用户名: 密码: 验证码:
尖晶石型金属氧化物(AB_2O_4)的合成、表征及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶液燃烧法制备尖晶石型金属氧化物CoAl_2O_4,CoxZn1-xAl_2O_4,MnFe_2O_4和NiAl_2O_4并通过XRD、SEM、BET比表面积和UV-Vis DRS光谱等测试技术对产物进行表征,结果发现,燃料种类、燃料用量、燃料/硝酸根摩尔比、燃料/金属离子摩尔比等制备条件和硝酸铵辅助剂、盐辅助剂对产物的组成、晶相、晶粒大小、形貌、颜色和比表面积有重要影响。
     1.以硝酸钴和硝酸镍为氧化剂,乙二醇为燃料,采用溶液燃烧法在300℃下分别合成了纳米CoO和NiO。结果表明:燃料种类和燃料/氧化剂比对合成产物晶相组成的影响显著,通过控制乙二醇的用量,可以合成出多孔网状结构的纯相纳米CoO和NiO晶体。
     2.以硝酸铝和硝酸钴为氧化剂,以乙醇胺为燃料,硝酸铵为硝酸根调节剂,在300℃低温下采用溶液燃烧法一步合成出尖晶石结构的蓝色CoAl_2O_4粉末。实验结果表明:在研究的各种燃料中,以乙醇胺为燃料制备出的产物晶相最好且为纯相。燃料用量对合成产物晶相、形貌的影响,是F/NO_3~-和F/M两个因素共同作用的结果,当乙醇胺/硝酸根比例是在化学计量比0.38,对应F/M比例为1.03时,制备出的产物晶相最好,颜色最鲜艳。以硝酸铵为硝酸根调节剂,当F/M摩尔比为1.03,F/NO_3~-摩尔比为0.33时制备的产物晶相最好。
     3.以乙醇胺为燃料,硝酸铵为辅助剂,在300℃低温下采用溶液燃烧法一步合成出Zn~(2+)掺杂Co_xZn_(1-x)Al_2O_4复合钴蓝颜料。与传统的固相反应技术相比,硝酸铵辅助溶液燃烧法的优点在于反应温度低,反应时间短,在300℃低温下一步就可以合成出掺杂的钴蓝颜料。利用Zn~(2+)掺杂替代Co~(2+)降低钴蓝颜料中钴元素的含量,既降低了生产成本,又减少了环境污染,使钴蓝颜料向更为经济和环保的方向发展。
     4.通过一种简单的溶液燃烧法,在不需要任何煅烧的条件下,成功制备了多孔结构的尖晶石型铁酸锰粉末,并用紫外-可见吸收光谱对其吸附性能进行了研究。我们可以得到以下结论。
     (1)燃料种类、燃烧用量对产物铁酸锰的晶相影响显著,在化学计量比时,以甘氨酸或丙氨酸为燃料时,产物的晶相最好。以甘氨酸为燃料合成铁酸锰,在化学计量比或富燃(+32%)条件下合成的产物晶相最好;而以丙氨酸为燃料合成铁酸锰,在贫燃(-33%)条件下合成的产物晶相最好。
     (2)盐助对合成产物的性质有重要影响,相对于非盐助溶液燃烧法,盐助使得产物的晶粒大小从37.64变小为29.02nm,由大孔结构形貌变成小孔结构,比表面积从2.14大大增大至48.70m2/g,超过24倍的增加。
     (3)用盐助溶液燃烧法制备的MnFe_2O_4在中性条件下对甘果红溶液具有很好的吸附作用,最大吸附量达到43.52mg甘果红/1g MnFe_2O_4,其吸附作用与样品MnFe_2O_4的比表面积有关,比表面积越大,吸附量越多。
     5.以硝酸铝和硝酸镍为氧化剂,乙醇胺为燃料,硝酸铵为硝酸根调节剂,采用溶液燃烧法在300℃低温一步合成出尖晶石结构的NiAl_2O_4粉末。实验结果表明:在研究的燃料中,以乙醇胺为燃料制备出的产物晶相最好且杂相含量最少。燃料用量对合成产物晶相、形貌的影响,是F/NO_3~-和F/M两个因素共同作用的结果,当乙醇胺/硝酸根比例是在化学计量比0.38,对应F/M比例为1.03时,制备出的产物晶相最好。以硝酸铵为硝酸根调节剂,当F/M摩尔比为1.03,F/NO_3~-摩尔比为0.26时制备的产物晶相最好。
Spinel metal oxides CoAl_2O_4, CoxZn1-xAl_2O_4, MnFe_2O_4and NiAl_2O_4nanocrystals weresuccessfully synthesized by solution combustion. The effect of fuel type, amount of fuel,fuel/oxidant ratio and fuel/metal nitrates ratio on the phase composition and morphology of theas-synthesized products were systematically studied by X-ray diffraction (XRD), scanningelectron microscope (SEM), BET, UV-Vis DRS. The result showed that fuel type, fuel dose,fuel/oxidant ratio and fuel/metal nitrates ratio played an important role in synthesis products.
     1. Nano-crystalline CoO and NiO was synthesized by solution combustion method usingmetal nitrates as oxidant and ethylene glycol as fuel at300℃. The results showed that fuel typeand fuel-to-oxidant ratio played an important role in metal oxides synthesis. CoO and NiOnanocrystals could be directly synthesized through solution combustion synthesis by controllingthe ethylene glycol-to-oxidant ratio in air atmosphere without further calcination and reducingprocess.
     2. Blue spinel CoAl_2O_4was synthesized by solution combustion method using Co(NO3)2and Al(NO3)3as oxidant and ethanolamine as fuel at300℃. The results showed that fuel type,fuel-to-oxidant ratio and fuel/metal nitrates ratio play a predominant role in CoAl_2O_4synthesis.Pure spinel CoAl_2O_4powders with a crystallite size of27nm could be directly synthesizedthrough solution combustion synthesis by controlling synthesis parameter in air atmosphere at300℃without further calcination process. Among all tested fuels, ethanolamine is the suitablefuels for CoAl_2O_4synthesis. The effect of fuel dose on the phase composition and morphology ofthe as-synthesized products was the result of both F/NO_3~-and F/M. CoAl_2O_4with the bestcrystalline form and bright-colored was prepared in stoichiometric ratio(F/NO_3~-is0.38),correspond F/M is1.03. When NH4NO3was used as NO_3~-regulator, CoAl_2O_4with the bestcrystalline form was prepared in F/NO_3of0.33and in F/M of1.03.
