R. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks [J]. Chem. Commun.2005:4789-4791.
    [9]Li D-S, Wu Y-P, Zhang P, Du M, Zhao J, Li C-P, Wang Y-Y. An unprecedented eight-connected self-penetrating coordination framework based on cage-shaped [Pb6(μ4-O)2(O2C)8] clusters [J]. Cryst. Growth Des.2010,10(5):2037-2040.
    [10]Li Z-G, Wang G-H, Jia H-Q, Hu N-H, Xu J-W, Batten S R. Construction of coordination networks with high connectivity:a new 8-connected self-penetrating network based on tetranuclear metal clusters [J]. CrystEngComm 2008,10:983-985.
    [11]Chen P-K, Batten S R, Qi Y, Zheng J-M. Two 3-D cluster-based frameworks:highly eight-connected molecular topology and magnetism [J]. Cryst. Growth Des.2009,9(6): 2756-2761.
    [12]Qu X S, Xu L, Gao G G, Li F Y, Yang Y Y. Unprecedented eight-connected self-catenated network based on heterometallic{Cu4V4O12} clusters as nodes [J]. Inorg. Chem.2007,46(12): 4775-4777.
    [13]Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials [J]. Nature 2003,423:705-714.
    [14]Wang X-L, Qin C, Lan Y-Q, Shao K-Z, Su Z-M, Wang E-B. Metal-organic replica of y-Pu:the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters [J]. Chem. Commun.2009:410-412.
    [15]Wang X-L, Qin C, Wang E-B, Su Z-M. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes [J]. Chem. Eur. J.2006,12:2680-2691.
    [16]Zhang X-M, Zheng Y-Z, Li C-R, Zhang W-X, Chen X-M. Unprecedented (3,9)-connected (42.6)3(46.621.89) net constructed by trinuclear mixed-valence cobalt clusters [J]. Cryst. Growth Des.2007,7(5):980-983.
    [17]Long D L, Hill R J, Blake A J, Champness N R, Hubberstey P, Proserpio D M, Wilson C, Schroder M. Non-natural eight-connected solid-state materials:a new coordination chemistry [J]. Angew. Chem. Int. Ed.2004,43(14):1851-1854.
    [18]Long D L, Blake A J, Champness N R, Wilson C, Schroder M. Unprecedented seven-and eight-connected lanthanide coordination networks [J]. Angew. Chem. Int. Ed.2001,40: 2443-2447.
    [19]Hill R J, Long D L, Champness N R, Hubberstey P, Schroder M. New approaches to the analysis of high connectivity materials:design frameworks based upon 44-and 63-subnet tectons [J]. Ace. Chem. Res.2005,38(4):335-348.
    [20]Fujita M, Sasaki O, Watanabe K.-y, Ogura K, Yamaguchi K. Self-assembled molecular ladders [J]. New J. Chem.1998:189-191.
    [21]Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies [J]. Chem. Soc. Rev.2002,31:96-107.
    [22]Carlucci L, Ciani G, Moret M, Proserpio D M, Rizzato S. Polymeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture:a nanoporous network with spongelike behavior [J]. Angew. Chem.2000,112:1566-1570; Angew. Chem. Int. Ed. 2000,39:1506-1510.
    [23]Carlucci L, Ciani G, Proserpio D M.A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy=1,2-bis(4-pyridyl)ethyne] [J]. Chem. Commun.1999:449-450.
    [24]Cao X Y, Zhang J, Li Z J, Cheng J K, Yao Y G. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, selfthreading and (3,6)-connected nets [J]. CrystEngComm 2007,9: 806-814.
    [25]Qin C, Wang X L, Yuan L, Wang E B. Chiral self-threading frameworks based on polyoxometalate building blocks comprising unprecedented tri-flexure helix [J]. Cryst. Growth Des.2008,8(7):2093-2095.
    [26]Wang S, Qin J, Wang X-L, Qin C, Li T-T, Su Z-M. Two unusual self-threading frameworks self-assembled from mixed ligands and cobalt/zinc ions [J]. CrystEngComm 2011,13: 325-329.
    [27]Wang X-L, Qin C, Wang E-B, Li Y-G, Su Z-M, Xu L, Carlucci L. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angew. Chem. Int. Ed.2005,44:5824-5827.
    [28]Lan Y-Q, Li S-L, Qin J-S, Du D-Y, Wang X-L, Su Z-M, Fu Q. Self-assembly of 2D→2D interpenetrating coordination polymers showing polyrotaxane-and polycatenane-like motifs: influence of various ligands on topological structural diversity [J]. Inorg. Chem.2008,47(22): 10600-10610.
    [29]Qin C, Wang X-L, Wang E-B, Su Z-M. Catenation of loop-containing 2D layers with a 3D pcu skeleton into a new type of entangled framework having polyrotaxane and polycatenane character [J]. Inorg. Chem.2008,47(13):5555-5557.
    [30]Luo F, Yang Y-T, Che Y-X, Zheng J-M. An unusual metal-organic framework showing both rotaxane-and cantenane-like motifs [J]. CrystEngComm 2008,10:981-982.
    [31]Ma L-F, Wang Y-Y, Liu J-Q, Yang G-P, Du M, Wang L-Y. Delicate substituent effect of isophthalate tectons on the structural assembly of diverse 4-connected metal-organic frameworks (MOFs) [J]. CrystEngComm 2009,11:1800-1802.
    [32](a) Sheldrick G M. SHELXS 97, Program for Crystal Structure Solution, University of Gottingen, Germany,1997. (b) Sheldrick G M. SHELXL 97, Program for Crystal Structure Refinement, University of Gottingen, Germany,1997.
    [33]Zhang W-H, Song Y-L, Wei Z-H, Li L-L, Huang Y-J, Zhang Y, Lang J-P. Assembly of [(eta5-C5Me5)MoS3Cu3]-supported one-dimensional chains with single, double, triple, and quadruple strands [J]. Inorg. Chem.2008,47(12):5332-5346.
