用户名: 密码: 验证码:
毒砂微生物氧化分解的表界面过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿业开发在带来经济效益的同时,其排放的废矿石也引发严重的环境污染问题。当废弃矿石和尾矿暴露在空气或水中发生风化时,有害元素(如重金属元素)易被释放出来,并随形成的酸性矿山排水(AMD)远距离迁移,严重污染地表水、地下水及土壤。在众多重金属元素中,砷因其具有多种价态,且分布广泛、危害巨大,成为最受关注的矿山污染元素。毒砂(FeAsS)是自然界中最重要的含砷矿物,它广泛分布于金属硫化物矿床中,毒砂氧化能释放Fe、 As和S等元素,并形成H3As03、H3As04和H2SO4等含氧酸。而毒砂的分解与微生物密切相关。大量研究表明嗜酸菌在含砷硫化物的分解、砷的化学态转化、迁移和沉淀过程中起着重要的作用,显著影响着砷的地球化学循环。
     本文选取毒砂为研究对象,与AMD中最常见的细菌——Acidithiobacillus ferrooxidans反应,拟研究毒砂中Fe、 As和S元素的氧化行为,查明氧化过程中次生产物的类型及其生成顺序,以此来探讨毒砂的微生物氧化机理。为了考察环境流体中大量存在的Fe3+的作用,实验设置含铁和无铁两种反应体系。着重探讨含铁体系中毒砂的微生物氧化过程及机理,辅以无铁体系对比不同晶面的溶解速率及初始铁离子的作用。
     通过扫描电镜形貌观察对比无铁体系中不同晶面上溶蚀坑的大小、数量及形态的变化,得出毒砂晶面{510}的溶解速率大于晶面{230}。
     通过SEM、 XPS、 TEM、 XRD、 IR及拉曼等实验方法,对比两种体系中的次生沉淀类型,发现初始溶液中的铁离子对其有重大影响。无铁体系中生成的次生沉淀主要为磷酸铁,还有极少量的单质硫与黄钾铁矾,沉淀物中几乎不含砷,从毒砂中溶出的As均以游离态释放到溶液中。而含铁体系中生成的次生沉淀以黄钾铁矾(及施氏矿物)和单质硫为主,毒砂氧化层以铁的硫酸盐、砷酸盐、亚砷酸盐及铁的氧化物或氢氧化物为主,其中铁的硫酸盐、黄钾铁矾及施氏矿物能够吸附砷。在A. ferrooxidans作用下,毒砂氧化层化学组成剖面中单质硫的含量随深度并非单向增加或减少,表明单质硫为一种中间产物。另外A. ferrooxidans使沉淀中毒性更强的As(Ⅲ)含量增加而As(V)含量减少。
     毒砂的氧化机制是直接作用与间接作用相结合的机制,部分A. ferrooxidans附着在毒砂表面对其进行侵蚀,侵蚀后的残余物被释放至溶液中由浮游的微生物继续作用。在A. ferrooxidans作用下,初始溶液中的Fe2+被氧化为Fe3+,从而进一步氧化毒砂。毒砂中Fe(Ⅱ)最先被氧化为Fe(Ⅲ),而后Fe(Ⅲ)从(AsS)基团获得电子还原为Fe(Ⅱ),失去电子的(AsS)基团与水中的羟基结合,并与Fe(Ⅱ)断开,毒砂中的Fe以Fe2+的形式进入溶液,在微生物作用下开始新的循环。而断键后的(AsS)-OH暴露在溶液中被继续氧化,其中As经过-1、0、+1价,最终被氧化为+3价,其中部分被继续氧化为+5价,而S经过-1价、多硫化物、单质硫,最终被氧化为亚硫酸盐及硫酸盐。和化学氧化相比,在微生物作用下,毒砂中S的氧化速率大于As。
As the mining industry brings economic benefits to society, it also causes severe environmental problems due to the mine wastes. The tailings will be weathered when exposed to air or water, releasing toxic elements such as heavy metals. The discharge of toxic elements containing water bodies, such as acid mine drainage (AMD), can cause serious contamination of soil, groundwater, and surface water. Among these heavy metals, arsenic is the most concerned one for its variable chemical states and widespread distribution. Arsenopyrite (FeAsS) is a commonly discarded arsenic-bearing sulfide mineral in mine wastes. Its dissolution in aerobic aqueous conditions is a major contributor to acid (e.g., H3ASO3, H3ASO4and H2SO4) and toxic metal (e.g., arsenic) release. The oxidation of arsenpyrite is greatly enhanced by microbes. Acidophilic bacteria play an important role in the geochemical cycle of arsenic through decomposition of arsenic-bearing sulfide minerals, and oxidation, transportation and precipitation of arsenic.