     3. Zn ion doped CoxZn1-xAl_2O_4blue cobalt pigment was synthesized by NH4NO3-assistedsolution combustion method using Zn(NO_3)_2, Co(NO_3)_2and Al(NO3)3as oxidant andethanolamine as fuel at300℃. Compared with tradition solid state reaction, NH4NO3-assistedsolution combustion method have advantage of low reaction temperature, short reaction time andone-step synthesis without further calcination process. The CoxZn1-xAl_2O_4system allows for a reduction of the production costs and also for minimizing the environmental damage, as theamount of Co is reduced.
     4. Spinel MnFe2O4power was synthesized by solution combustion method using Mn(NO_3)_2and Fe(NO_3)_3as oxidant and glycine as fuel at300℃without further calcination process. Theadsorption property was studied by UV-vis spectra.
     (1). Fuel type and amount of fuel played an important role on the phase composition andmorphology of the as-synthesized products. Among all tested fuels, glycine and alanine are thesuitable fuels for MnFe2O4synthesis. For glycine, the optimal fuel-to-oxidant ratio isstoichiometric ratios or fuel rich ratio(+32%), which result in a suitable flame temperature forMnFe2O4formation, and for alanine is fuel lean ratio(-33%). Both too little fuel and too muchfuel would lead to poor of the MnFe_2O_4phase.
     (2). Compared with traditional non salt-assisted solution combustion, a novel and facilsalt-assisted solution combustion was developed. The salt introdution inhibits the formation ofhard agglomerates during the combustion synthesis, results in drastic increase in specific surfaceareas of the resultants and also has apparent effect on the particle morphology.
     (3). The as-synthesis MnFe2O4have a good adsorption capacity for Congo red at neutral pH.The adsorption capacity was measured as43.52mg Congo red per gram of MnFe_2O_4. This goodadsorption performance is mainly attributed to the electrostatic attraction between the surface ofthe particles and the Congo red species in solution and the high surface area available as a resultof the small particle size.
     5. Spinel NiAl_2O_4was synthesized by solution combustion method using Ni(NO3)2andAl(NO_3)_3as oxidant and ethanolamine as fuel at300℃. The results showed that fuel type,amount of fuel and fuel-to-oxidant ratio play a predominant role in NiAl_2O_4synthesis. Amongall tested fuels, ethanolamine is the suitable fuels for NiAl_2O_4synthesis. The effect of amount offuel on the phase composition and morphology of the as-synthesized products was the result ofboth F/NO_3~-and F/M. NiAl_2O_4with the best crystalline form was prepared in stoichiometricratio(F/NO_3~-is0.38), correspond F/M is1.03. When NH4NO3was used as NO_3~-regulator andF/M is1.03, NiAl_2O_4with the best crystalline form was prepared in F/NO_3~-of0.26.
引文
[1] G. Aguilar-Ros, M. A. Valenxuela, H. Armendarix, Metal support effects and catalyticproperties of platinum supported on zinc aluminate[J]. Appl.Catal.A:General,1992,90:25-34
    [2]周志刚等.铁氧体磁性材料,北京:科学出版社,1981
    [3] E.P. Wohlfarth, New York: North Holland Publishing Company,1984
    [4] M. Sugimoto, E.P. Wohlfarth. Ferromagnetic Materials,Amsterdam: North Holland PhysicsPublishing,1982
    [5]张立德,牟季美.纳米材料和纳米结构,北京:科学出版社,2001
    [6]盖国胜.超微粉体技术,北京:化学工业出版社,2004
    [7] F. Mazaleyrat, L. K. Varga. Ferromagnetic nanocomposites[J]. J. Magn. Magn. Mater.,2000,15-216:253
    [8]黄波.固体材料及应用,广州,华南理工大学出版社,1995
    [9]吕庆荣,方庆清,李瑞,王翠平.钴铁氧体纳米晶粒的结构及磁特性研究[J].安徽大学学报,2006,30:71
    [10] A.K. Giri, E. M. Kirkpatrick, P. Moongkhamklang, et al. Photomagnetism and structure incobalt ferrite nanoparticles[J]. Appl. Phys. Lett.,2002,80:2341
    [11] T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, et al. Microwave behavior offerrites prepared via sol-gel method[J].J. Magn. Magn. Mater.,2002,246:360
    [12] R. C. Wu, J. H. Qu, H. He, Y. b. Yu, Removal of azo-dye Acid Red B(ARB) by adsorptionand combustion using magnetic CuFe2O4powder[J]. Appl. Catal.,2004,48:49-56.
    [13] L. Zhang, M. M. Su, X. J. Guo, Studies on the treatment of brilliant green solution bycombination microwave induced oxidation with CoFe2O4[J]. Sep. Purif. Technol.,2008,62:458-463.
    [14] L. Zhang, X.J. Guo, F. Yan, M.M. Su, Y. Li, Degradation of malachite green solution usingcombined microwave and ZnFe2O4powder[J]. Water Sci. Technol.,2009,60:2563-2569.
    [15] L. Zhang, X. Y. Liu, X. J. Guo, M. M. Su, T. C. Xu, X. Y. Song, Investigation on thedegradation of brilliant green induced oxidation by NiFe2O4under microwave irradiation[J].Chemical Engineering Journal,2011,173:737-742
    [16] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a SemiconductorElectrode[J], Nature,1972,238:37-38.
    [17] J. H. Carey, Photodechlorination of PCB’s in the Presence of Titanium Dioxide in AqueousSuspensions[J]. Bull. Environ. Contam. Toxicol.,1976,16(6):697-701.
    [18] Y. Y. Jiang, J. G. Li, X. T. Sui, G. L. Ning, C. Y. Wang, X. M. Gu, CuAl2O4powder synthesisby sol-gel method and its photodegradation property under visible light irradiation[J]. J.Sol-Gel Sci. Technol.,2007,42:41-45.