    [34]Xu J, Raymond K N. Structurally characterized quadruple-stranded bisbidentate helicates [J]. Angew. Chem. Int. Ed.2006,45(39):6480-6485.
    [35]Furukawa H, Kim J, Ockwig N W, O'Keeffe M, Yaghi O M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra [J]. J. Am. Chem. Soc.2008,130(35):11650-11661.
    [36]Banerjee D, Borkowski L A, S J Kim, Parise J B. Synthesis and structural characterization of lithium-based metal-organic frameworks [J]. Cryst. Growth Des.2009,9(11):4922-4926.
    [37]Lian F-Y, Jiang F-L, Yuan D-Q, Chen J-T, Wu M-Y, Hong M-C. Cd(Ⅱ)-sulfonyldibenzoilate coordination polymers based on mono-, bi-, tri-and tetranuclear cores as nodes [J]. CrystEngComm 2008,10:905-914.
    [38]Liu G-X, Zhu K, Chen H, Huang R-Y, Ren X-M. Two zinc(Ⅱ) supramolecular isomers of square grid networks formed by two flexible ligands:syntheses, structures and nonlinear optical properties [J]. CrystEngComm 2008,10:1527-1530.
    [39]Liu Y, Qi Y, Lv Y-Y, Che Y-X, Zheng J-M. Polyrotaxane-like and interpenetrating metal-organic frameworks (MOFs) constructed from biphenyl-4,4'-dicarboxylate and bis(imidazole) ligand [J]. Cryst. Growth Des.2009,9(11):4797-4801.
    [40]Wang G-H, Li Z-G, Jia H-Q, Hu N-H, Xu J-W. Topological diversity of coordination polymers containing the rigid terephthalate and a flexible N,N'-type ligand:interpenetration, polyrotaxane, and polythreading [J]. Cryst. Growth Des.2008,8(6):1932-1939.
    [41]Yang J, Ma J-F, Batten S R, Su Z-M. Unusual parallel and inclined interlocking modes in polyrotaxane-like metal-organic frameworks [J]. Chem. Commun.2008:2233-2235.
    [42]Cao X-Y, Yao Y-G, Batten S R, Ma E, Qin Y-Y, Zhang J, Zhang R-B, Cheng J-K. Unusual parallel entanglement of metal-organic 2D frameworks with coexistence of polyrotaxane, polycatenane and interdigitation [J]. CrystEngComm 2009,11:1030-1036.
    [43]Li X, Wu X-S, Sun H-L, Xu L-J, Zi G-F. Novel 1-D double chain lanthanide complexes: synthesis, structure and luminescence [J]. Inorg. Chim. Acta 2009,362:2837-2841.
    [44]Zhang Y-N, Wang H, Liu J-Q, Wang Y-Y, Fu A-Y, Shi Q-Z. Novel silver(Ⅰ) compounds assembled from hybrid ligands based on linear or T-shaped coordination environment [J]. Inorg. Chem. Commun.2009,12(7):611-614.
    [45]Sun D F, Cao R, Sun Y Q, Bi W H, Li X J, Wang Y Q, Shi Q, Li X. Novel silver-containing supramolecular frameworks constructed by combination of coordination bonds and supramolecular interactions [J]. Inorg. Chem.2003,42(23):7512-7518.
    [46]Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4'-bipyridine as a bond between transition metal atoms [J]. Chem. Commun.2006: 4169-4179.
    [47]Blake A J, Champness N K, Khlobystov A, Lemenovskii D A, Li W-S, SchrUder M. Polycatenated copper(Ⅰ) molecular ladders:a new structural motif in inorganic coordination polymers [J]. Chem.Commun.1997:2027-2028.
    [48]Meakawa M, Konaka H, Suenaga Y, Kuroda-Sowa T, Munakada M. A variety of one-, two-and three-dimensional copper(I) and silver(Ⅰ) co-ordination poly mers assembled by 1,4-bis(4-pyridyl)butadiyne and 1,4-bis(2-pyridyl)butadiyne [J]. J. Chem. Soc. Dalton Trans. 2000:4160-4166.
    [49]Carlucci L, Ciani G, Proserpio D M. Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwined two-dimensional tilings [J]. J. Chem. Soc. Dalton Trans.1999:1799-1804.
    [50]Wang X-L, Qin C, Wang E-B, Su Z-M. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton [J]. Chem. Commun.2007:4245-4247.
    [51]Tuncel D, Steinke J H G. Catalytic self-threading:a new route for the synthesis of polyrotaxanes [J]. Macromolecules 2004,37(2):288-302.
    [52]Carlucci L, Ciani G, Macchi P, Proserpio D M, Rizzato S. Complex interwoven polymeric frames from the self-assembly of silver(Ⅰ) cations and sebaconitrile [J]. Chem. Eur. J.1999, 5(1):237-243.
    [53]Batten S R, Hoskins B F, Robson R. Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives [J]. Chem. Eur. J.2000,6(1):156-161.
    [54]Ayyappa P, Evans O R, Lin W B. A novel coordination polymer containing both interdigitated 1D chains and interpenetrated 2D grids [J]. Inorg. Chem.2002,41(13):3328-3330.
    [55]Batten S R, Harris A R, Jensen P, Murray K S, Ziebell A. Copper(I) dicyanamide coordination polymers:ladders, sheets, layers, diamond-like networks and unusual interpenetration [J]. J. Chem. Soc. Dalton Trans.2000:3829-3836.
    [56](a) Liang X-Q, Zhou X-H, Chen C, Xiao H-P, Li Y-Z,. Zuo J-L, You X-Z. Self-assembly of metal-organic coordination polymers constructed from a versatile multipyridyl ligand: diversity of coordination modes and structures [J]. Cryst. Growth Des.2009,9:1041-1053. (b) Liang X-Q, Xiao H-P, Liu B-L, Li Y-Z, Zuo J-L, You X-Z. Syntheses, structures and luminescent properties of four d10-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand [J]. Polyhedron 2008,27(11):2494-2500.