     In this study, arsenopyrite was chosen to interact with Acidithiobacillus ferrooxidans, the most common bacteria in AMD. To determine the oxidation mechanism of arsenopyrite, we observed the oxidation behavior of Fe, As and S elements, identified the types of secondary products and resolved their formation sequence. To investigate the influence of iron ions that widely distribute in AMD, two experimental systems were designed:one with0.016M Fe2+initially, and the other without iron ions. The investigation of ferrous system reveals the oxidation mechanism of arsenopyrite. In the supplementary study of non-ferrous system, we compared the dissolution rates of two different crystal planes and disclosed the role of iron ions.
     By observing the surface morphology of two crystal planes ({510} and {230}) of arsenopyrite in none-ferrous system, comparing the size, quantity and shape of the pitches on them, we found that the plane{510} is more favourable to be attacked either by Fe3+or A.ferrooxidans.
     With the assistance of SEM, XPS, TEM, XRD, IR and Raman Microscopy, the types of secondary products in two systems were identified. Distinct differences were displayed in the precipitates of the two systems. Ferric phosphate was the main precipitate in non-ferrous system, while elemental sulfur and jarosite were identified in minor contents. None arsenic-bearing precipitates were detected, meaning all dissolved arsenic was released into solution as free ions. By contrast, the secondary products in ferrous system were mainly ferric sulfate, ferric arsenate, ferric arsenite, and ferric oxide or ferric hydroxide. Among them, ferric sulfate such as jarosite and schwertmannite can absorb arsenic. In the presence of A. ferrooxidans, the change of the content of elemental sulfur in oxidation layers of arsenopyrite was none-monotonic, indicating that elemental sulfur was one of the intermiediates. In addition, with the mediation of A. ferrooxidans, the content of As(Ⅲ) increased while that of As(Ⅴ) decreased. However, As(Ⅲ) is more toxic than As(Ⅴ).
     Experimental results help to resolve the reaction mechanism. The oxidation of arsenopyrite is a combination of direct and indirect process. Some A. ferrooxidans attach to the surface of arsenopyrite, and release some insoluble particles into solution while attacking the mineral. These particles are further oxidized by suspended bacteria. In the presence of A. ferrooxidans, initial Fe2+in solution is oxidized to Fe3+, thus oxidizing arsenopyrite. Fe(Ⅱ) in arsenopyrite is the first to be oxidized to Fe(Ⅲ), then obtains an electron from (AsS) group. As a result, Fe(Ⅲ) is transformed to Fe(Ⅱ) again. After losing an electron,(AsS) binds with OH in water, and breaks up with Fe(II). Finally, Fe in arsenopyrite is released into solution as Fe2+, and enters a new cycle with the presence of bacteria. The bonded (AsS)-OH is then exposed to solution and undergoes further oxidation. Arsenic is oxidized through-1,0and+1to+3valences, and some of which is further oxidized to+5valence. In the meanwhile, sulfur is oxidized through-1valence, polysulfides and elemental sulfur to sulfite and sulfate. Unlike chemical oxidation, the oxidation rate of sulfur is faster than that of arsenic with the presence of bacteria.
引文
Andrews, G.F.,1988. The selective adsorption of Thiobacilli to Dislocation Sites on Pyrite Surfaces. Biotechnology and Bioengineering 31,378-381.
    Akcil, A., Koldas, S.,2006. Acid Mine Drainage (AMD):causes, treatment and case studies. Journal of Cleaner Production 14,1139-1145.
    Almeida, C, Giannetti, B.F.,2003. Electrochemical study of arsenopyrite weathering. Physical Chemistry Chemical Physics 5,604-610.
    Aoki, A.,1999. Acid-bacterial leaching of pyrite single crystal. Elsevier Science BV, Amsterdam.