    [19] J. W. Tang, Z. G. Zou, J. H. Ye, et al. Photocatalytic degradation of methylene blue onCaIn2O4under visible light irradiation [J]. Chem. Phys. Lett.,2003,283:175-179.
    [20] J. W. Tang, Z. G. Zou, J. H. Ye, Efficient photecatalytic decomposition of organiccontaminants over CaBi2O4under visible-light Irradiation [J]. Angew. Chem.,2004,116:4563-4566.
    [21]张文朴,无机钛系颜料[J].稀有金属与硬质合金,1999,136:62-67
    [22] D. Visinescu, C. Paraschiv, A. Ianculescu, B. Jurca, B. Vasile, O. Carp, The environmentallybenign synthesis of nanosized CoxZn1-xAl2O4blue pigments[J], Dyes and Pigments,2010,87:125-131.
    [23] L.K.C. de Souza, J.R. Zamian, G.N. da Rocha Filho, L.E.B. Soledade, I.M.G. dos Santos,A.G. Souza, T. Scheller, R.S. Angelica, C.E.F. da Costa, Blue pigments based onCoxZn1-xAl2O4spinels synthesized by the polymeric precursor method[J], Dyes and Pigments,2009,81:187–192.
    [24]周科朝,陶玉强.铁酸镍基金属陶瓷惰性阳极材料的研究进展[J],中国有色金属学报,2011,21(10):2418-2429
    [25] M. A. Rhamdhani, P. C. Hayes, E. Jak, Subsolidus phase equilibria of the Fe-Ni-O system[J].Metallurgical and Materials Transactions B,2008,39(5):690-701.
    [26] B. G. Liu, K. C. Zhou, Z. Y. Li, D. Zhang, L. Zhang, Microstructure and DC electricalconductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres[J]. Mater. Res.Bull.,2010,45(11):1668-1671.
    [27] B. G. Liu, L. Zhang, K. C. Zhou, Z. Y. Li, H. Wang, Electrical conductivity and molten saltcorrosion behavior of spinel nickel ferrite[J]. Solid State Sciences,2011,13(8):1483-1487.
    [28] G. G. Amatucci, A. Blyr, C. Schmutz,J. M. Taraseon, Prog. Batt. Mater.:1997,16,1-19.
    [29] J. Kim, A. Manthirma, Pyrolysis of a fraction of mixed plastic wastes depleted in PVC[J].Nature,1997,390,365-372.
    [30] X. M. He,J. J. Li, Y. Cai, Y, W. Wang, J. R. Ying,C. Y. Jinag,C. R. Wan, Fluorine dopingof spherical spinel LiMn2O4[J]. Solid State Ionics,2005,176(35-36),2571-2576.
    [31] S. J. Bao, W. H. Zhou, Y. Y. Liang, B. L. He,H. L. Li, Enhancement of the electrochemicalproperties of LiMn2O4through chemical substitution[J]. Mater. Chem. Phys.,2006,95(1):188-192.
    [32] X. M. He, J. J. Li, Y. Cai, Y. W. Wang, J. R. Ying, C. Y. Jiang, C. R. Wan, Microstructureand properties of Ni-based superalloy sheet prepared by EB-PVD[J]. J. Power Sources,2005,150:216-220.
    [33] H. Zhan, Y. H. Zhou, Investigation on a new doped spinel phase-LiSrxMn2xO4.[J]. Mater.Lett.,2004,58(26),3276-3279.
    [34] S. Q. Shi, C. Ouyang, D. S. Wang,L. Q. Chen, X. J. Hunag, The effect of cation doping onspinel LiMn2O4: a first-principles investigation[J]. Solid State Commun.,2003,126(9):531-534.
    [35] M. M. Thackeray, W.I.F. David, P.G. Bruce, J. B. Goodenough, Lithium insertion intomanganese spinels[J]. Mater. Res. Bull.,1983,18,461-472.
    [36] M. M. Thackeray, P. J. Johnson,L. A. de Picciotto, P. G. Bruce,J. B. Goodenough,Electrochemical extraction of lithium from LiMn2O4[J]. Mater. Res. Bull.1984,19,179-187.
    [37] D. Mazza, A. Delmastro, S. Ronchetti, Co, Ni, Cu aluminates supported on mulliteprecursors via a solid state reaction[J]. J. Eur. Ceram. Soc.,2000,20,699-706.
    [38] D.M.A. Melo, J.D. Cunha, J.D.G. Fernandes, M.I. Bernardi, M.A.F. Melo, A.E. Martinelli,Evaluation of CoAl2O4as ceramic pigments[J], Mater. Res. Bull.,2003,38:1559-1564.
    [39] S. Kurajica, E. Tkalcec, J. Schmauch, CoAl2O4–mullite composites prepared by sol–gelprocesses[J], Journal of the European Ceramic Society,2007,27:951–958.
    [40] M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, Bright blue pigment CoAl2O4nanocrystals prepared by modified sol–gel method[J], J. Sol-gel Sci. and Technol.,2009,52(3):321–327.
    [41] M. Zayat, D. Levy. Blue CoAl2O4particles prepared by the sol-gel and citrate-gelmethods[J], chemistry of materials,2000,12:2763–2769.
    [42] K.N. Nguyen, K.C. Dang, Synthesis, characterization and catalytic activity of CoAl2O4andNiAl2O4spinel-type oxides for NOxselective reduction[J], Advances in Technology ofMaterials and Materials Processing,2004,6(2):336–343.
    [43] Zaneta Mesikova, Petra Sulcova, M. Trojan Ming-Hong. Preparation and PracticalApplication of Spinel Pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4[J]. Journal of Thermal Analysisand Calorimetry,2006,84(3):733-736.
    [44] L. F. Koroleva(Chekhomova). Synthesis of Spinel-based Ceramie Pigments From[J]. Glassand Ceramics,2004,61:9-10.