    [57](a) Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds, Berlin: Springer,1987. (b) Valeur B. Molecular Fluorescence:Principles and Application, Wiley-VCH:Weinheim, 2002.
    [58]Yang Q-Y, Zheng S-R, Yang R, Pan M, Cao R, Su C-Y. An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets [J]. CrystEngComm 2009,11:680-685.
    [59]Banfi S, Carlucci L, Caruso E, Ciani G, Proserpio D M. An unusual three-dimensional coordination network formed by parallel polycatenation of two-fold interpenetrated (6,3) layers based on a novel three-connecting ligand [J]. Cryst. Growth Des.2004,4(1):29-32.
    [60]Carlucci L, Ciani G, Proserpio D M, Rizzato S. New examples of self-catenation in two three-dimensional polymeric co-ordination networks [J]. J. Chem. Soc. Dalton Trans.2000: 3821-3828.
    [61]Zheng B, Bai J F. An unprecedented nanoscale trilayered polythreading coordination array hierarchically formed from 2D square grid networks and induced by protonated 1,2-bis(4-pyridyl)ethane [J]. CrystEngComm 2009,11:271-273.
    [62]Wen G L, Wang Y Y, Zhang Y N, Yang G P, Fu A Y, Shi Q Z. A novel polythreaded metal-organic framework with inherent features of different side arms and five-fold interpenetration [J]. CrystEngComm 2009,11:1519-1521.
    [63]Qiao L Y, Zhang J, Li Z J, Qin Y Y, Yin P X, Cheng J K, Yao Y G. Hydrogen-bond-directed self-assembly of a novel 2D→3D polythreading with finite components based on rigid ligand [J]. J. Mol. Struct.2011,994:1-5.
    [64]Wang X Y, He Y, Zhao L N, Kong ZG. An unusual 2D→3D polythreading framework based on a long 1,10-phenanthroline derivative ligand [J]. Inorg. Chem. Commun.2011,14:1186-1189.
    [65]Wang G-H, Li Z-G, Jia H-Q, Hu N-H, Xu J-W. Topological diversity of coordination polymers containing the rigid terephthalate and a flexible N,N'-type ligand:interpenetration, polyrotaxane, and polythreading [J]. Cryst. Growth Des.2008,8:1932-1939.
    [66]Yang Y, Du P, Ma J-F, Kan W-Q, Liu B, Yang J. A series of metal-organic frameworks based on different salicylic derivatives and 1,1'-(1,4-butanediyl)bis(imidazole) ligand:syntheses, structures, and luminescent properties [J]. Cryst. Growth Des.2011,11:5540-5553.
    [67]Wang X L, Qin C, Wang E B, Li Y G, Hu C W, Xu L. Designed double layer assembly:a three-dimensional open framework with two types of cavities by connection of infinite two-dimensional bilayer [J]. Chem. Commun.2004:378-379.
    [68]Xiao D-R, Wang E-B, An H-Y, Li Y-G, Su Z-M, Sun C-Y A bridge between pillared-layer and helical structures:a series of three-dimensional pillared coordination polymers with multiform helical chains [J]. Chem. Eur. J.2006,12:6528-6541.
    [69]Qi Y J, Wang Y H, Hu C W, Cao M H, Mao L, Wang E B. A new type of single-helix coordination polymer with mixed ligands [M2(phen)2(e,a-cis-1,4-chdc)2(H2O)2]n (M= Co and Ni; phen= 1,10-phenanthroline; chdc= cyclohexanedicarboxylate) [J]. Inorg. Chem.2003, 42(25):8519-8523.
    [70]Xu L, Qin C, Wang X L, Wei Y G, Wang E B. Hydrothermal synthesis and structure of a new helical chain constructed from only molybdenum-oxide building blocks [J]. Inorg. Chem. 2003,42(23):7342-7344.
    [71]Batten S R, Hoskins B F, Robson R.3D Knitting patterns. Two independent, interpenetrating rutile-related infinite frameworks in the structure of Zn[C(CN)3]2 [J]. J. Chem. Soc. Chem. Commun.1991:445-447.
    [72]Batten S R, Hoskins B F, Moubaraki B, Murray K S, Robson R. Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2 [M= octahedral, divalent metal; tem-= tricyanomethanide, C(CN)3-] and the sheet structures of [M(tcm)2(EtOH)2] (M= Co or Ni) [J]. J. Chem. Soc. Dalton Trans.1999:2977-2986.
    [73]Manson J L, Campana C, Miller J S. Interpenetrating three-dimensional rutile-like frameworks. Crystal structure and magnetic properties of MnⅡ[C(CN)3]2 [J]. Chem. Commun.1998: 251-252.
    [74]Qin C, Wang X L, Carlucci L, Tong M L, Wang E B, Hu C W, Xu L. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology [J]. Chem. Commun.2004:1876-1877.
    [75]Cui Y, Lee S J, Lin W. Interlocked chiral nanotubes assembled from quintuple helices [J]. J. Am. Chem. Soc.2003,125:6014-6015.
    [76]Jouaiti A, Hosseini M W, Kyritsakas N. Molecular tectonics:infinite cationic double stranded helical coordination networks [J]. Chem. Commun.2003:472-473.
    [1]Kitagawa S, Kitaura R, Noro S-I. Functional porous coordination polymers [J]. Angew. Chem. Int. Ed.2004,43:2334-2375.
    [2]Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers [J]. Chem. Soc. Rev.2009,38:1228-1236.
    [3]Ferey G. Hybrid porous solids:past, present, future [J]. Chem. Soc. Rev.2008,37(1):191-214.
    [4]Kepert C J. Advanced functional properties in nanoporous coordination framework materials [J]. Chem. Commun.2006:695-700.
    [5]Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials [J]. Nature 2003,423:705-714.