    Baker, R.A., Wilshire, A.G.,1970. Microbiological and chemical oxidation of pyrite in acid mine drainage formation-WATR. Abstracts of Papers of the American Chemical Society SEP,3.
    Bancroft, G.M., Mycroft, J.R., Hyland, M.M., McIntyre, N.S., Lorimer, J.W., Hill, I.R.,1989. Surface studies of pyrite oxidation-electrochemistry and reduction of aqueous metal-complexes. Abstracts of Papers of the American Chemical Society 198,67.
    Banerjee, A.C.,1971. Mechanism of oxidation of iron pyrites. Journal of the Chemical Society D-Chemical Communications 17,1006-1007.
    Baron, D., Palmer, C.D.,1996. Solubility of jarosite at 4-35 degrees C. Geochimica et Cosmochimica Acta 60,185-195.
    Beck, J.V.,1960. A ferrous-ion-oxidizing bacterium.1. Isolation and some general physiological characteristics. Journal of Bacteriology 79,502-509.
    Blake, R., Shute, E.A., Waskovsky, J., Harrison, A.P.,1992. Pespiratory components in acidophilic bacteria that respire on iron. Geomicrobiology Journal 10,173-192.
    Blight, K., Ralph, D.E., Thurgate, S.,2000. Pyrite surfaces after bio-leaching:a mechanism for bio-oxidation. Hydrometallurgy 58,227-237.
    Bottomley, D.J.,1984. Origins of some arseniferous groundwater in Nora Socotia and New Brunsusick, Canada. Journal of Hydrology 62,223-257.
    Bou, C., Cruells, M., Romero, M.T., Vinals, J.,1998. Kinetics of the interaction of gold chloride solutions on arsenopyrite. Hydrometallurgy 48,343-360.
    Breed, A.W., Harrison, S.T.L., Hansford, G.S.,1997. A preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate. Minerals Engineering 10,1023-1030.
    Brock, T.D., Darland, G.K.,1970. Limits of Microbial Existence:Temperature and pH Science 169,1316-1318.
    Bruneel, O., Personne, J.-C., Casiot, C.,2003. Mediation of arsenic oxidation by Thiomonas sp. in acid mine drainage (Carnoules, France). Journal of Applied Microbiology 95,492-499.
    Buckley, A.N., Walker, G.W.,1988. The surface composition of arsenopyrite exposed to oxidizing environments. Appl. Surf. Sci 35,227-240.
    Carlson, L., Lindstrom, E.B., Hallberg, K.B., Tuovinen, O.H.,1992. Solid-phase products of bacterial oxidation of arsenical pyrite. Applied and Environmental Microbiology 58,1046-1049.
    Chandra, A.P., Gerson, A.R.,2011. Pyrite (FeS2) oxidation:A sub-micron synchrotron investigation of the initial steps. Geochimica et Cosmochimica Acta 75,6239-6254.
    Chernyshova, I.V.,2003. An in situ FTIR study of galena and pyrite oxidation in aqueous solution. Journal of Electroanalytical Chemistry 558,83-98.
    Cobley, J.G., Haddock, B.A.,1975. The respiratory chain of Thiobacillus ferrooxidans:The reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin a novel 'blue'copper protein. FEBS Letters 60,29-33.
    Collinet, M.N., Morin, D.,1990. Characterization of arsenopyrite oxidizing thiobacillus-tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 57,237-244.
    Corkhill, C.L., Wincott, P.L., Lloyd, J.R., Vaughan, D.J.,2008. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochimica et Cosmochimica Acta 72,5616-5633.
    Cornell, R.M., Schwertmann, U.,1996. The Iron Oxides. VCH Verlagsgesellschaft-Weinheim, New York, pp.134-135.
    Costa, M.C., Botelho doRego, A.M., Abrantes, L.M.,2002. Characterization of a natural and an electro-oxidized amenopyrite:A study on electrochemical and X-ray photoelectron spoctreseopy. Int J Miner Process 65,83-108.
    Court in-Nomade, A., Grosbois, C., Bril, H.,2005. Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Applied Geochemistry 20,383-396.
    Davies, H., Weber, P., Lindsay, P., Craw, D., Peake, B., Pope, J.,2011. Geochemical changes during neutralisation of acid mine drainage in a dynamic mountain stream, New Zealand. Applied Geochemistry 26,2121-2133.