    [45] J. G. Lee, J. Y. Park, Y. J. Oh, et al.Magnetic properties of CoFe2O4thin films prepared by asol-gel method[J]. J. Appl. Phys.,1998,84(5):2801-2804.
    [46] C. H. Yan, F. X. Cheng, Z. Y. Peng,et al. Fabrication and magnetic investigation of Y or Gdcontaining CoFe2O4nanocrystalline films. J. Appl. Phys.,1998,84(10):5703-5709.
    [47] F. X. Cheng, C. S. Liao, J. F.Kuang, et al. Nanostructure magneto-optical thin films of rareearth (RE=Gd,Tb,Dy) doped cobalt spinel by sol-gel synthesis[J]. J. Appl. Phys.,1999,85(5):2782-2786.
    [48] N. C. PRAMANIK, T. FUJII, M. NAKANISHI, J. TAKADA, Preparation and magneticproperties of the CoFe2O4thin films on Si substrate by sol-gel technique[J], J. Mater. Sci.,2005,40:4169–4172.
    [49] Z.Z. Chen, E.W. Shi, W.J. Li, Hydrothermal synthesis and optical property of nano-sizedCoAl2O4pigment[J], Materials Letters,2002,55:281–284.
    [50] Z.Z. Chen, E.W. Shi, W.J. Li, Y.Q. Zheng, J.Y. Zhuang, B. Xiao, L.A. Tang, Preparation ofnanosized cobalt aluminate powders by a hydrothermal method, Materials Science andEngineering B,2004,107:217–223.
    [51] S. Chokkaram, R. Srinivasan, D.R. Milburn, B.H. Davis, Conversion of2-octanol overnickel-alumina, cobalt-alumina, and alumina catalysts, Journal of Molecular Catalysis A:Chemical,1997,121:157169.
    [52] A.R. Naghash, Jim Y. Lee, Preparation of spinel lithium manganese oxide by aqueousco-precipitation[J], Journal of Power Sources,2000,85:284-293
    [53] D. G. Klissurski, E. L. Uzunova, Synthesis of Nickel Cobaltite Spinel from CoprecipitatedNickel-Cobalt Hydroxide Carbonate[J]. Chem. Muter.,1991,3:1060-1063
    [54] N.M. Khalil, M.B. Hassan, E.M.M. Ewais, F.A. Saleh, Sintering, mechanical and refractoryproperties of MA spinel prepared via co-precipitation and sol-gel techniques[J], Journal ofAlloys and Compounds,2010,496:600-607
    [56] D. Ke, H. G. Rong, P. Z. Dong, Q. Lu, Synthesis of spinel LiMn2O4with manganesecarbonate prepared by micro-emulsion method[J], Electrochimica Acta,2010,55:1733-1739
    [57] D. S. Mathew, R. S. Juang, An overview of the structure and magnetism of spinel ferritenanoparticles and their synthesis in microemulsions[J], Chemical Engineering Journal,2007,129:51-65.
    [58] P. Holec, J. Plocek, D. Niznansky, J. P. Vejpravova, Preparation of MgFe2O4nanoparticlesby microemulsion method and their characterization[J], J. Sol-Gel Sci. Technol.,2009,51:301-305
    [59] L.K.C. de Souza, J.R. Zamian, G.N. da Rocha Filho, L.E.B. Soledade, I.M.G. dos Santos,A.G. Souza, T. Scheller, R.S. Angelica, C.E.F. da Costa, Blue pigments based onCoxZn1-xAl2O4spinels synthesized by the polymeric precursor method, Dyes and Pigments,2009,81:187–192.
    [60] L. Gama, M.A. Ribeiroa, B.S. Barros, R.H.A. Kiminami, I.T. Weber, A.C.F.M. Costa,Synthesis and characterization of the NiAl2O4, CoAl2O4and ZnAl2O4spinels by thepolymeric precursors method, Journal of Alloys and Compounds,2009,483:453–455.
    [61] W.S. Cho, M. Kakihana, Crystallization of ceramic pigment CoAl2O4nanocrystals fromCo-Al metal organic precursor[J]. Journal of Alloys and Compounds,1999,287:87–90.
    [62] R. Ianos, I. Laz u, C. P curariu, P. Barvinschi, Application of new organic fuels in the directMgAl2O4combustion synthesis[J]. Mater. Res. Bull.,2008,43:3408–3415.
    [63] S.R. Jain, K.C. Adiga, V.R.P.ai Vernecker, A new approach to thermochemical calculationsof condensed fuel-oxidizer mixtures[J]. Combust. Flame,1981,40:71-79.
    [64] Y. Zhang, G.C. Stangle, Preparation of fine multicomponent oxide ceramic powder by acombustion synthesis process[J]. J. Mater. Res.,1994,9(8):1997-2004.
    [65] M.A. Ahmed, The effect of urea-to-nitrates ratio on the morphology and magnetic propertiesof Mn0.8Mg0.2Fe2O4[J], Journal of Magnetism and Magnetic Materials,2010,322:763-766
    [66] T. Mimani, Instant synthesis of nanoscale spinel aluminates, J. Alloys Compd.,2001,315:123-128.
    [1] Kodama R H. Magnetic nanoparticles [J]. J. Magn. Magn. Mater.1999,200:359.
    [2] An K, Lee N, Park J. Synthesis, characterization, and self-assembly of pencil-shaped CoOnanorods [J]. J. Am. Chem. Soc.2006,128:9753.
    [3]温戈辉,郑荣坤,冯国光,张西祥. CoO包覆的Co纳米颗粒的磁滞回线的横向及纵向偏移[J].稀有金属,2006,30(3):263.
    [4] Lagunas A, Payeras A M, Jimeno C, Puntes V F, Pericas M A. Low-temperature synthesis ofCoO nanoparticles via chemically assisted oxidative decarbonylation [J]. Chem. Mater.2008,20:92.
    [5] Koshizaki N, Yasumoto K, Sasaki T. A gas-sensing CoO/SiO2nanocomposite [J].NanoStructured Maters.1999,12:97l.
    [6] Igor L, Franco P, Edoardo B. Preparation and characterization of nano cobalt oxide [J]. JNanopart. Res.2008,10:59.