    [6]Horike S, Tanaka D, Nakagawa K, Kitagawa S. Selective guest sorption in interdigitated porous framework with hydrophobic pore surfaces [J]. Chem. Commun.2007,3395-3397.
    [7]Zhang J-P, Chen X-M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework [J]. J. Am. Chem. Soc.2008,130 (18): 6010-6017.
    [8]Xie Z G, Ma L Q, deKrafft K E, Jin A, Lin W B. Porous phosphorescent coordination polymers for oxygen sensing [J]. J. Am. Chem. Soc.2010,132 (3):922-923.
    [9]Hu S, Zhou A-J, Zhang Y-H, Ding S, Tong M-L. 1D tubular chains and 3D polycatenane frameworks constructed with Cu2X2 dimers (X= Br-, I-, CN-) and flexible dipyridyl spacers [J]. Cryst. Growth Des.2006,6:2543-2550.
    [10]Maji T K, Uemura K, Chang H C, Matsuda R, Kitagawa S. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption [J]. Angew. Chem. Int. Ed.2004,43(25):3269-3272.
    [11]Maji T K, Mostafa G, Matsuda R, Kitagawa S. Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation [J]. J. Am. Chem. Soc.2005,127(49):17152-17153.
    [12]Kitaura R, Seki K, Akiyama G, Kitagawa S. Porous coordination-polymer crystals with gated channels specific for supercritical gases [J]. Angew. Chem. Int. Ed.2003,42(4):428-431.
    [13]Hao H-Q, Lin Z-J, Hu S, Liu W-T, Zheng Y-Z, Tong M-L. Nanoporous metal-organic framework comprising of 1D cobalt oxalate chains and flexible ligands exhibiting both dynamic gas adsorption and antiferromagnetic chain behaviours [J]. CrystEngComm 2010,12: 2225-2231.
    [14]Hu S, Zhang J-P, Li H-X, Tong M-L, Chen X-M, Kitagawa S. A dynamic microporous metal-organic framework with BCT zeolite topology:construction, structure, and adsorption behavior [J]. Cryst. Growth Des.2007,7(11):2286-2289.
    [15]Takamizawa S, Kojima K, Akatsuka T. Channel-switching crystal with guest stress drive [J]. Inorg. Chem.2006,45(12):4580-4582.
    [16]Shimomura S, Horike S, Matsuda R, Kitagawa S. Guest-specific function of a flexible undulating channel in a 7,7,8,8-tetracyano-p-quinodimethane dimer-based porous coordination polymer [J]. J. Am. Chem. Soc.2007,129(36):10990-10991.
    [17]Uemura T, Horike S, Kitagawa S. Polymerization in coordination nanospaces [J]. Chem. Asian J.2006,1:36-44.
    [18]Tzeng B-C, Chang T-Y, Sheu H-S. Reversible phase transformation and luminescent mechanochromism of ZnⅡ-based coordination frameworks containing a dipyridylamide ligand [J]. Chem. Eur. J.2010,16(33):9990-9993.
    [19]Zhang J, Xue Y-S, Bai J, Fang M, Li Y-Z, Du H-B, You X-Z. An unprecedented (3,7)-connected microporous solvatochromic coordination polymer built on a semirigid tripod pyridinium-4-olate ligand [J]. CrystEngComm 2011,13:6010-6012.
    [20]Datcu A, Roques N, Jubera V, Imaz I, Maspoch D, Sutter J-P, Rovira C, Veciana J. Three-dimensional open-frameworks based on Ln(Ⅲ) ions and open/closed-shell PTM ligands: synthesis, structure, luminescence and magnetic properties [J]. Chem. Eur. J.2011,17: 3644-3656.
    [21]Kanoo P, Mostafa G, Matsuda R, Kitagawa S, Maji T K. A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption [J]. Chem. Commun.2011,47:8106-8108.
    [22]Ni T J, Xing F F, Shao M, Zhao Y M, Zhu S R, Li M X. Coordination polymers of 1,3,5-tris(triazol-1-ylmethyl)-2,4,6-trimethylbenzene:synthesis, structure, reversible hydration, encapsulation, and catalysis oxidation of diphenylcarbonohydrazide [J]. Cryst. Growth Des. 2011,11 (7):2999-3012.
    [23]Maji T K, Mostafa G, Chang H-C, Kitagawa S. Porous lanthanide-organic framework with zeolite-like topology [J]. Chem. Commun.2005:2436-2438.
    [24]Fernandez C A, Thallapally P K, Motkuri R K, Nune S K, Sumrak J C, Tian J, Liu J. Gas-induced expansion and contraction of a fluorinated metal-organic framework [J]. Cryst. Growth Des.2010,10(3):1037-1039.
    [25]Wang P, Ma J-P, Dong Y-B, Huang R-Q. Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra [J]. J. Am. Chem. Soc.2007,129(35):10620-10621.
    [26]Liang P-C, Liu H-K, Yeh C-T, Lin C-H, Zima V. Supramolecular Assembly of Calcium Metal-Organic Frameworks with Structural Transformations [J]. Cryst. Growth Des.2011, 11(3):699-708.
    [27]Drevensek P, Ulrih N P, Majerle A, Turel I. Synthesis, characterization and DNA binding of magnesium-ciprofloxacin (cfH) complex [Mg(cf)2]-2.5H2O [J]. J. Inorg. Biochem.2006, 100(10):1705-1713.
    [28]Ohmori O, Kawano M, Fujita M. Crystal-to-crystal guest exchange of large organic molecules within a 3D coordination network [J]. J. Am. Chem. Soc.2004,126(50):16292-16293.
    [29]Min K S, Suh P M. Silver(I)-polynitrile network solids for anion exchange:anion-induced transformation of supramolecular structure in the crystalline state [J]. J. Am. Chem. Soc.2000, 122(29):6834-6840.