    Diz, H.R.,1997. Chemical and biological treatment of acidminedrainage for the removal of heavy metals and acidity, Virginia Polytechnic Institute and State University, USA.
    Donald, R., Southam, G.,1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta 63,2019-2023.
    Drogui, P., Picher, S., Mercier, G., Blais, J.F.,2003. Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans. Environmental Technology 24,1413-1423.
    Druschel, G.K., Baker, B.J., Gihring, T.M., Banfield, J.F.,2004. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions 5,13-32.
    Duker, A.A., Carranza, E.J.M., Hale, M., 2005. Arsenic geochemistry and health. Environment International 31,631-641.
    Duquesne, K., Lebrun, S., Casiot, C., Bruneel, O., Personne, J.C., Leblanc, M., Elbaz-Poulichet, F., Morin, G., Bonnefoy, V.,2003. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Applied and Environmental Microbiology 69,6165-6173.
    Edwards, K.J., Bond, P.L., Banfield, J.F.,2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals:a chemotactic response to sulphur minerals? Environmental Microbiology 2,324-332.
    Edwards, K.J., Goebel, B.M., Rodgers, T.M., Schrenk, M.O., Gihring, T.M., Cardona, M.M., Hu, B., McGuire, M.M., Hamers, R.J., Pace, N.R., Banfield, J.F.,1999. Geomicrobiology of pyrite (FeS2) dissolution:Case study at Iron Mountain, California. Geomicrobiology Journal 16,155-179.
    Edwards, K.J., Hu, B., Hamers, R.J., Banfield, J.F.,2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology 34,197-206.
    Edwards, K.J., Schrenk, M.O., Hamers, R., Banfield, J.F.,1998. Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. American Mineralogist 83,1444-1453.
    Eggleston, C.M., Ehrhardt, J.J., Stumm, W.,1996. Surface structural controls on pyrite oxidation kinetics:An XPS-UPS, STM, and modeling study. American Mineralogist 81,1036-1056.
    Ehrlich, H.L.,1964. Bacterial oxidation of arsenopyrite and enargite. Economic Geology 59, 1306-1312.
    Ehrlich, H.L.,1999. Past, present and future of biohydrometallurgy. Process Metallurgy 9,3-12.
    Elsetinow, A.R., Guevremont, J.M., Strongin, D.R., Schoonen, M.A.A., Strongin, M.,2000. Oxidation of{100} and{111} surfaces of pyrite:Effects of preparation method. American Mineralogist 85,623-626.
    Evangelou, V.P.,1994. Potential Microencapsulation of Pyrite by Artificial Inducement of Ferric Phosphate Coatings. Journal of Environmental Quality-Abstract 24,535-542.
    Fantauzzi, M., Licheri, C., Atzei, D., Loi, G., Bernhard, E., Rossi, G., Rossi, A.,2011. Arsenopyrite and pyrite bioleaching:evidence from XPS, XRD and ICP techniques. Anal Bioanal Chem 401,2237-2248.
    Fernandez, M.G.M., Mustin, C., Dedonato, P., Barres, O., Marion, P., Berthelin, J.,1995. Occurrences at mineral bacteria interface during oxidation of arsenopyrite by Thiobacillus-ferrooxidans. Biotechnology and Bioengineering 46,13-21.
    Foster, A.L., Brown, G.E., Tingle, T.N., Parks, G.A.,1998. Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. American Mineralogist 83,553-568.
    Fowler, T.A., Holmes, P.R., Crundwell, F.K.,1999. Mechanism of pyrite dissolution in the presence of Thiobacillus fermoxidans. Applied and Environmental Microbiology 65, 2987-2993.
    Frost, R.L., Palmer, S.J., Xi, Y.F.,2011. Vibrational spectroscopy of the multi-anion mineral zykaite Fe4(AsO4)(SO4)(OH)·15H2O-implications for arsenate removal. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 83,444-448.
    Fukushi, K., Sasaki, M., Sato, T.,2003. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemisty 18,1267-1278.
    Fyfe, W.S.,1981. The environmental crisis:Quantifying geosphere interactions. Science 213, 105-110.
    Georgopoulou, Z.J., Fytas, K., Soto, H., Evangelou, B.,1996. Feasibility and cost of creating an iron-phosphate coating on pyrrhotite to prevent oxidation. Environmental Geology 28,61-69.
