用户名: 密码: 验证码:
内蒙古锡盟扎布其铁矿地质特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古锡盟扎布其铁矿是近三年内新发现的一个规模大、出露浅的超贫钒钛磁铁矿矿床。
     矿床位于内蒙古自治区西乌珠穆沁旗巴音高勒苏木,大地构造位置属于华北板块北缘晚古生代陆缘增生带。区内岩浆岩主要为辉长岩和辉石闪长岩,受北东向断裂构造控制,与铁矿化关系密切。区内相对较高的磁异常值主要集中在辉长岩与辉石闪长岩分布处,其走向也呈北东或近东西走向展布。
     大量地质研究表明:辉长岩与辉石闪长岩为扎布其铁矿床的含矿矿体。矿体主要以不规则状分布于辉长岩岩体的中下部,受北东向断裂构造控制,产状与辉长岩大致平行,规模较大,延长从几百米到1000m以上,宽度几十米到100m。晚期脉状矿体则明显充填于岩体中的原生构造裂隙中,但规模一般较小。
     扎布其铁矿的主要矿石矿物为磁铁矿、赤铁矿、黄铁矿、斜长石、磷灰石、辉石、黑云母、角闪石;次要矿石矿物为钛铁矿、钒磁铁矿、黄铜矿和石英等。矿石构造有浸染状构造、脉状构造、团块状构造和块状构造等,矿石结构具有结晶分异特点,包括胶状结构、海绵陨铁结构、半自形粒状结构等。
     其中,磁铁矿主要以稀疏浸染状和海绵陨铁状填隙在造岩矿物粒间,且结晶分异程度弱,富集程度低。磁铁矿是晚于辉石和斜长石形成,这与河北大庙黑山钒钛磁铁矿有一定的相似性。
     扎布其矿区矿石品位分析结果为22.8%,已达到超贫磁铁矿的工业要求。同时,矿石中TiO2为1.67%;V2O5为0.1~0.4%,平均为0.25%,可综合回收利用。综合分析显示矿石铁产品为Ⅰ级品。
     辉长岩中锆石U-Pb测年结果显示扎布其铁矿的成矿年龄为337±1.5Ma,即晚古生代早石炭世。根据矿石化学全分析结果可知扎布其岩体为富含钒、钛和铁的镁铁质基性岩——即辉长岩与辉石闪长岩,属有利于形成钒钛磁铁矿的岩类。对比攀枝花及河北大庙黑山钒钛磁铁矿,整理分析当前资料可知:扎布其铁矿属于与镁铁质辉石闪长岩——辉长岩有关的非层状晚期岩浆矿床。其中大部分矿体以非层状、不规则状产出于岩体的中下部,为受北东向的断裂控制的岩浆结晶分异型矿体。少量发育在岩浆岩内原生裂隙中的脉状矿体为贯入型矿体,受岩浆岩原生裂隙控制。因此,扎布其铁矿是一个大型的与镁铁质侵入岩有关的非层状超贫钒钛磁铁矿矿床,属贯入——分异型晚期岩浆类型,以分异型为主。
     因为扎布其铁矿规模大,埋藏浅,采矿成本低,而选矿工艺要求却相对简单,所以在当前铁矿石市场前提下经济效益还是十分明显的。
The Zhabuqi iron deposit in Xiwuqi of Inner Mongolia is a discoveredultralow-grade vanadium-bearing titanomagnetite deposit which is large scale andshallow occurrence in the last three years.
     The mining area belonging to the Bayingaolesumu in Xiwuzhumuqing of theInner of the Mongolia Autonomous Region, the tectonically belongs to the NorthChina plate north of the Late Paleozoic continental margin accretion zone. Magmaticrocks of the region as the gabbro and pyroxene diorite, by NE trending faults controlis closely related to the iron ore of. Region with relatively high magnetic anomalyvalues mainly at the distribution in the gabbro and pyroxene diorite, and the trend alsowas to the north east or near east-west, which reflects the boundaries of theore-bearing rock.
     Large number of geological studies have shown that: gabbro and pyroxenediorite the Zarb its iron ore deposits containing ore body. Orebody invasive irregularoutput in the lower part of the gabbro body, by the north-east trending faults control,and occurrence of gabbro is roughly parallel to the larger, extending from a fewhundred m to1000m, width range from tens of meters to300meters. See also latevein-like ore bodies filling in native tectonic fractures of the rock, but the scale isgenerally small.