    [7] Do J S, Weng C H. Preparation and characterization of CoO used as anodic material oflithium battery [J]. J. Power Sources,2005,146(1/2):482.
    [8] Yang H M, Ouyang J, Tang A D. Single step synthesis of high-purity CoO nanocrystals [J]. J.Phys. Chem. B,2007,111:8006.
    [9] Chen C H, Hwang B J, Do J S, Weng J H, Venkateswarlu M, Cheng M Y. An understandingof anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery [J].Electrochem. Communs.2010,12:496.
    [10] Zhang L Y, Xue D S, Gao C X. Anomalous magnetic properties of antiferromagnetic CoOnanoparticles [J]. J. Magn. Magn. Mater.2003,267:111.
    [11] Ghosh M, Sampathkumaran E V, Rao C N R. Synthesis and Magnetic Properties of CoONanoparticles [J]. Chem. Mater.2005,17:2348.
    [12] Glaspell G P, Jagodzinski P W, Manivannan A. Formation of cobalt nitrate hydrate, cobaltoxide, and cobalt nanoparticles using laser vaporization controlled condensation [J]. J. Phys.Chem. B,2004,108:9604.
    [13] Zhan Y, Yin C, Wang W, Wang G. Synthesis of CoO fibers in pyrolytic process [J]. Mater.Lett.2003,57:3402.
    [14] Wang Y P, Zhu J W, Yang X J, et al. Preparation of NiO nanoparticles and their catalyticactivity in the thermal decomposition of ammonium perchlorate [J]. Thermochim Acta,2005,437:106-109.
    [15] Song L M, Zhang S J. A simple mechanical mixing method for preparation ofvisible-light-sensitive NiO-CaO composite photocatalysts with high photocatalytic activity[J], J. Hazard Mater,2010,174:563-566.
    [16] Lin S H, Chen F R, Kai J J. Electrochromic properties of nano-composite nickel oxide film[J]. Appl Surface Sci,2008,254:3357-3363.
    [17] H. Sato, T. Minami, S. Takata, et al. Transparent conducting p-type NiO thin films preparedby magnetron sputtering [J]. Thin Solid Films,1993,236:27-31.
    [18] Thota S, Kumar J. Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles[J]. J. Phys Chem Solid,2007,68:1951-1964.
    [19] Zheng Y Z, Ding H Y, Zhang M L. Preparation and electrochemical properties of nickeloxide as a super capacitor electrode material [J]. Mater Res Bull,2009,44:403-407.
    [20] Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticles bywater-in-oil microemulsion [J]. Powder Technology,2004,147:113-116.
    [21] Lenggoro I W, Itoh Y, Iida N, et al. Control of size and morphology in NiO particlesprepared by a low-pressure spray pyrolysis [J]. Mater Res Bull,2003,38:1819-1827.
    [22] Toniolo J, Takimi A S, Andrade M J, et al. Synthesis by the solution combustion process andmagnetic properties of iron oxide (Fe3O4and α-Fe2O3) particles [J]. J. Mater. Sci.,2007,42:4785-4791.
    [23] Rajeshwar K, Tacconi N R de. Solution combustion synthesis of oxide semiconductors forsolar energy conversion and environmental remediation [J]. Chem. Soc. Rev.,2009,38:1984-1998.
    [24] Chen W F, Li F S, Yu J Y. Combustion synthesis and characterization of nanocrystallineCe2O-based powders via ethylene glycol-nitrate process [J]. Mater. Lett.,2006,60:57-62.
    [25] S. Sasikumar, R. Vijayaraghavan. Solution combustion synthesis of bioceramic calciumphosphates by single and mixed fuels-A comparative study [J]. Ceram Inter,2008,34:1373-1379.
    [26]米远祝,刘应亮,张静娴,等.燃烧法制备纳米晶氧化镍[J].化学研究与应用,2005,17(1):81-82.
    [27] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculations ofcondensed fuel-oxidizer mixtures [J]. Combus Flame,1981,40(1):71-79.
    [28] Toniolo J C, Takimi A S, Bergmann C P. Nanostructured cobalt oxides (Co3O4and CoO)and metallic Co powders synthesized by the solution combustion method [J]. MaterialsResearch Bulletin,2010,45:672.
    [29]谢平波,张慰萍,尹民,陶冶,夏上达.纳米Ln2O3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质[J].无机材料学报,1998,13(1):53.
    [1]杨宗志.钴蓝颜料及其进展[J].涂料工业,1997,4:35-40
    [2]朱骥良,吴申年.颜料工艺学[M].北京:化学工业出版社,2002,293-296
    [3] J.J. Vijava, L.J. Kennedy, G. Sekaran, B. Jeyaraj, K.S. Nagaraja, Effect of Sr addition on thehumidity sensing properties of CoAl2O4composites[J]. Sens. Actuators B: Chem.,2007,123:211-217.
    [4] S. Chokkaram, R. Srinivasan, D.R. Milburn, B.H. Davis, Conversion of2-octanol overnickel-alumina, cobalt-alumina, and alumina catalysts[J]. J. Mol. Catal. A: Chem.,1997,121:157169.
    [5]闰国杰,程继健.金属氧化物混相颜料研究进展[J].中国陶瓷,1999,35(5):34-36
    [6] D. Mazza, A. Delmastro, S. Ronchetti, Co, Ni, Cu aluminates supported on mullite precursorsvia a solid state reaction[J]. J. Eur. Ceram. Soc.,2000,20:699-706
    [7] D.M.A. Melo, J.D. Cunha, J.D.G. Fernandes, M.I. Bernardi, M.A.F. Melo, A.E. Martinelli,Evaluation of CoAl2O4as ceramic pigments[J]. Mater. Res. Bull.,2003,38:1559-1564.
    [8] S. Chokkaram, R. Srinivasan, D.R. Milburn, B.H. Davis, Conversion of2-octanol overnickel-alumina, cobalt-alumina, and alumina catalysts[J]. J. Catal. A: Chem.,1997,121:157169.
    [9] S. Kurajica, E. Tkalcec, J. Schmauch, CoAl2O4–mullite composites prepared by sol–gelprocesses[J]. J. Eur. Ceram. Soc.,2007,27:951-958.