    Gonzalez-Chavez, J.L., Ballester, A., Blazquez, M.L., Gonzalez, F.,1999. Influence of thermophilic microorganisms on the electrochemical behavior of pyrite. Elsevier Science Bv, Amsterdam.
    Goto, T., Unohara, N.,1971. Oxidation of pyrite ores from ZAO-mine, YAMAGATA-prefecture. Nippon Kagaku Zasshi 92,149-150.
    Gray, N.F.,1998. Acid mine drainage composition and the implications for its impact on lotic systems. Water Research 32,2122-2134.
    Gupta, R.P., Sen, S.K.,1974. Calculation of multiplet structure of core para-vacancy levels. Physical Review B 10,71-77.
    Gupta, R.P., Sen, S.K.,1975. Calculation of multiplet structure of core p-vacancy levels.2. Physical Review B 12,15-19.
    Hasegawa, M., Ninomiya, K.,1993. Nondestructive Depth Profile Analysis by Changing Escape Depth of Photoelectrons. Jpn. J. Appl. Phys.32,4799-4804.
    Henao, D.M.O., Godoy, M.A.M.,2010. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy 104,162-168.
    Hobot, J.A., Carlemalm, E., Villiger, W., Kellenberger, E.,1984. Periplasmic gel:new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. Journal of Bacteriology 160,143-152.
    Holmes, P.R., Fowler, T.A., Crundwell, F.K.,1999. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. Journal of the Electrochemical Society 146, 2906-2912.
    Johnson, D.B.,1998. Biodiversity and ecology of acidophilic microoganisms. Ferns Microbiology Ecology 27,307-317.
    Johnson, D.B., Hallberg, K.B.,2004. Acid mine drainage remediation options:a review. Science of The Total Environment 338,3-14.
    Jones, R.A., Koval, S.F., Nesbitt, H.W.,2003. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta 67,955-965.
    Karavaiko, G.I., Smolskaja, L.S., Golyshina, O.K., Jagovkina, M.A., Egorova, E.Y.,1994. Bacterial pyrite oxidation-influence of morphological, physical and chemical-properties. Fuel Process. Technol.40,151-165.
    Karthe, S., Szargan, R., Suoninen, E.,1993. Oxidation of pyrite surface-a photoelectron spectroscopic study. Applied Surface Science 72,157-170.
    Kelly, D.P., Wood, A.P.,2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511-516.
    Kelsall, G.H., Yin, Q., Vaughan, D.J., England, K.E.R., Brandon, N.P.,1999. Electrochemical oxidation of pyrite (FeS2) in aqueous electrolytes. Journal of Electroanalytical Chemistry 471, 116-125.
    Kostina, G.M., Chernyak, A.S.,1976. Electrochemical conditions for oxidation of pyrite and arsenopyrite in alkaline and acid-solutions. Journal of Applied Chemistry of the USSR 49, 1566-1570.
    Landesman, J., Duncan, D.W., Walden, C.C.,1966. Iron oxidation by washed cell suspensions of the Chemoautotroph, Thiobacillus ferrooxidans. Canadian Journal of Microbiology 12, 25-33.
    Leblanc, M, Achard, B., Othman, D.B., Luck, J.M., BertrandSarfati, J., Personne, J.C.,1996. Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Applied Geochemistry 11,541-554.
    Leng, F.F., Li, K.Y., Zhang, X.X., Li, Y.Q., Zhu, Y., Lu, J.F., Li, H.Y., 2009. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy 98,235-240.
    Li, R.H., Zhu, L., Tao, T., Liu, B.,2011. Phosphorus removal performance of acid mine drainage from wastewater. Journal of Hazardous Materials 190,669-676.
    Lowson, R.T.,1982. Aqueous oxidation of pyrite by molecular-oxygen. Chemical Reviews 82, 461-497.
    Madigan, M.T., Martinko, J.M.,2006. Brock Biology of Microorganisms. Upper Saddle River, NJ, USA.
    Mandl, M., Zeman, J., Bartakova, I.,1998. Pyrite oxidation by Thiobacillus ferrooxidans Rown on ferrous iron and sulfur substrates. Chem. Pap.52,554-554.