     The Zarb its iron ore, the main ore minerals are magnetite, hematite, pyrite, plagioclase, apatite, pyroxene, biotite and hornblende; secondary ore mineralsilmenite and vanadium magnetite, chalcopyrite and quartz. The ore structures includedisseminated structure, vein-like structure, massive structure and block structure.oretextures have characteristics of crystallization differentiation, including the colloidaltexture, sponge iron meteorite texture, hypidiomorphic-granular texture.
     Among them, magnetite is mainly through sparse disseminations and sponge ironmeteorite-like filled in caulking between rock-forming mineral particles, andcrystalline differentiation of low degree, indicating that magnetite is later than theformation of pyroxene and plagioclase, which the Hebei temple Montenegrothere is acertain similarity in the vanadium-titanium magnetite.
     Its mine ore grade analysis is22.8%in The Zarb, reaching the industrialrequirements of the ultra-poor magnetite. Ore TiO2is1.67%; of V2O5and0.1~0.4%,an average of0.25%can recycling.Comprehensive analysis show that the ore ironproducts Ⅰ grade.
     Gabbro zircon U-Pb dating results show that The Zarb its iron ore mineralizationage of337±1.5Ma,meaning Late Paleozoic Early Carboniferous.According to zheresult of ore chemical analysis, we can know The Zarb its rock is mafic rock (richingin vanadium, titanium and iron)——Gabbro and pyroxene diorite, it is a kind of rocksthat favored the formation of vanadium and titanium magnetite.Contrast Panzhihuaand Hebei temple Montenegro vanadium-titanium magnetite, and analyzed the currentdata shows: the Zarb its iron ore belongs to non-layered late magmatic deposits aboutmafic pyroxene diorite rocks-gabbro. Most of the ore body is a non-layered, irregularoutput in the rock mass in the lower part of special-shaped ore body, which is amagma crystallization and differentiation-type Orebody controled by the NE to thefault-controlled magma crystallization. The development of a small amount of nativevein ore bodies in the fissures of penetration type ore deposits are magmatic rocksexisting fractures control within the magmatic rocks. Therefore,the Zarb its iron oreis the non-layered ultra-poor vanadium titanium magnetite deposit, a large maficintrusive rocks related to the case of penetration-sub-Shaped late magmatic deposits,mainly sub-Shaped.
     Because of the large scale of Zarb its iron ore,lying shallow in the earth, lowcost of mining,beneficiation process requirements are relatively simple, the premiseof the current iron ore market is still quite cost-effective.
引文
[1]陈波,阿中地块北缘库木达坂岩体群特征及锆石U-Pb测年.中国地质,
    2007,2(34):270~275.
    [2]洛长义,论岩浆矿床的性质.西北地质,1978,4:63~71.
    [3]龚昶行,Лихачев, А П,岩浆矿床的本质.地质与勘探,1973,8:57~63.[4]马建明与吴初国,我国低品位铁矿资源的开发利用.中国金属通报,2008,29:
    28~29.[5]马建明与陈从喜,我国铁矿资源开发利用的新类型——承德超贫钒钛磁铁
    矿.国土资源情报,2006,11:53~56.[6]马建明与吴初国,我国未利用铁矿的资源形势分析.国土资源情报,2009,4:
    10~13.[7]李永聪,富成海与吴洪尧,“超贫磁铁矿”的选矿问题研究.中国矿业,1994,5:
    57~60.
    [8]沈鸿章,内蒙古区域地质概要.中国区域地质,1988,4:9~18.[9] Zhongxin, Y., B. Ge and Z. Zongqing, Trachytic Rock and AssociatedFenitization in the ayan bo Ore Deposit, Inner Mongolia, China: Evidence forMagmatic-Hydrothermal Mineralization Related to a Carbonatitic Complex.地
    质学报(英文版),2000.74(2):148~153.[10]YouYe, Z., et al., Geochronologic onstraints on magmatic ntrusions andmineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet.科学
    通报(英文版),2007.52(22):3139~3147.[11]Al-Shameery, M.A., et al., Geochemistry and genesis of magmatic PGE-bearingCu-Ni sulphide deposit in Wadi Bayhan, southeastern Yemen.世界地质(英文
    版),2011.14(1):15~20.[12]Analysis of Vanadium-Bearing Titanomagnetite Sintering Process by Dissectionof Sintering Bed. Journal of Iron and Steel Research(International),2011,6: p.