    [10] M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, Bright blue pigment CoAl2O4nanocrystals prepared by modified sol–gel method[J]. J. Sol-gel Sci. Techno.,2009,52(3):321-327.
    [11] M. Zayat, D. Levy. Blue CoAl2O4particles prepared by the sol-gel and citrate-gelmethods[J]. Chem. Mater.,2000,12:2763-2769.
    [12] K. N. Nguyen, K. C. Dang, Synthesis, characterization and catalytic activity of CoAl2O4andNiAl2O4spinel-type oxides for NOxselective reduction, Azojomo J. Mater. Online,1(2005)DOI:10.2240/azojomo0129.
    [13] Z.Z. Chen, E.W. Shi, W.J. Li, Hydrothermal synthesis and optical property of nano-sizedCoAl2O4pigment[J]. Mater. Lett.,2002,55:281-284.
    [14] Z. Z. Chen, E. W. Shi, W. J. Li, Y. Q. Zheng, J. Y. Zhuang, B. Xiao, L. A. Tang, Preparationof nanosized cobalt aluminate powders by a hydrothermal method[J]. Mater. Sci. Eng., B,2004,107:217-223.
    [15] L.K.C. de Souza, J.R. Zamian, G.N. da Rocha Filho, L.E.B. Soledade, I.M.G. dos Santos,A.G. Souza, T.s Scheller, R.S. Ange lica, C.E.F. da Costa, Blue pigments based onCoxZn1-xAl2O4spinels synthesized by the polymeric precursor method[J]. Dyes and Pigments,2009,81:187–192.
    [16] L. Gama, M.A. Ribeiroa, B. S. Barros, R.H.A. Kiminami, I.T. Weber, A.C.F.M. Costa.Synthesis and characterization of the NiAl2O4, CoAl2O4and ZnAl2O4spinels by thepolymeric precursors method[J]. J. Alloys and Compounds,2009,483:453-455.
    [17] W.S. Cho, M. Kakihana. Crystallization of ceramic pigment CoAl2O4nanocrystals fromCo-Al metal organic precursor[J]. J. Alloys and Compounds,1999,287:87-90.
    [18] R. Ianos, I. Laz u, C. P curariu, P. Barvinschi, Application of new organic fuels in the directMgAl2O4combustion synthesis[J]. Mater. Res. Bull.,2008,43:3408–3415.
    [19]谢平波,张慰萍,尹民,等.纳米Ln2O3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质[J].无机材料学报,1998,13(1):53-58.
    [20] F. L. Yu, J. F. Yang, J. Y. Ma, J. Du, Y. Q. Zhou, Preparation of nanosized CoAl2O4powdersby sol–gel and sol–gel-hydrothermal methods[J]. J. Alloys Comp.,2009,468:443–446.
    [21] W. F. Chen, F.S. Li, J.Y. Yu, Combustion synthesis and characterization of nanocrystallineCeO2-based powders via ethylene glycol–nitrate process[J]. Mater. Lett.,2006,60:57–62.
    [22] S.R. Nair, R.D. Purohit, A.K. Tyagi, P.K. Sinha, B.P. Sharma, Role of glycine-to-nitrate ratioin influencing the powder characteristics of La(Ca)CrO3[J]. Mater. Res. Bull.,2008,431573–1582.
    [23] Jain, S. R., Adiga, K. C., Pai Verneker, V. R., A new approach to thermochemicalcalculations of condensed fuel–oxidizer mixtures[J]. Combust. Flame,1981,40,71–79.
    [24] R. S. Guo, Q. T. Wei, H. L. Li, F. H. Wang, Synthesis and properties of La0.7Sr0.3MnO3cathode by gel combustion[J]. Mater. Lett.,2006,60,261–265.
    [25] H. B. Park, H. J. Kweon, Y. S. Hong, S. J. Kim, K. Kim, Preparation of La1xSrxMnO3powders by combustion of poly(ethylene glycol)-metal nitrate gel precursors[J]. J. Mater.Sci.,1997,32,57-65.
    [1] L.K.C. de Souza, J.R. Zamian, G.N. da Rocha Filho, L.E.B. Soledade, I.M.G. dos Santos, A.G.Souza, T. Scheller, R.S. Angelica, C.E.F. da Costa, Blue pigments based on CoxZn1-xAl2O4spinels synthesized by the polymeric precursor method[J], Dyes and Pigments,2009,81:187–192.
    [2] D. Visinescu, C. Paraschiv, A. Ianculescu, B. Jurca, B. Vasile, O. Carp, The environmentallybenign synthesis of nanosized CoxZn1-xAl2O4blue pigments[J], Dyes and Pigments,2010,87:125-131.
    [3] F. Meyer, R. Hempelmann, S. Mathur, Veith M. Microemulsion mediated sol-gel synthesis ofnano-scaled MAl2O4(M=Co, Ni, Cu) spinels from single-source heterobimetallic alkoxideprecursors[J]. Journal of Materials Chemistry,1999,9:1755-1763.
    [4] A. C. Otero, M. M. Pe arroya, P. E. Escalone, X.F.X. Llabrés. Sol-gel method for preparinghigh surface area CoAl2O4and Al2O3-CoAl2O4spinels[J]. Mater. Lett.,1999,39:22-27.
    [5] W. S. Cho, Kakihana M. Crystallization of ceramic pigment CoAl2O4nanocrystals fromCo-Al metal organic precursor[J]. Journal of Alloys and Compounds1999,287:87-90.
    [6] D.M.A. Melo, J. D. Cunha, J.D.G. Fernandes, M.J. Bernardi, M.A.F. Melo, A.E. Martinelli,Evaluation of CoAl2O4as ceramic pigments[J], Mater. Res. Bull.,2003,38:1559-1564.
    [7] U.L. Stangar, B. Orel, M. Krajnc, Preparation and spectroscopic characterization of blueCoAl2O4coatings[J]. Journal of Sol-Gel Science and Technology,2003,26:771-775.
    [8] M. Zayat, D. Levy, Blue CoAl2O4particles prepared by the sol-gel and citrate-gelmethods[J]. Chemistry of Materials,2000,12:2763-2769.