    Mandl, M., Zeman, J., Bartakova, I., Vesela, H.,1999. Pyrite biooxidation:Electrochemical and kinetic data. Elsevier Science Bv, Amsterdam.
    McGuire, M.M., Edwards, K.J., Banfield, J.F., Hamers, R.J.,2001a. Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochimica et Cosmochimica Acta 65,1243-1258.
    McGuire, M.M., Jallad, K.N., Ben-Amotz, D., Hamers, R.J.,2001b. Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Applied Surface Science 178,105-115.
    McKibben, M.A., Barnes, H.L.,1986. Oxidation of pyrite in low-temperature acidic solution-rate laws and surface textures. Geochimica et Cosmochimica Acta 50,1509-1520.
    McKibben, M.A., Tallant, B.A., del Angel, J.K.,2008. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Applied Geochemistry 23,121-135.
    Mikhlin, Y.L., Romanchenko, A.S., Asanov, I.P.,2006. Oxidation of arsenopyrite and deposition of gold on the oxidised surfaces:A scanning probe microscopy, tunnelling spectroscopy and XPS study. Geochimica et Cosmochimica Acta 70,4874-4888.
    Moore, J.W., Ramamoorthy, S.,1984. Heavy Metals in Natural Waters:Applied Monitoring and Impact Assessment. Springer-Verlag, New York, p.268.
    Morin, G., Juillot, F., Casiot, C.,2003. Bacterial formation of tooeleite and mixed arsenic (III) or arsenic (V)-iron (III) gels in the Carnoules acid mine drainage, A XANES, XRD, and SEM study. Environmental Science & Technology 37,1705-1712.
    Moses, C.O., Nordstrom, D.K., Herman, J.S., Mills, A.L.,1987. Aqueous pyrite oxidation by dissolved-oxygen and by ferric iron. Geochimica et Cosmochimica Acta 51,1561-1571.
    Murciego, A., Alvarez-Ayuso, E., Pellitero, E., Rodriguez, M.A., Garcia-Sanchez, A., Tamayo, A., Rubio, J., Rubio, F., Rubin, J.,2011. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Journal of Hazardous Materials 186, 590-601.
    Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., Lorimer, J.W., Hill, I.R.,1990. Detection of sulfur and polysulfides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. Journal of Electroanalytical Chemistry 292,139-152.
    Ndlovu, S., Monhemius, A.J.,2005. The influence of crystal orientation on the bacterial dissolution of pyrite. Hydrometallurgy 78,187-197.
    Nesbitt, H.W., Bancroft, G.M., Pratt, A.R., Scaini, M.J.,1998. Sulfur and iron surface states on fractured pyrite surfaces. American Mineralogist 83,1067-1076.
    Nesbitt, H.W., Muir, I.J.,1994. X-ray photoelectron spectrscopic study of a pristine pyrite surface reacted with water-vapor and air. Geochimica et Cosmochimica Acta 58,4667-4679.
    Nesbitt, H.W., Muir, I.J.,1998. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineral. Petrol 62,123-144.
    Nesbitt, H.W., Muir, I.J., Pratt, A.R.,1995. Oxidation of arsenopyrite by air and airsaturated, distilled water and implications for mechanisms of oxidation. Geochimica et Cosmochimica Acta 59,1773-1786.
    Nordstrom, D.K., Southam, G.,1997. Geomicrobiology of sulfide mineral oxidation, in:Banfield, J.F., Nealson, K.H. (Eds.), Geomicrobiology:Interactions between Microbes and Minerals, pp.361-390.
    Nowaczyk, K., Domka, F.,2000. Oxidation of pyrite and marcasite by Thiobacillus ferrooxidans bacteria. Pol. J. Environ. Stud.9,87-90.
    Nyavor, K., Egiebor, N.O.,1999. Control of pyrite oxidation by phosphatecoating. Science of The Total Environment 162,225-237.
    Pang, Z.L., Zhao, A.X., Pang, T.H.,1993. Crystallography and mineralogy. Geology Press, Beijing.
    Pisapia, C, Humbert, B., Chaussidon, M., Mustin, C.,2008. Perforative corrosion of pyrite enhanced by direct attachment of Acidithiobacillus ferrooxidans. Geomicrobiology Journal 25,261-273.