    8~15.[13]Development of Intensified Technologies of Vanadium-Bearing TitanomagnetiteSmelting. Journal of Iron and Steel Research(International),2011,4:7~10.
    [14]李曙光, Geochemical Model for the Genesis of Gongchangling Rich MagnetiteDeposit in China. Geochemistry(English Language Edition),1983,3:213~222.
    [15]邱仁轩与谢世敏, TFe/TiO2比值在攀枝花层状辉长岩体钒钛磁铁矿矿床勘探中的应用.四川地质学报,1998,1(18):55~61.
    [16]卢记仁, et al., A Genetic Model for the Layered Intrusions and RelatedV-Ti-Magnetite Deposits in Panzhihua-Xichang Region,Southwest China.Chinese Journal of Geochemistry(English Language Edition),1989,2:126~134.
    [17]赵斌与李统锦,鞍山弓长岭富磁铁矿床的形成机制和物理化学条件研究.地球化学,1980,4:333~344.
    [18]段如礼,李友兴与钟平军,白马钒钛磁铁矿高炉冶炼特点.矿产综合利用,2001,3:5~7.
    [19]邹贻金,白马钒钛磁铁矿破磨参数测定.矿产综合利用,1997,4:1~4.
    [20]邹贻金与王昌良,白马钒钛磁铁矿选矿工业试验.矿产综合利用,2000,5:8~11.
    [21]马淮湘,超贫磁铁矿选矿技术新进展与思考.现代矿业,2011,4:33~34.
    [22]徐永新,杨鹏与杨欢,超贫钒钛磁铁矿综合回收铁钛磷试验研究.现代矿业,2009,5(25):46~47.
    [23]阴曼宁与安存杰,超贫铁矿——重要的铁矿补充和接替资源.西部资源,2007,1:23~24.
    [24]孙炳泉,超贫铁矿资源化利用技术现状及发展趋势.金属矿山,2009,1:9~11.
    [25]闻广,成矿专属性与成矿继承性.矿床地质,1983,1.
    [26]王世军,承德超贫磁铁矿的开发与评价.资源·产业,2004,5(6):16~18.
    [27]于涛,王硕儒与王重德,磁铁矿床磁异常的模糊综合评价模型.物探与化探,1988,1(12):55~62.
    [28]朱永平与齐宝铭,电炉冶炼钒钛磁铁矿的工艺研究.钢铁,1997,11(32):24~27.
    [29]徐兴旺等,东天山四顶黑山地区545Ma层状镁铁质-超镁铁质岩体的发现及其大地构造学和成矿学意义.岩石学报,2006,11(22):2665~2676.
    [30]惠卫东,东天山尾亚钒钛磁铁矿地质特征和成因探讨.新疆有色金属:2009,6(32):1~4.
    [31]王保国,东姚矿区磁铁矿床地质特征及成因.安阳师范学院学报,2006,2:116~118.
    [32]马建明与吴初国,对我国低品位铁矿资源开发利用的思考.国土资源情报,2008,2:27~28.
    [33]许天良,鄂西北地区海相火山岩型磁铁矿床成矿条件浅析.国土资源情报,2010,5:49~53.
    [34]杨建中等,鄂西北耀岭河组超贫磁铁矿地质特征及找矿前景.资源环境与工程,2010,2(24):122~129.
    [35]朱德庆等,钒钛磁铁精矿铁钒钛综合利用新流程.矿产综合利用,1999,2:17~21.
    [36]张丙怀等,钒钛磁铁矿熔融还原速度研究.金属学报,1992,1(28):51~56.
    [37]付自碧,钒钛磁铁矿提钒工艺发展历程及趋势.中国有色冶金,2011,6(40):29~33.
    [38]朱俊士,钒钛磁铁矿选矿及综合利用.金属矿山,2000,1:1~5.
    [39]雷清如,朱育胜与李海拉,钒钛高炉渣中金属铁的物相分析碘—乙醇分离分光光度法测定.重庆大学学报(自然科学版),1986,1:56~64.
    [40]张海珠,李永年与卢超,高精度磁测在东昆仑鸭子泉区寻找磁铁矿床应用效果.西部探矿工程,2011,10(23):109~113.
    [41]武斌,曹俊兴与强羽,根据磁异常特征预测红格岩盆底部大型铁矿.物探与化探,2010,6(34):795~805.
    [42]李树梁,根据岩石磁性特征分析成矿专属性的一种方法.地质与勘探,1992,10(28):40~42.