    [9] M. Sales, C. Valentin, J. Alarcon, Cobalt aluminate spinel-mullite composites synthesized bysol-gel method[J]. Journal of the European Ceramic Society,1997,17:41-47.
    [1] C. M. Gonzalez, J. Hernandez, J. G. Parsons, J. L. Gardea-Torresdey, A study of theremoval of selenite and selenate from aqueous solutions using a magnetic iron/manganeseoxide nanomaterial and ICP-MS[J]. Microchemical Journal,2010,96:324–329.
    [2] H.F. Liang, Z.C. Wang, Adsorption of bovine serum albumin on functionalized silica-coatedmagnetic MnFe2O4nanoparticles[J]. Materials Chemistry and Physics,2010,124:964–969.
    [3] S. X. Zhang, H. Y. Niu, Y. Q. Cai, X. L. Zhao, Y. L. Shi, Arsenite and arsenate adsorption oncoprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4and CoFe2O4[J]. ChemicalEngineering Journal,2010,158:599–607.
    [4] Y. Q. Wang, R. M. Cheng, Z. Wen, L. J. Zhao, Synthesis and Characterization ofSingle-Crystalline MnFe2O4Ferrite Nanocrystals and Their Possible Application in WaterTreatment[J]. Eur. J. Inorg. Chem.2011,2942–2947.
    [5] X. Y. Hou, J. Feng, Y. M. Ren, Z. J. Fan, M. L. Zhang, Synthesis and adsorption properties ofspongelike porous MnFe2O4[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,363:1-7.
    [6]A. R. Shyam, R. Dwivedi, V. S. Reddy, K. V. R. Charyb, R. Prasada, Vapour phasemethylation of pyridine with methanol over the Zn1-xMnxFe2O4(x=0,0.25,0.50,0.75and1)ferrite system[J]. Green Chemistry,2002,4,558–561.
    [7]Teresa Valdes-Sol s, Patricia Valle-Vigon, Sonia A lvarez, Gregorio Marban, Antonio B.Fuertes, Manganese ferrite nanoparticles synthesized through a nanocasting route as a highlyactive Fenton catalyst[J]. Catalysis Communications,2007,8:2037-2042.
    [8] Yen-Po Lin, Nae-Lih Wu. Characterization of MnFe2O4/LiMn2O4aqueous asymmetricsupercapacitor[J]. Journal of Power Sources,2011,196:851-854.
    [9]A. Kumar, K.L. Yadav. Synthesis and characterization of MnFe2O4–BiFeO3multiferroiccomposites [J], Physica B.,2011,406:1763-1766.
    [10]崔升,沈晓冬,林本兰,液相共沉淀法制备铁酸锰纳米粉[J].无机盐工业,2006,38(1),16-17.
    [11] Xiangyu Hou, Jing Feng, Xiaodong Xu, Milin Zhang, Synthesis and characterizations ofspinel MnFe2O4nanorod byseed–hydrothermal route[J], Journal of Alloys and Compounds,2010,491:258-263.
    [12] L. Zhen, K. He, C.Y. Xu, W.Z. Shao, Synthesis and characterization of single-crystallineMnFe2O4nanorods via a surfactant-free hydrothermal route [J], Journal of Magnetism andMagnetic Materials,2008,320:2672-2675.
    [13] N. Rajic, M. Ceh, R. Gabrovsek, V. Kaucic, Formation of nanocryst alline transition-metalferrites inside a silica matrix[J]. J. Am. Ceram. Soc.,2002,85(7):1719-1724.
    [14] Yao Li, Jiuxing Jiang, Jiupeng Zhao, X-ray diffraction and M ssbauer studies of phasetransformation in manganese ferrite prepared by combustion synthesis method[J]. MaterialsChemistry and Physics,2004,87:91-95.
    [15] Hsuan-Fu Yu, Shang-Wei Yang, Formation of crystalline MnFe2O4powder byflame-combusting freeze-dried citrate precursors[J]. J. Alloys Compd.,2005,394:286-291.
    [16] M.A. Ahmed, N. Okasha, S.F. Mansour, S.I. El-dek, Bi-modal improvement of thephysico-chemical characteristics of PEG and MFe2O4subnanoferrite[J]. J. Alloys Compd.,2010,496:345-350.
    [17] M. Popa, P. Bruna, D. Crespo, Jose M. Calderon Moreno, Single-Phase MnFe2O4PowdersObtained by the Polymerized Complex Method[J]. J. Am. Ceram. Soc.,(2008)91(8)2488-2494.
    [18] S. H. Hosseinia, S.H. Mohseni, A. Asadnia, H. Kerdari, Synthesis and microwave absorbingproperties of polyaniline/MnFe2O4nanocomposite[J]. J. Alloys Compd.,2011,509:4682-4687.
    [19] Q. Song, Y. Ding, Z. L. Wang, Z. John Zhang, Tuning the Thermal Stability of MolecularPrecursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4Spinel Nanocrystals [J],Chem. Mater.2007,19,4633-4638.
    [20] Jiang H Q, Endo H, Natori H, Nagai M, Kobayashi K. Fabrication and photoactivities ofspherical-shaped BiVO4photocatalysts through solution combustion synthesis method[J],Journal of European ceramic society,2008,28:2955-2962.
    [21] Chandradass J, Kim K H. Mixture of fuels approach for the solution combustion synthesisof LaAlO3nanopowders[J], Advanced powder technology,2010,21(2):100-105.
    [22] Yu P, Zhang X, Chen Y, Ma Y W. Solution-combustion synthesis of ε-MnO2forsupercapacitors[J]. Materials letters,2010,64:61-64.
    [23] Saha S, Ghanawat S J, Purohit R D. Solution combustion synthesis of nano particleLa0.9Sr0.1MnO3powder by a unique oxidant-fuel combination and its characterization[J],Journal of materials science,2006,41:1939-1943.
    [24] M.A. Ahmed, The effect of urea-to-nitrates ratio on the morphology and magnetic propertiesof Mn0.8Mg0.2Fe2O4[J], Journal of Magnetism and Magnetic Materials,2010,322:763-766.
