用户名: 密码: 验证码:
黑龙江省高松山金矿床原生晕地球化学特征及深部成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高松山金矿床是我国东北地区新发现的一个大型浅成低温热液矿床。原生晕地球化学研究表明,在32号和23号勘探线上,Au、As、Mo、Hg元素具有明显的三级分带,Sb、Ag、Cu、Pb元素发育中、外带异常,Sn、Zn、Se、Tl元素只有外带异常。在纵向上,不论是矿体中段、东段,还是西段,均具有成矿元素、前缘晕元素、近矿晕元素和尾晕元素的共存,显示出多阶段成矿叠加的特点。其中,成矿元素Au与前缘晕元素As、Sb、Hg,近矿晕元素Ag、Pb,以及尾晕元素Mo、Sn异常叠合较好,为致矿异常。该矿床Ⅰ-1号矿体32线和23线的原生晕异常分布显示矿体向南倾伏的特征,在纵向上的分布特征说明该矿体西段剥蚀强度最大,其次是中段,东段剥蚀最小,抑或矿体在纵向上向东倾伏。
     对32号和23号勘探线进行元素分带指数和重心法计算,获得轴向分带序列分别为(Cu–Zn–Ag–Au)–(Sb–Sn–As–Pb)–(Hg–Tl或Tl–Hg)–(Mo–Se)和Zn–Cu–Ag–Au–Sn–Pb–Hg–Tl–Sb–Se–As–Mo、(Cu–Pb–Sn)–(Hg–Mo–Sb–Ag–As–Au–Tl)–(Se–Zn)和Pb–Cu–Hg–Mo–Sb–Au–Ag–Sn–As–Se–Zn–Tl,这两种方法计算得出的分带序列总体分布趋势一致,总体显示正向分带的特点,但又有个别元素的分布顺序差异较大。
     相关性分析结果显示, Au与Ag相关性极大,Ag是金成矿的良好指示元素。通过聚类分析可将元素划分为As–Sb、Au–Ag、Pb–Sn–Mo、Hg、Se–Tl–Zn、Cu六组。因子分析结果得出4个元素组合,即,As-Sb-Pb,Sn-Se-Tl,Au-Ag-Se-Tl,As-Sb-Cu,其中,Sn-Se-Tl元素组合显示出该矿床具有多期、多阶段成矿的特征,Au-Ag-Se-Tl元素组合反映了金矿化与多金属硫化物的同期、同源特征,As、Sb、Se、Tl同时分布在两个因子中,表明它们是多期次成矿作用叠加的结果。
     综合分析上述研究成果,对高松山金矿床Ⅰ-1号矿体原生晕特征进行评价,并推测该矿体的深部成矿前景和剥蚀程度。结果发现,32号和23号勘探线前缘晕元素和尾晕元素在矿体尾部共存,其地球化学参数也都出现了多次振荡的分布现象,显示这两条勘探线所控制的矿体深部具有良好的找矿前景,但是32线深部成矿潜力明显好于23线。
The Gaosongshan gold deposit, discovered in Northeast China recently, is a largeepithermal deposit. Geochemical studies of primary halos indicate that, the primarygeochemical anomalies of Au, As, Mo and Hg are obvious three-grade zoning inexploration line No.32and No.23, the ones of Sb, Ag, Cu and Pb occur middle andouter zones, while the ones of Sn, Zn, Se and Tl only have outer zone. In thelongitudinal direction, whether at eastern part of theⅠ-1ore-body, or at its middlepart, or at its western part, all occur the coexistence phenomenon of ore-formingelement, front halo elements, near-ore hole elements and tail halo elements, showingthe superposition characteristics of multi-stage mineralization. In which, theanomalies of ore-forming element (Au), front halo elements (As, Sb, Hg), near-orehole elements (Ag, Pb) and tail halo elements (Mo, Sn) overlapped well, belonging toore-forming anomalies. The primary halo abnormal distributions of exploration lineNo.32and No.23in theⅠ-1ore-body show that this ore-body inclined towards south,and their distributions in the longitudinal direction suggest that the western part of thisore-body has undergone relatively strong erosion, followed by its middle part, and itseastern part has evidenced minor denudation, or that this ore-body inclined to east inthe longitudinal direction.