    [43]李曙光,弓长岭富磁铁矿床成因的地球化学模型.地球化学,1982,2:113~121.
    [44]汤中立等,古生代镁铁、超镁铁岩浆矿床成矿系列与成矿作用.矿床地质,2004:131~136.
    [45]杨乃信,广东某地磁铁矿矿床成矿条件与矿床成因探讨.广东工学院学报,1987,2:118~128.
    [46]张征达,广东省兴宁市霞岚钒钛磁铁矿矿床地质特征及成因探讨.西部探矿工程,2011,12(23):130~134.
    [47]郭君,广西容县灵山磁铁矿床成因的初步探讨.西部探矿工程,2011,10(23):111~113.
    [48]张冬清,李运刚与张颖异,国内外钒钛资源及其利用研究现状.四川有色金属,2011,2:1~6.
    [49]孙静等,河北承德大庙黑山钒钛磁体矿床地质特征与成因探讨.地质学报,2009,9(83):1344~1364.
    [50]李国兴,河北承德大庙斜长岩体地质特征及成岩成矿机理初步探讨.地质科技情报,1982:21~23.
    [51]李国兴,河北承德大庙斜长岩体磷矿床物质成分.地质科技情报,1982:105~108.
    [52]陈伟等,河北大庙Fe-Ti-P矿床中铁钛磷灰岩的成因:来自磷灰石的证据.岩石学报,2008,10(24):2301~2312.
    [53]赵太平等,河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义.岩石学报,2004,3(20):685~690.
    [54]王亚民,河北省承德市大庙东沟钒钛磁铁矿床特征浅析.科技信息,2012,10:321~314.
    [55]张薇,河北省平泉县沙坨子乡大庙东北沟超贫磁铁矿普查.科技信息,2011,12:313.
    [56]周红春等,河南嵩县南岭超贫磁铁矿的地质特征与找矿模式.现代地质,2010,1(24):89~97.
    [57]柏中杰等,红格层状岩体岩浆混合与结晶分异对钒钛磁铁矿成矿的指示意义.矿物学报,2009,Z1(29):43.
    [58]武斌等,红格地区钒钛磁铁矿地质特征及地球物理找矿的探讨.地质与勘探,2012,1(48):140~147.
    [59]丁大富,红格钒钛磁铁矿选铁工艺流程的研究.金属矿山,1996(3):24~26.
    [60]张骥远,红山咀超贫钒钛磁铁矿成矿特征浅析.矿物学报,2009,Z1(29):350~351.
    [61]刘功国,基于转底炉直接还原工艺的钒钛磁铁矿综合利用试验研究.钢铁研究,2012,2:4~7.
    [62]邱伟等,吉林省柳河县大泉眼超贫钛磁铁矿床特征与研究.吉林地质,2009,4(28):56~59.
    [63]郭二民,加强环境管理——合理开发超贫磁铁矿.中国矿业,2009,6(18):27~28.
    [64]陈达,傅文章与洪秉信,某钒钛磁铁矿选铁的试验研究.金属矿山,2010,11:75~76.
    [65]吴文红,某极贫磁铁矿的选矿试验研究.矿业工程,2012,2:16~19.
    [66]安艳丽等,内蒙古呼和浩特市地区超贫磁铁矿资源特征.西部资源,2011,6:55.
    [67]赵华雷等,内蒙古西乌珠穆沁旗阿拉坦高勒钒钛磁铁矿矿床地质特征.世界地质,2011,1(30):39~45.
    [68]杨福新等,内蒙古小红山钒钛磁铁矿床成矿特征及成因探讨.西北地质,2010,3(43):66~74.
    [69]严忠,金海宽与范泽,内蒙古小红山钒钛磁铁矿地质特征及成因探讨.有色矿冶,2009,2(25):9~11.
    [70]付卫国与谢洪恩,攀钢高炉钒钛磁铁矿冶炼的技术进步.钢铁,2008,10(43):21~24.
    [71]马家源与刁日升,攀钢冶炼钒钛磁铁矿的炉料结构研究.钢铁钒钛,1996,2(17):9~14.
    [72]卢记仁等,攀西层状岩体及钒钛磁铁矿床成因模式.矿床地质,1988,2(7):3~11.
    [73]周美夫,攀西地区层状辉长岩体及钒钛磁铁矿床的成因(英文).岩石矿物学杂志,2005,5(24):381~384.