    [30]Hamilton B H, Kelly K A, Wagler T A, Espe M P, Ziegler C J. Lead tetrakis(imidazolyl)borate solids:anion exchange, solvent intercalation, and self assembly of an organic anion [J]. Inorg. Chem.2004,43(1):50-56.
    [31]Dong Y-B, Wang P, Ma J-P, Zhao X-X, Wang H-Y, Tang B, Huang R-Q. Coordination-driven nanosized lanthanide "molecular lantern" with tunable luminescent properties [J]. J. Am. Chem. Soc.2007,129(16):4872-4873.
    [32]Lu T B, Zhuang X M, Li Y W, Chen S. C-C bond cleavage of acetonitrile by a dinuclear copper(Ⅱ) cryptate [J]. J. Am. Chem. Soc.2004,126(15):4760-4761.
    [33]Lan Y-Q, Li S-L, Li Y-G, Su Z-M, Shao K-Z, Wang X-L. A novel (4,8)-connected 3D polyoxometalate-based metal-organic framework containing an in situ ligand [J]. CrystEngComm 2008,10:1129-1131.
    [34]Furukawa H, Kim J, Ockwig N W, O'Keeffe M, Yaghi O M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra [J]. J. Am. Chem. Soc.2008,130:11650-11661.
    [35]Chen X-L, Gou L, Hu H-M, Fu F, Han Z-X, Shu H-M, Yang M-L, Xue G-L, Du C-Q. New examples of metal coordination architectures of 4,4'-sulfonyldibenzoic acid:syntheses, crystal structure and luminescence [J]. Eur. J. Inorg. Chem.2008, (2):239-250.
    [36]Banerjee D, Borkowski L A, Kim S J. Parise J B. Synthesis and structural characterization of lithium-based metal-organic frameworks [J]. Cryst. Growth Des.2009,9(11):4922-4926.
    [37]Lian F-Y, Jiang F-L, Yuan D-Q, Chen J-T, Wu M-Y, Hong M-C. Cd(Ⅱ)-sulfonyldibenzoilate coordination polymers based on mono-, bi-, tri-and tetranuclear cores as nodes [J]. CrystEngComm 2008,10:905-914.
    [38]Liu G-X, Zhu K, Chen H, Huang R-Y, Ren X-M. Two zinc(Ⅱ) supramolecular isomers of square grid networks formed by two flexible ligands:syntheses, structures and nonlinear optical properties [J]. CrystEngComm 2008,10:1527-1530.
    [39]Qin C, Wang X L, Qi Y F, Wang E B, Hu C W, Xu L. A novel two-dimensional (3-octamolybdate supported alkaline-earth metal complex:[Ba(DMF)2(H2O)]2[MogO26]·2DMF [J]. J. Solid State Chem.2004,177(10):3263-3269.
    [40]Platero-Prats A E, Iglesias M, Snejko N, Monge A, Gutierrez-Puebla E. From coordinatively weak ability of constituents to very stable alkaline-earth sulfonate metal-organic frameworks [J]. Cryst. Growth Des.2011,11(5):1750-1758.
    [41]Liang P-C, Liu H-K, Yeh C-T, Lin C-H, Zima V. Supramolecular assembly of calcium metal-organic frameworks with structural transformations [J]. Cryst. Growth Des.2011,11(3): 699-708.
    [42]Wang X-L, Qin C, Wang E-B, Xu L. An unusual 3D interdigitated architecture self-assembled from sidearm-containing 2D bilayer motifs with a cuboidal framework [J]. Eur. J. Inorg. Chem. 2005:3418-3421.
    [43]Kondo M, Joshitomi T, Seki K, Matsuzaka H, Kitagawa S. Three-dimensional framework with channeling cavities for small molecules:{[M2(4,4'-bpy)3(NO3)4]·xH2O}n (M= Co, Ni, Zn) [J]. Angew. Chem., Int. Ed. Engl.1997,36(16):1725-1727.
    [44]Power K N, Hennigar T L, Zaworotko M J. Crystal structure of the coordination polymer [Co(bipy)1.5(NO3)2]·CS2 (bipy=4,4'-bipyridine), a new motif for a network sustained by 'T-shape'building blocks [J]. New J. Chem.1998,22:177-181.
    [45]Spek A L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands,2001.
    [46]For all measurements, we used the same excitation wavelength at 340 nm and with other same scan parameter values, including a same solid sample holder of the Type F-4500 spectrophotometer, the same PMT Voltage (700 V), the same scan speed (2400 nm/min), the same excitation slit width (2.5 nm) and emission slit width (5.0 nm) for all the compounds.
    [47](a) Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds; Berlin: Springer,1987. (b) Valeur B. Molecular Fluorescence:Principles and Application; Wiley-VCH:Weinheim, 2002.
    [48]Zhang L-P, Ma J-F, Yang J, Liu Y-Y, Wei G-H. 1D,2D, and 3D Metal-organic frameworks based on bis(imidazole) ligands and polycarboxylates:syntheses, structures, and photoluminescent properties [J]. Cryst. Growth Des.2009,9(11):4660-4673.
    [49]Bauer C A, Timofeeva T V, Settersten T B, Patterson B D, Liu V H, Simmons B A, Allendorf M D. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks [J]. J. Am. Chem. Soc.2007,129(22):7136-7144.
    [50]Deng Z-P, Qi H-L, Huo L-H, Zhao H, Gao S. Inorganic anion induced supramolecular architectures and luminescent properties of flexible bis(pyridyl) based ionic salts [J]. CrystEngComm 2011,13:6632-6642.
    [51]Fu S-J, Wang L, Tao T, Hu B, Huang W, You X-Z. Zinc(II) and cadmium(II) coordination polymers mediated by rationally designed symmetrical/asymmetrical Ⅴ-shaped heterocyclic aromatic ligands exhibiting different supramolecular architectures [J]. CrystEngComm 2011, 13:6192-6199.
    [52]Liu T-F, Zhang W J, Sun W-H, Cao R. Conjugated ligands modulated sandwich structures and luminescence properties of lanthanide metal-organic frameworks [J]. Inorg. Chem.2011, 50(11):5242-5248.