     The axial zoning sequences of exploration line No.32and No.23have beenobtained through using zoning index and center of gravity method, they are(Cu-Zn-Ag-Au)-(Sb-Sn-As-Pb)-(Hg-Tl or Tl-Hg)-(Mo-Se) and Zn-Cu-Ag-Au-Sn-Pb-Hg-Tl-Sb-Se-As-Mo,(Cu-Pb-Sn)-(Hg-Mo-Sb-Ag-As-Au-Tl-Se-Zn) and Pb-Cu-Hg-Mo-Zn-Sb-Au-Ag-Sn-As-Se-Tl, respectively. These zoning sequences have similaroverall distribution trends, and they are basically normal zoning, but the distributionsequence of some elements occur large differences.
     The results of correlation analysis show that Au is related with Ag well, and thatAg is a good indicator element for gold mineralization. By using cluster analysis, theore-forming elements and its associated elements of theⅠ-1ore-body can be dividedinto six groups, such as, As-Sb, Au-Ag, Pb-Sn-Mo, Hg, Se-Tl-Zn and Cu. Fourelement combinations can be obtained by factor analysis, that is, As-Sb-Pb, Sn-Se-Tl,Au-Ag-Se-Tl and As-Sb-Cu. In which, the element combination of Sn-Se-Tl showthat this mineral deposit had the characteristic of the multi-stage mineralization, the element combination of Au-Ag-Se-Tl reflects that the gold mineralization hadcontemporaneous and homologous characteristics with polymetallic sulphides. As, Sb,Se and Tl are occurred in both two factors, indicating they are the results ofsuperposition of multi-stage mineralization.
     According to comprehensively analyzing the study results mentioned above, thecharacteristics of primary halos of theⅠ-1ore-body in the Gaosongshan gold deposithave been evaluated, and the prospecting of deep mineralization of this ore-body andits denudation degree have been speculated. The results show that, the front haloelements are coexistent with the tail halo elements in the deep section of explorationline No.32and No.23in theⅠ-1ore-body, and their geochemical parameters havestrong fluctuations, indicting the good mineralization perspective exist in the deepsection of these two exploration lines, but the mineralization prospecting ofexploration line No.32is better than the ones of exploration line No.23.
引文
Allegre C J, Lewin E. Scaling laws and geochemical distribution. Earth and Planetary ScienceLetter,1995,132(1-4):1-13.
    Berge B R, Henley R W. Adavances in the understanding of epithermal gold-silver deposits, withspecial reference to the Western United States. Economic Geology,1989, Monnograph(6):405-423.
    Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits.Wilmette, Illinois:Applied Publishing Ltd,1977:1-287.
    Bonham H F. Models for volcanic-hosted epithermal precious metal deposits: a review. In:Volcanism, Hydrothermal Systems and Related Mineralization. International VolcanologicalCongress, Symposium5. Hamilton, New Zealand,1986:13-17.
    Brand N W. Element ratios in nickel sulphide exploration: vectoring towards ore environments,Journal of Geochemistry Exploration,1999,67(01):145-165.
    Cheng Q M. The perimeter-area fractal model and its application to geology. MathematicalGeology,1995,27(1):69-82.
    Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies fromback-ground by fractal methods. Journal of Geochemical Exploration,1994,51:109-130.
    Cheng Q M, Agterberg F P, Bonham-Carter G F. A spatial analysis method for geochemicalanomaly separation. Journal of Geochemical Exploration,1996,56:183-195.
    Cooke D R, Deyell C L. Descriptive names for epithermal deposits: Their implications forinferring fluid chemistry and ore genesis[A]. ELIOPOULOS, et al. Proceedings of theSeventh Biennial SGA Meeting-Mineral Exploration and Sustainable Development[C].Rotterdam: Millpress Science Publishers,2003:457-460.
    Corbett G. Epithermal gold for explorationists. AIG Journal-Applied Geoscientific Practice andResearch in Australia,2002,1:1-26.
    Eaton P C, Setterfield I N. The relationship between epithermal and porphyry hydrothermalsystems within the Tavua Caldera, Fiji. Economic Geology,1993,88:1053-1083.