    Pratt, A.R., Muir, I.J., Nesbitt, H.W.,1994. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta 58, 827-841.
    Rawlings, D.E.,2002. Heavy metal mining using microbes. Annual Review of Microbiology 56, 65-91.
    Rimstidt, J.D., Vaughan, D.J.,2003. Pyrite oxidation:A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta 67,873-880.
    Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W.,2003. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology 63,239-248.
    Rojas-Chapana, J.A., Tributsch, H.,1999. Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans. Elsevier Science Bv, Amsterdam.
    Rosso, K.M., Becker, U., Hochella, M.F.,1999. The interaction of pyrite{100} surfaces with O2 and H2O:Fundamental oxidation mechanisms. American Mineralogist 84,1549-1561.
    Sampson, M.I., Phillips, C.V., Ball, A.S.,2000. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis. Minerals Engineering 13,643-656.
    Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A.,1999. Direct versus indirect bioleaching. Biohydrometall. Symp.99,27-50.
    Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A.,2001. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59,159-175.
    Sand, W., Gerke, T., Hallmann, R., Schippers, A.,1995. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical-evaluation of bacterial leaching. Applied Microbiology and Biotechnology 43,961-966.
    Savage, K.S., Tingle, T.N., O'Day, P.A.,2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Applied Geochemistry 15,1219-1244.
    Savic, D.S., Veljkovic, V.B., Lazic, M.L., Vrvic, M.M.,1999. Effects of aeration intensity on pyrite oxidation by Thiobacillus ferrooxidans. Elsevier Science BV, Amsterdam.
    Scgkeufer, K.H., Kandler, O.,1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36,407-477.
    Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R.,1998. Reactivity of surface chemical states on fractured pyrite. Surface Science 411,321-328.
    Schaufuss, A.G., Nesbitt, H.W., Sciani, M.J., Hoecsht, H., Bancroft, M.G., Szargan, R.,2000. Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen. Am. Mineral. 85,1754-1766.
    Schippers, A., Jozsa, P.G., Sand, W., Kovacs, Z.M., Jelea, M.,2000. Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiology Journal 17,151-162.
    Schippers, A., Sand, W.,1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology 65,319-321.
    Shuey, R.T.,1975. Semiconducting Ore Minerals, Developments in Economic Geology. Elsevier Scientific Publishing Company, Amsterdam.
    Simon, G., Huang, H., Penner-Hahn, J.E., Kesler, S.E., Kao, L.S.,1999. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist 84,1071-1079.
    Singer, P.C., Stumm, W.,1970. Acidic mine drainage:the rate-determining step. Science 167, 1121-1123.
    Sliverman, M.P., Lundgren, D.G.,1959. Studies on the Chemoautotrophic Iron Bacterium Thiobacillus Ferrooxidans I. An Improved Medium and a Harvesting Procedure for Searching High Cell Yields. J. Bacteriol 77,642-647.
    Steger, H.F.,1977. Oxidation of sulfide minerals.1. Determination of ferrous and ferric iron in samples of pyrrhotite, pyrite and chalcopyrite. Talanta 24,251-254.
    Steger, H.F., Desjardins, L.E.,1978. Oxidation of sulfide minerals,4. Pyrite, chalcopyrite and pyrrhotite. Chemical Geology 23,225-237.
    Steudel, R.,1996. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Industrial& Engineering Chemistry Research 35,1417-1423.
    Toniazzo, V., Lazaro, I., Humbert, B., Mustin, C.,1999a. Bioleaching of pyrite by Thiobacillus ferrooxidans:fixed grains electrode to study superficial oxidized compounds. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 328,535-540.
    Toniazzo, V., Mustin, C., Benoit, R., Humbert, B., Berthelin, J.,1999b. Superficial compounds produced by Fe(III) mineral oxidation as essential reactants for bio-oxidation of pyrite by Thiobacillus ferrooxidans. Process Metallurgy 9,177-186.
    Tributsch, H.,1999. Direct versus indirect bioleaching. Process Metallurgy 9,51-60.
    Tributsch, H.,2001. Direct versus indirect bioleaching. Hydrometallurgy 59,177-185.
    Tuovinen, O.H., Bigham, J.H., Bhatti, T.M., Hallberg, K.B., Garcia, O., Jr., Lindstrom, B.,1994. Oxidative dissolution of arsenopyrite by Thiobacillus ferroxidans and a moderate thermoacidophile. Abstracts of the General Meeting of the American Society for Microbiology 94,405.