    [53]Allendorf M D, Bauer C A, Bhakta R, K, Houk R J T. Luminescent metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1330-1352.
    [54]Aijaz A, Sanudo E C, Bharadwaj P K. Construction of coordination polymers with a bifurcating ligand:synthesis, structure, photoluminescence, and magnetic studies [J]. Cryst. Growth Des.2011,11(4):1122-1134.
    [55]Zheng S-L, Chen X-M. Recent advances in luminescent monomeric, multinuclear, and polymeric Zn(ii) and Cd(ii) coordination complexes [J]. Aust. J. Chem.2004,57(8):703-712.
    [56]Zheng S-L, Zhang J-P, Chen X-M, Huang Z-L, Lin Z-Y, Wong W-T. Syntheses, structures, photoluminescence, and theoretical studies of a novel class of d10 metal complexes of 1H-[1,10]phenanthrolin-2-one [J]. Chem. Eur. J.2003,9(16):3888-3896.
    [1]Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials [J]. Nature 2003,423:705-714.
    [2]Eddaoudi M, Kim J, Wachter J B, Chae H K, Keeffe M, Yaghi O M. Porous metal-organic polyhedra:25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks [J]. J. Am. Chem. Soc.2001,123:4368-4369.
    [3]Vodak D T, Braun M E, Kim J, Eddaoudi M, Yaghi O M. Metal-organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units [J]. Chem. Commun.2001:2534-2535.
    [4]Kim J, Chen B, Reineke T M, Li H, Eddaoudi M, Moler D B, O'Keefe M, Yaghi O M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units:new examples and simplifying principles for complex structures [J]. J. Am. Chem. Soc. 2001,123(34):8239-8247.
    [5]Kurmoo M, Kumagai H, Akita-Tanaka M, Inoue K, Takagi S. Metal-organic frameworks from homometallic chains of nickel(II) and 1,4-cyclohexanedicarboxylate connectors: ferrimagnet-ferromagnet transformation [J]. Inorg. Chem.2006,45(4):1627-1637.
    [6]Zhang L, Lu X Q, Chen C L, Tan H Y, Zhang H X, Kang B S. Nanosized silver(I) coordination networks of mixed bix-diphosphine (bix= 1,4-bis(imidazol-1-ylmethyl)benzene) [J]. Cryst. Growth Des.2005,5(1):283-287.
    [7]Rosi N L, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi O M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units [J]. J. Am. Chem. Soc.2005,127:1504-1518.
    [8]Lin H-M, Chang T-Y. A Three-dimensional porous metal-organic framework with a body-centered cubic topology constructed from 48-membered tetraicosanuclear metallamacrocycle based on in situ ligand synthesis [J]. Cryst. Growth Des.2009,9(7): 2988-2990.
    [9]Rosi N L, Eddaoudi M, Kim J, O'Keeffe M, Yaghi O M. Infinite secondary building units and forbidden catenation in metal-organic frameworks [J]. Angew. Chem. Int. Ed.2002,41(2): 284-287.
    [10]Xu X X, Zhang X, Liu X X, Sun T, Wang E B. A unique optical and electrical multifunctional metal-organic framework based on polynuclear rod-shaped secondary building units constructed from a "Three Birds with One Stone" in situ reaction process [J]. Cryst. Growth Des.2010,10(5):2272-2277.
    [11]Chen Y L, Fan Y, Zhang D J, Huang L L, Jiang J H, Zhang P, Xu J N. Two zinc-triazole-biphenyldicarboxylate coordination polymers affording a 3D 4-connected 2-fold interpenetrating diamond net and a 2D 6-connected hxl net [J]. Inorg. Chem. Commun.2011, 14(2):343-346.
    [12]Ye J-W, Wang J, Zhang J-Y, Zhang P, Wang Y. Construction of 2-D lanthanide coordination frameworks:syntheses, structures and luminescent property [J]. CrystEngComm 2007,9: 515-523.
    [13]Han Y-F, Zhou X-H, Zheng Y-X, Shen Z, Song Y, You X-Z. Syntheses, structures, photoluminescence, and magnetic properties of nanoporous 3D lanthanide coordination polymers with 4,4'-biphenyldicarboxylate ligand [J]. CrystEngComm 2008,10:1237-1242.
    [14]Kurmoo M. Magnetic metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1353-1379.
    [15]Munakata M, Wu L P, Kuroda-Sowa T. Toward the construction of functional solid-state supramolecular metal complexes containing copper(I) and silver(I) [J]. Adv. Inorg. Chem. 1998,46:173-303.
    [16]Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1330-1352.
    [17]Che C M, Tse M C, Chan M C W, Cheung K K, Phillips D L, Leung K H. Spectroscopic evidence for argentophilicity in structurally characterized luminescent binuclear silver(I) complexes [J]. J. Am. Chem. Soc.2000,122:2464-2468.
    [18]Yam V W W, Lo K K W, Fung N K M, Wang C R. Design of luminescent polynuclear copper(I) and silver(I) complexes with chalcogenides and acetylides as the bridging ligands [J]. Coord. Chem. Rev.1998,171:17-41.
    [19]Mitchell I V. Pillared Layered Structures:Current Trends and Applications, ed. Elsevier, London,1990.
    [20]Kitagawa S, Kitaura R. Pillared layer compounds based on metal complexes. Synthesis and properties towards porous materials [J]. Comments Inorg. Chem.2002,23:101-126.
    [21]Ren H, Song T Y, Xu J N, Jing S B, Yu Y, Zhang P, Zhang L R. Four novel three-dimensional pillared-layer metal-organic frameworks in the Zn/triazolate/carboxylate system:hydrothermal synthesis, crystal structure, and luminescence properties [J]. Cryst. Growth Des.2009,9: 105-112.