    Garrett R G. The chis-quare plot: a tool for multivariate outlier recognition. Journal ofGeochemical Exploration,32:319-343.
    Goldberg I S, Abramson G Y, Los V L. Depletion and enrichment of primary halos: Theirimportance in the genesis of and exploration for mineral deposit. Geochemistry,2003,3:281-293.
    Goncalesm A. Characterisation of geochemical distributions using multifractal models.Mathematical Geology,2001,33:41-61.
    Govett G J S, Goodfellow W D, Chapman R P, et al.. Exploration geochemistry distribution ofelements and recognition of anomalies. Mathematical Geology,1975,7(5-6):415
    Hawkes H E, Webb J S. Geochemistry in mineral exploration. Happer and Rowp,1962:67-69.
    Heald P, Foley N K, Hayba D O. Comparative anatomy of volcanic hosted epithermal deposits:Acid sulphate and adularia-sericite types. Economic Geology,1987,80:1-26.
    Hendenquist J W. Volcanic-related hydrothermal systems in the Circum-Pacific basin and theirpotential for mineralisation. Mining Geology,1987,37(3):347-364.
    Hedenquist, Arribas R A, Gonzalez U Z. Exploration for epithermal gold deposits. Reviews inEconomic Geology,2000,13:245-277.
    Heinrich C A, Driesner T, Stefansson A, et al.. Magmatic vapor contraction and the transport ofgold from porphyry to epithermal ore deposits. Geology,2004,32(9):761-764.
    Kelley K D, Ludington S. Cripple Creek and other alkaline-related gold deposits in the southernRocky Mountains, USA: Influence of regional tectonics. Mineralium Deposita,2002,37:38-60.
    Konstantinov M M, Strujkov S F. Application of indicator halos (signs of ore remobilization) inexploration for blind gold and silver deposits. Journal of Geochemical Exploration,1995,54(1):1-17.
    Levinson A A. Introduction to exploration geochemistry. Alberta, Canada.1974:326-614.
    Levinson A A. Introduction to exploration geochemistry,2nd ed.,1980Supplement. AppliedPublishing, Wilmette, Illinois,1980:1-624.
    Lindgren W. Mineral Deposits.4th Ed. NewYork: McGraw Hill,1933:1-930.
    Mecaffrey K J W, Johnston J D. Fractal analysis of a mineralized vein deposit: Carraghinalt golddeposit, County Tyrone. Mineralium Deposita,1996,31:52-58.
    Miesch A T. Estimation of geochemical threshold and its statistical significance. Journal ofGeochemical Exploration,1981,16:49-76.
    Qin K Z, Sun S, Li J L, et al.. Paleozoic epithermal, Au and porphyry Cu deposits in NorthXinjiang, China: Epochs, features, tectonic linkage and exploration significance[J]. ResourceGeology,2002,52(4):291-300.
    Reis A P et. al. Soil geochemical prospecting for gold at Marancos (Northern Portugual). Journalof Geochemical Exploration,2001,73:1-10.
    Ross R L, Peter J M. Lithogeochemical halos and geochemical vectors to stratiform sedimenthosted Zn-Pb-Ag deposits, Lady Loretta Deposit, Queensland. Journal of GeochemistryExploration,1998,63(01):37-56.
    Ruchkin G V, Nikolaichuk G V. Zoning of pyrite deposits of the Blyava ore field (southernUrals).Geologiya Rudnykh Mestorozhdenii,1968,10(6):49-60.
    Sillitoe R H, Bonham H F. Sediment-hosted gold deposits: Distal product of magmatic-hydrothermal systems.Geology,1990,18:157-161.
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the Circum-Pacific region. Australian Journal of Earth Science,1997,44:373-388.
    Sinclair A J. Selection of threshold in geochemical data using probability graphs. Journal ofGeochemical Exploration,1974,3:129-149.
    Sinclair A J. A fundamental approach to threshold estimation in exploration geochemistry:probability plots revisited. Journal of Geochemical Exploration,1991,41:4-22.
    White N C, Hendenquist J W. Epithermal environment and styles of mineralisation: variations andtheir causes and guidelines for exploration. Journal of Geochemical Exploration,1990,36(3):445-474.
    Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology,2005,100(7):1287-1312.
    安国英.危机矿山找矿的地球化学方法技术研究[博士学位论文].北京:中国地质大学(北京),2006:1-102.
    边红业,陈满,刘洪利,等.黑龙江省逊克县高松山金矿床地质特征及成因分析.地质与资源,2009,18(02):91-95.
    C.B.格里戈良, A.Л.索洛沃夫.苏联固体矿产化探规范.地质矿产部情报研究所译,1982.78-95.
    晁会霞.新疆鄯善梧南金矿床地球化学特征及隐伏矿预测[硕士学位论文].西安:长安大学,2005:41-62.
    丛源,李雪梅,董庆吉,等.多元统计分析在矿床指示元素组合特征研究中的应用-以山东黄埠岭金矿为例.世界地质,2007,26(4):435-440.
    陈根文,夏斌,肖振宇,等.浅成低温热液矿床特征及在我国的找矿方向.地质与资源,2001,10(3):165-171.
    成杭新,赵传冬,庄广民,等.四川大岩子铂-钯矿床的原生地球化学异常特征及盲矿预测.地质与勘探,2007,43(4):56-60
    程金柱,孙信诚.利用原生晕找盲矿的研究.物探与化探,1988,12(6):460-466.
    成秋明.多维分形理论和地球化学元素分布规律.地球科学,2000,25:311-318.
    代西武,杨建民,张成玉,等.利用矿床原生晕进行深部隐伏矿体预测-以山东阜上金矿为例.矿床地质,2000,19(3):245-254.
    段晓君,李亚军,曲畅.高松山金矿地质特征及找矿标志.中国西部科技,2009,08(17):7-10.
    韩学林.内蒙古花敖包特铅锌银多金属矿床原生晕特征及深部预测[硕士学位论文].北京:中国地质大学(北京),2010:1-44.
    黑龙江地质矿产局.黑龙江省区域地质.北京:地质出版社,1993:548-550.
    龚庆杰,张德会,韩东昱.一种确定地球化学异常下限的简便方法.地质地球化学,2001,29:215-220.
    郭春影,高帮飞,邢学文.两种容量维方法提取化探数据异常下限效果对比.黄金地质,2008,3(29):13-17.
    蒋敬业,程建萍,祁士华,等.应用地球化学.武汉:中国地质大学出版社,2006:29-241.
    江思宏,聂凤军,张义,等.浅成低温热液型金矿床研究最新进展.地学前缘,2004,11(2):401-411.
    李长江,麻士华,朱兴盛,等.矿产勘查中的分形、混沌与ANN.北京:地质出版社,1999:1-140.
    李惠.热液金矿原生叠加晕的理想模式.地质与勘探,1993,29(4):46-51.
    李惠,张文华,刘宝林,等.中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则.地质与勘探,1999,35(1):32-35.
    李惠,王支农,张文华,等.大型金矿盲矿的叠加叠加晕和预测准则.黄金科学技术,2001,9(3-4):1-4.
    李惠,张国义,王支农,等.小秦岭石英脉型金矿床的构造叠加晕模式.地质与勘探,2004,40(4):51-54.
    李惠,张国义,禹斌,等.构造叠加晕法是危机金矿山寻找接替资源的有效新方法.矿产地质,2005,19(6):683-687.
    李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿成果.北京:地质出版社.2006:1-48.
    李惠,张国义,禹斌,等.构造叠加晕找盲矿法及其在矿山深部找矿效果.地学前缘,2010,17(1):287-293.
    李蒙文,战明国,赵财胜,等.稳健估计方法在内蒙古新忽热地区水系沉积物测量异常评价中的应用.矿床地质,2006,25(1):27-35.
    李强.东天山西段隐伏金矿体定位预测的构造及地球化学方法研究[硕士学位论文].西安:长安大学,2005:1-64.
    李亚军,段晓君,王艳忠,等.高松山金矿床控矿特征、成因及找矿前景.中国西部科技,2010,9(30):10-12.
    李扬,邱德同,李峻峰.确定金矿床元素分带序列的新方法.地质与勘探,1993,(12):47-48.