    [25] R. Ianos, I. Laz u, C. P curariu, P. Barvinschi, Application of new organic fuels in the directMgAl2O4combustion synthesis, Mater. Res. Bull.,2008,43:3408-3415.
    [26]谢平波,张慰萍,尹民,陶冶,夏上达,纳米Ln2O3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质[J].无机材料学报,1998,13(1):53-58.
    [27] W.F. Chen, F.S. Li, J.Y. Yu, Combustion synthesis and characterization of nanocrystallineCeO2-based powders via ethylene glycol–nitrate process[J]. Mater. Lett.,2006,60:57–62.
    [28] G. Jungclaus, V. Avila, R. Hites, Organic compounds in an industrial waste water: a casestudy of their environmental impact[J]. Environ. Sci. Technol.1978,12(1):88–96.
    [29] M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, S. Esplugas, Degradation ofchlorophenols by means of advanced oxidation processes: a general review[J]. Appl. Catal. B,2004,47(4):219–256.
    [30] M. Bajaj, C. Gallert, J. Winter, Biodegradation of high phenol containing syntheticwastewater by an aerobic fixed bed reactor[J]. Bioresour. Technol.,2008,99:8376–8381.
    [31] T. M. Lapara, J. E. Alleman, Thermophilic aerobic biological wastewater treatment[J].Water Res.,1999,33(4):895-908.
    [32] G. H. Chen, Electrochemical technologies in wastewater treatment[J]. Sep. Purif. Technol.,2004,38(1):11-41.
    [33] Z.Q. Jia, Y. Li, S. Lu, H.Z. Peng, J.Y. Ge, S.D. Chen, Treatment oforganophosphate-contaminated wastewater by acidic hydrolysis and precipitation[J]. J.Hazard. Mater.,2006,129(1-3):234-238.
    [34] R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, R. J. Portier, Pecan shell-basedgranular activated carbon for treatment of chemical oxygen demand (COD) in municipalwastewater[J]. Bioresour. Technol.,2004,94(2):129–135.
    [35] X. Wang, N. Zhu, B. Yin, Preparation of sludge-based activated carbon and its application indye wastewater treatment[J]. J. Hazard. Mater.,2008:153(1-2):22–27.
    [36] J. L. Gong, Y. Liu, X. B. Sun, O3and UV/O3oxidation of organic constituents of biotreatedmunicipal wastewater[J]. Water Res.,2008,42(4-5):1238–1244.
    [37] S. Meric, D. Kaptan, T. Olmez, Color and COD removal from wastewater containingReactive Black5using Fenton's oxidation process[J]. Chemosphere,2004,54(3):435–441.
    [38] H. M. Chen, J. H. He, Facile Synthesis of Monodisperse Manganese Oxide Nanostructuresand Their Application in Water Treatment[J], J. Phys. Chem. C2008,112:17540-17545
    [39] R. C. Wu, J. H. Qu, Y. S. Chen, Magnetic powder MnO-Fe2O3composite-a novel materialfor the removal of azo-dye from water[J], Water Research,2005,39:630-638.
    [40] H. M. Chen, J. H. He, C. B. Zhang, H. He, Self-Assembly of Novel Mesoporous ManganeseOxide Nanostructures and Their Application in Oxidative Decomposition ofFormaldehyde[J], J. Phys. Chem. C,2007,111:18033-18038.
    [41] F. Herrera, A. Lopez, G. Mascolo, E. Albers, J. Kiwi, Catalytic combustion of Orange II onhematite Surface species responsible for the dye degradation[J], Applied Catalysis B:Environmental,2001,29:147–162.
    [1] Y. Cesteros, P. Salagre, F. Medina, J. E. Sueiras, Preparation and Characterization of SeveralHigh-Area NiAl2O4Spinels. Study of Their Reducibility[J], Chem. Mater.2000,12:331-335
    [2] E. Loginova, F. T. Cosandey, E. Madey, Nanoscopic nickel aluminate spinel (NiAl2O4)formation during NiAl(111) oxidation[J]. Surface Science,2007,601: L11-L14.
    [3] N. A. S. NOGUEIRA, E. B. SILVA, Synthesis and characterization of NiAl2O4nanoparticlesobtained through gelatin [J]. Materials Letters,2007,61:4743-4746.
    [4] A. Shulman, C. Linderholm, T. Mattisson, A. Lyngfelt, High Reactivity and MechanicalDurability of NiO/NiAl2O4and NiO/NiAl2O4/MgAl2O4Oxygen Carrier Particles Used formore than1000h in a10kW CLC Reactor[J], Ind. Eng. Chem. Res.2009,48,7400–7405.
    [5] H.B. Zhao, L.M. Liu, D. Xu, C.G. Zheng, G.J. LIU, L.L. Jiang, NiO/NiAl2O4oxygen carriersprepared by sol-gel for chemical-looping combustion fueled by gas[J], Journal of FuelChemistry and Technology,2008,36(3):261-266.
    [6] L. Kou, J. R. Selman, Electrical conductivity and diffusivity of NiAl2O4spinel under internalreforming fuel cell conditions[J], Journal of Applied Electrochemistry,2000,30,1433-1437
    [7] Federica Prinetto, Giovanna Ghiotti,et al. Synthesis and characterization of sol-gel My/Aland Ni/Allayered double hydroxides and comparison with co-precipitated samples[J],Microporous and Mesoporous Materials,2000,39:229-247
    [8] R. Ianos, I. Laz u, C. P curariu, P. Barvinschi, Application of new organic fuels in the directMgAl2O4combustion synthesis[J]. Mater. Res. Bull.,2008,43:3408–3415.
    [9] S. R. Jain, K. C. Adiga, V. R. Pai Verneker, A new approach to thermochemical calculationsof condensed fuel–oxidizer mixtures[J]. Combust. Flame,1981,40:71–79.
    [10] R. S. Guo, Q. T. Wei, H. L. Li, F. H. Wang, Synthesis and properties of La0.7Sr0.3MnO3cathode by gel combustion[J]. Mater. Lett.,2006,60:261–265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700