    [22]Lin X M, Ying Y, Chen L, Fang H C, Zhou Z Y, Zhan Q G, Cai Y P.3D pillar-layered 4d-4f heterometallic coordination polymers based on pyridine-3,5-dicaboxylate and oxalate mixed ligands [J]. Inorg. Chem. Commun.2009,12:316-320.
    [23]Kitaura R, Fujimoto K, Noro S, Kondo M, Kitagawa S. A pillared-layer coordination polymer network displaying hysteretic sorption:[Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2, 3-dicarboxylate, dpyg=1,2-di(4-pyridyl)glycol) [J]. Angew. Chem. Int. Ed.2002,41:133-135.
    [24]Wang X L, Qin C, Wang E B, Li Y G, Hu C W, Xu L. Designed double layer assembly:a three-dimensional open framework with two types of cavities by connection of infinite two-dimensional bilayer [J]. Chem. Commun.2004:378-379.
    [25]Lopez-Gresa M P, Ortiz R, Perello L, Latorre J, Liu-Gonzalez M, Garcia-Granda S, Perez-Priede M, Canton E. Interactions of metal ions with two quinolone antimicrobial agents (cinoxacin and ciprofloxacin). Spectroscopic and X-ray structural characterization. Antibacterial studies [J]. J. Inorg. Biochem.2002,92(1):65-74.
    [26]Ruiz M, Perello L, Server-Carrio J, Ortiz R, Garcia-Granda S, Diaz M R, Canton E. Cinoxacin complexes with divalent metal ions. Spectroscopic characterization. Crystal structure of a new dinuclear Cd(II) complex having two chelate-bridging carboxylate groups. Antibacterial studies [J]. J. Inorg. Biochem.1998,69(4):231-239.
    [27]Wasi N, Singh H B. In vitro evaluation of bacteriostatic activity of metal complexes of amodiaquine and primaquine [J]. Inorg. Chim. Acta 1988,151(4):287-289.
    [28]Guo Z, Sadler P J. Metals in medicine [J]. Angew. Chem.1999,111:1610-1630; Angew. Chem. Int. Ed.1999,38:1512-1531.
    [29]Guo Z, Sadler P J. Medicinal inorganic chemistry [J]. Adv. Inorg. Chem.1999,49:183-306.
    [30]Xiao D-R, Wang E-B, An H-Y, Li Y-G, Su Z-M, Sun C-Y. A bridge between pillared-layer and helical structures:a series of three-dimensional pillared coordination polymers with multiform helical chains [J]. Chem. Eur. J.2006,12:6528-6541.
    [31]Lan Y-Q, Li S-L, Shao K-Z, Wang X-L, Su Z-M. Construction of different dimensional inorganic-organic hybrid materials based on polyoxometalates and metal-organic units via changing metal ions:from non-covalent interactions to covalent connections [J]. Dalton Trans. 2008:3824-3835.
    [32]Lan Y-Q, Li S-L, Shao K-Z, Wang X-L, Hao X-R, Su Z-M. Combination of POMs and deliberately designed macrocations:a rational approach for synthesis of POM-pillared metal-organic framework [J]. Dalton Trans.2009:940-947.
    [33]Guo P, Wang J, Wang G, Li S-J, Huang W-Z, Lin Y-H, Xu G-H, Pan D-C. Two three-dimensional pillar-layer AgⅠ-frameworks with helical arrays containing hexamine [J]. Inorg. Chem. Commun.2011,14:172-175.
    [34]Kathalikkattil A C, Bisht K K, Aliaga-Alcalde N, Suresh E. Synthesis, magnetic properties, and structural investigation of mixed-ligand Cu(II) helical coordination polymers with an amino acid backbone and N-donor propping:1-D helical,2-D hexagonal net (hcb), and 3-D ins topologies [J]. Cryst. Growth Des.2011,11:1631-1641.
    [35]Tang Y Z, Tan Y H, Zhu J W, Ji F M, Xiong T T, Xiao W Z, Liao C F. Novel three-dimensional anion-type eight-coordinated Cd(II) coordination polymer with binuclear cadmium building units [J]. Cryst. Growth Des.2008,8:1801-1803.
    [36]Tang Y-Z, Tan Y-H, Chen S-H, Chao Y-W, Wang P. Synthesis, characterization and crystal structures of two alkaline-earth metal complexes of olsalazine [J]. J. Coord. Chem.2008,61: 1244-1252.
    [37]Tang Y-Z, Tan Y-H, Ge Z-T, Liu Z-X, Liao C-F, Xie X-B. Synthesis and crystal structures of two rare-earth metal polymers of olsalazine [J]. J. Coord. Chem.2009,62:2682-2688.
    [38]Tang Y-Z, Tan Y-H, Chen S-H, Chao Y-W. A novel two-dimensional coordination polymer based on rhombic tetrameric subunit Zn4O4 as building block [J]. Z. Anorg. Allg. Chem.2007, 633:332-335.
    [39]Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds; Berlin: Springer,1987.
    [40]Valeur B. Molecular Fluorescence:Principles and Application; Wiley-VCH:Weinheim,2002.
    [1]Carlucci L, Ciani G, Proserpio D M, Rizzato S. New examples of self-catenation in two three-dimensional polymeric co-ordination networks [J]. J. Chem. Soc. Dalton Trans.2000: 3821-3828.
    [2]Tong M-L, Chen X-M, Batten S R. A new self-penetrating uniform net, (8,4) (or 86), containing planar four-coordinate nodes [J]. J. Am. Chem. Soc.2003,125(52):16170-16171.
    [3]Deng H-Y, He J-R, Pan M, Li L, Su C-Y. Synergistic metal and anion effects on the formation of coordination assemblies from a N,N'-bis(3-pyridylmethyl)naphthalene diimide ligand [J]. CrystEngComm 2009,11:909-917.
    [4]Moulton B, Zaworotko M J. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev.2001,101:1629-1658.
    [5]Evans O R, Lin W-B. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Acc. Chem. Res.2002,35(7):511-22.