    Uchiyama, H., Hirao, K., Meno, N.,1970. Oxidation of iron sulfide and pyrite by ferric oxide. Kog Kagaku Zasshi 73,1802-1803.
    Vaughan, D.J.,2006. Arsenic:Arsenic. Elements 2,71-75.
    Vaughan, D.J., Craig, J.R.,1978. Mineral chemistry of metal sulfides. Cambridge University press, Cambridge.
    Veglio, F., Beolchini, F., Nardini, A., Toro, L.,1999. Kinetic analysis of pyrrhotite ore bioleaching by a sulfooxidans strain:direct and indirect mechanism discrimination. Process Metallurgy 9,607-616.
    Vink, B.W.,1996. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chemical Geology 130,21-30.
    Vuorinen, A., Hiltunen, P., Hsu, J.C., Tuovinen, O.H.,1983. Solubilization and speciation of iron during pyrite oxidation by Thiobacillus-ferrooxidans. Geomicrobiology Journal 3,95-120.
    Wakao, N., Koyatsu, H., Komai, Y., Shimokawara, H., Sakurai, Y., Shiota, H.,1988. Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid-mine water from a sulfur-pyrite mine. Geomicrobiology Journal 6,11-24.
    Yunmei, Y, Yongxuan, Z., Williams-Jones, A.E., Zhenmin, G., Dexian, L.,2004. A kinetic study of the oxidation of arsenopyrite in acidic solutions:implications for the environment. Applied Geochemistry 19,435-444.
    Zhuchkov, I.A., Smagunov, V.N.,1971. Mechanism of arsenopyrite oxidation. Zhurnal Prikladnoi Khimii44,1680-1681.
    布坎南,R.E.,吉本斯,N.E.,1984.伯杰细菌手册.科学出版社.
    陈天虎,冯军会,徐晓春,2001.国外尾矿酸性排水和重金属淋滤作用研究进展.环境污染治理技术与设备2,41-46.
    傅建华,邱冠周,胡岳华,2004.浸矿细菌表面性质研究.金属矿山9,19-39.
    陆建军,华仁民,徐兆文,高剑锋,李娟,2003.安徽铜陵冬瓜山铜、金矿床两阶段成矿模式.高校地质学报9,678-690.
    陆现彩,陆建军,朱长见,2005.微生物矿化成因的铁硫酸盐矿物表面特征初探.高校地质学报11,194-198.
    孙青,邢辉,何斌,李雪影,陆现彩,陆建军,王睿勇,2009.安徽铜陵狮子山硫化物矿山酸 矿水中微生物功能群的研究.矿物岩石学杂志28,547-552.
    王少华,杨劫,刘苏明,徐兆文,陆现彩,汪斌,王浩,白亢辰,2011.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应.高校地质学报17,93-100.
    杨洪英,杨立,魏绪钧,2001.氧化亚铁硫杆菌(SH—T)氧化毒砂的机理.中国有色金属学报11,323.
    杨洪英,杨立,赵玉山,陈刚,吕久吉,范有静,2002.氧化亚铁硫杆菌对黄铁矿和毒砂氧化行为的研究.有色金属54,114-116.
    郁云妹,朱咏煊,高振敏,2000.酸性溶液中毒砂氧化作用动力学实验1实验方法及部分结果.矿物学报20,390-395.
    郁云妹,朱咏煊,高振敏,2000.毒砂的氧化作用及其环境效应.矿物岩石地球化学通报.19,423-425.
    郁云妹,朱咏煊,高振敏,2001.表生水条件下毒砂溶解作用动力学实验研究.岩石矿物学杂志.20,409-413.
    张珊珊,周怀阳,彭晓彤.,2008.氧化亚铁硫杆菌与毒砂相互作用的阶段性及其机理研究.地球化学37,602-614.
    张鑫,2005.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究,合肥工业大学.
    周顺桂,周立祥,陈福星,2007.施氏矿物Schwertmannite的微生物法合成、鉴定及其重金属的吸附性能.光谱学与光谱分析27,367-370.
    朱长见,陆建军,陆现彩,2005.氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究.高校地质学报11,234-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700