    [74]卢记仁等,攀西地区钒钛磁铁矿矿床的成因类型.矿床地质,1988,1(7):1~13.
    [75]徐丽君等,攀西地区钒钛磁铁矿综合回收利用现状及发展方向.四川有色金属,2011,1:1~5.
    [76]袁致涛等,攀西钒钛磁铁矿高压辊磨的产品特性.东北大学学报(自然科学版),2012,1(33):124~132.
    [77]首照兵等,攀西钒钛磁铁矿整装勘查复杂地层钻探护壁堵漏技术.探矿工程(岩土钻掘工程),2012,2(39):31~34.
    [78]张建廷与陈碧,攀西钒钛磁铁矿主要元素赋存状态及回收利用.矿产保护与利用,2008,5:38~41.
    [79]王世霞,朱祥坤与宋谢炎,攀枝花钒钛磁铁矿Fe同位素分布特征及其意义.矿物学报,2011,S1:1020~1021.
    [80]李文臣,攀枝花钒钛磁铁矿矿床地质及其成因.地质与勘探,1992,21(18):20~23.
    [81]崔杰等,攀枝花钒钛磁铁矿矿山遗迹资源特征及评价.西南科技大学学报,2007,1(22):85~89.
    [82]肖六均,攀枝花钒钛磁铁矿资源及矿物磁性特征.金属矿山,2001,1:28~30.
    [83]杨浚锦与陈光碧,攀枝花钒钛铁精矿粉体特性.重庆大学学报(自然科学版),1993,3(16):71~75.
    [84]刘峰与施泽明,攀枝花红格地区变质岩成因新认识.沉积与特提斯地质,2005,4(25):59~65.
    [85]王朝钧,缪以琨与黄淑德,攀枝花式钒钛磁铁矿床勘查历史的回顾与展望.中国地质,1985,2:18~21.
    [86]张小朋,平泉县娘娘庙超贫磁铁矿地质特征及储量远景.西部探矿工程,2011,1:161~164.
    [87]蔺厚瑜,吴均海与张丽梅,侵入岩区磁铁矿床地质特征及成因探讨.矿业工程,2008,1(6):13~14.
    [88]吕宏伟与祁晓鹏,陕西洋县八宝台磁铁矿床控矿因素与找矿研究.内蒙古石油化工,2011,14:9~12.
    [89]许发新,覃顺平与范元健,四川冕宁泸沽大顶山磁铁矿床地质特征及成矿条件分析.现代矿业,2010,11:41~43.
    [90]曾国平,徐权与刘世维,四川攀枝花钒钛磁铁矿尖山矿段深部预测.云南地质,2011,4(30):420~430.
    [91]王正允,四川攀枝花含钒钛磁铁矿层状辉长岩体的岩石学特征及其成因初探.矿物岩石,1982,1:49~64.
    [92]蔡余兆,新疆哈密黑山磁铁矿床特征及成因类型探讨.新疆有色金属,6:26~27.
    [93]宋治杰,新疆哈密火山—侵入杂岩地区一组磁铁矿床的形成条件与成矿作用.西北地质科学,1985,9:58~73.
    [94]陈大经等,新疆沙尔布尔海底火山喷流沉积磁铁矿床成因.矿产与地质,2002,5(16):257~261.
    [95]陈俊魁等,新疆塔什库尔干地区磁铁矿床地质特征与找矿方向.地质调查与研究,2011,3(34):179~189.
    [96]玉往等,新疆尾亚钒钛磁铁矿——一个岩浆分异~贯入-热液型复成因矿床.矿床地质,2005,4(24):349~360.
    [97]傅德彬,延边地区基性—超基性岩岩石化学及其成矿专属性.吉林地质,1985,1:25~37.
    [98]沈苏,岩溶对攀西地区钒钛磁铁矿的控制作用(摘要).中国岩溶,1988:72~73.
    [99]李厚民等,中国超贫磁铁矿资源的特征、利用现状及勘查开发建议——以河北和辽宁的超贫磁铁矿资源为例.地质通报,2009,1(28):85~90.
    [100]中立,中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化.地学前缘,2004,1(11):113~119.
    [101]国栋,珠龙磁铁矿床的地质特征及其地质意义.桂林冶金地质学院学报,1981,01:87~88.
    [102]鲁新等,综合地球物理方法在大庙铁矿斜长岩杂岩体中的应用.中国矿业,2008,7(17):96~99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700