    [6]Fujita M, Kwon Y J, Washizu S, Ogura K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine [J]. J. Am. Chem. Soc.1994,116(3):1151-1152.
    [7]Janiak C, Temizdemir S, Scharmann T G, Schmalstieg J. Demtschuk, Hydrotris(1,2,4- triazolyl)borato Complexes with the Main Group Elements Ca, Sr, and Pb-Unexpectedly Bent ML2 Structures and a Stereochemically Inactive Lone Pair at Lead(II) [J]. Z. Anorg. Allg. Chem. 2000,626:2053-2062.
    [8]Yaghi O M, Li H, Davis C, Richardson D, Groy T L. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids [J]. Acc. Chem. Res.1998,31, 474-484.
    [9]Tao J, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of three-dimensional coordination frameworks constructed with mixed N-and O-donor ligands: [M(tp)(4.4'-bipy)] (M=Co(II), Cd(Ⅱ) and Zn(II); tp= terephthalate; 4,4'-bipy= 4,4'-bipyridine) [J]. J. Chem. Soc. Dalton Trans.2000, (20):3669-3674.
    [10]Gudbjartson H, Biradha K, Poirier K M, Zaworotko M J. Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties [J]. J. Am. Chem. Soc.1999, 121(11):2599-2600.
    [11]Humphrey S M, Mole R A, Rawson J M, Wood P T. Hydrothermal synthesis and magnetic properties of novel Mn(II) and Zn(II) materials with thiolato-carboxylate donor ligand frameworks [J]. Dalton Trans.2004:1670-1678.
    [12]Teles W M, Farani R A, Yoshida M I, Bortoluzzi A J, Homer M, de Oliveira L F C, Machado F C. Synthesis and crystal structure of a novel Zn(II) 2-D coordination polymer containing 1,3-bis(4-pyridyl)propane ligand and croconate violet dianion [J]. Polyhedron 2007,26(7): 1469-1475.
    [13]Garcia H C, Diniz R, Yoshida M I, de Oliveira L F C. An intriguing hydrogen bond arrangement of polymeric 1D chains of 4,4'-bipyridine coordinated to Co2+, Ni2+, Cu2+and Zn2+ions having barbiturate as counterions in a 3D network [J]. CrystEngComm 2009,11: 881-888.
    [14]Li J M, Zeng H Q, Chen J H, Wang Q M, Wu X T. Crystal structure of a flexible self-assembled two-dimensional square network complex [Cu2(C3H2O4)2(H2O)2(4,4'-bpy)]·H2O [J]. Chem. Commun.1997:1213-1214.
    [15]Zhang L J, Xu J Q, Shi Z, Zhao X L, Wang T G. Hydrothermal synthesis, structures and properties of coordination polymers based onμ4-bridging benzene-1,2,4,5-tetracarboxylate: [Co(Him)2(μ4-bta)1/2]n and{[Cu(phen)(μ4-bta)1/2]·H2O}n (bta=benzene-1,2,4,5-tetracar-boxylate, Him=imidazole, phen=1,10-phenanthroline) [J]. J. Solid State Chem.2003,173(1): 32-39.
    [16]Sun D F, Cao R, Liang Y C, Shi Q, Su W P, Hong M C. Hydrothermal syntheses, structures and properties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures [J]. J. Chem. Soc. Dalton Trans.2001,2335-2340.
    [17]Tong M L, Ye B H, Cai J W, Chen X M, Ng S W. Clathration of two-dimensional coordination polymers:synthesis and structures of [M(4,4'-bpy)2(H2O)2](ClO4)2-(2,4'-bpy)2-H2O and [Cu(4,4'-bpy)2(H2O)2](ClO4)4-(4,4'-H2Bpy) (M= Cd", Zn" and bpy= bipyridine) [J]. Inorg. Chem.1998,37(11):2645-2650.
    [18]Zhang L J, Xu J Q, Shi Z, Xu W, Wang T G. Hydrothermal synthesis and characterization of the first oxalate-bta mixed-ligand three-dimensional frameworks:{[M2(μ8-bta)(μ2-C2O4)]·(H3O)2(H2O)2}n (M= CoⅡ, FeⅡ; bta= benzene-1,2,4,5-tetracarboxylate) [J]. Dalton Trans.2003:1148-1152.
    [19]Ye J W, Zhang P, Ye K Q, Zhang H Y, Jiang S M, Ye L, Yang G D, Wang Y. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands [J]. J. Solid State Chem.2006,179:438-449.
    [20]Lin J-D, Long X-F, P Lin, Du S-W. A series of cation-templated, polycarboxylate-based Cd(Ⅱ) or Cd(Ⅱ)/Li(Ⅰ) frameworks with second-order nonlinear optical and ferroelectric properties [J]. Cryst. Growth Des.2010,10(1):146-157.
    [21]Chen X-L, Wang J-J, Hu H-M, Fu F, Shua H-M, Yang M-L, Xue G-L, Du C-Q, Yao Y-J. Hydrothermal syntheses, crystal structures and luminescence of two novel metal-organic frameworks [J]. Z. Anorg. Allg. Chem.2007,633:2053-2058.
    [22]Ye J W, Zhang P, Ye K Q, Zhang H Y, Jiang S M, Ye L, Yang G D, Wang Y. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands [J]. J. Solid State Chem.2006,179(2):438-449.
    [23]Zhang Y-N, Liu J-Q, Wang T, Wen G-L, Yang G-P, Wang Y-Y, Shi Q-Z. Design and syntheses of two novel Mn(Ⅱ) and Cu(Ⅱ) complexes with 2,2'-biquinoline-4,4'-dicarboxylate and N-containing bidentate co-ligand [J]. J. Mol. Struct.2008,878:116-123.
    [24](a) Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds, Berlin: Springer,1987. (b) Valeur B. Molecular Fluorescence:Principles and Application, Wiley-VCH:Weinheim, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700