    连永牢,胡天星,邵长来,等.黑龙江省逊克县高松山金矿床微量元素地球化学.地质与资源,2010a,19(4):287-291.
    连永牢,王兴昌.黑龙江省高松山金矿床成矿规律及找矿方向.金属矿山,2010b,6:119-122.
    刘崇民.金属矿床原生晕研究进展.地质学报,2006,80(10):1528-1537.
    刘崇民,马生明.我国原生晕研究50年的主要成果.物探化探计算技术,2007,29(增刊);215-221.
    刘大文.区域地球化学数据的归一化处理及应用.物探与化探,2004,28(3):273-279.
    刘桂阁,王恩德;常春郊,等.黑龙江省逊克县高松山金矿成因探讨.有色矿冶,2006,22(4):1-4.
    刘连登,李颖,兰翔.论角砾/网脉-斑岩型金矿.矿床地质,1999,18(1):29-36.
    马立成,杨兴科,王磊,等.东天山石英滩金矿田控矿构造与原生晕深部预测.地质与勘探,2006,42(2):24-28.
    孟宪国,赵鹏大.地质数据的分形结构.地球科学,1991,16(2):207-211.
    孟宪国,周有武,林碧英.方位-分维估值法.中国地质大学学报,1992,17:63-68.
    潘勇飞.确定原生晕元素分带序列的计算.地质与勘探,1983,7:65-67.
    庞奖励.浅成低温热液金矿研究现状及其趋势.黄金地质,1995,1(3):34-38.
    普传杰,刘春学,薛传东,等.个旧锡矿高松矿田原生晕研究.矿物学报,2004,24(2):176-180.
    朴寿成,连长云.一种确定原生晕分带序列的新方法:重心法.地质与勘探,1994,(1):63-65.
    朴寿成,连长云,王丽华.计算分带序列的重心法程序.吉林地质,1995,14(4):69-74.
    朴寿成,杨永强,连长云.原生晕分带序列研究方法综述.世界地质,1996,15(1):44-48.
    朴寿成,贾洪杰,翟玉峰,等.金厂沟梁金矿床矿脉原生地球化学特征及深部含矿性评价.地质地球化学,2003,31(1):47-51.
    朴寿成,李绪俊,师磊,等.赤峰-朝阳金矿化集中区元素分带特征及其应用.地质与勘探,2006,42(1):17-20
    戚长谋.元素地球化学分类探讨.长春科技大学学报,1991,21(4):361-365.
    祁进平,陈衍景,Franco Pirajno.东北地区浅成低温热液矿床的地质特征与构造背景.矿物岩石,2005,25(2):47-59.
    卿成实,彭秀红,徐波,等.原生晕找矿法的研究进展.矿物学报,2011,828-829.
    邱德同.确定矿床原生晕指示元素分带序列的新方法.地质与勘探,1989,(8):51-53.
    邱检生,王德滋,任启江,等.我国首例浅成低温热液金矿床-山东平邑归来庄金矿床.地质与勘探,1994,30(1):7-12.
    沙德铭,苑丽华.浅成热液型金矿特点、分布和找矿前景.地质与资源,2003,12(2):115-124.
    邵跃.白银厂地区的地球化学找矿.地球物理勘探,1956:91.
    邵跃.热液矿床岩石测量(原生晕法)找矿.北京:地质出版社.1997:1-142.
    申维.成矿预测中分形模型分维数估计的新方法明.长春地质学院学报,1997,1:58-70.
    申维.信息维原理分析及在钻孔数据中的应用.地质论评,2000,46(增刊):343-346.
    申维,孙方勇.分形分布函数及其在大型矿床中的应用.地球学报,2003,24(增刊):263-270.
    申维.分形求和法及其在地球化学数据分组中的应用.物探化探计算技术,2007,29(2):134-137.
    史长义,张金华,黄笑梅,等.子区中位数衬值滤波法及弱小异常识别.物探与化探,1999,23(4):250-257.
    施俊法.地球化学异常的空间分形结构:理论与应用.北京:中国地质大学,2000,1-66.
    孙华山,孙林,曹新志,等.胶西北上庄金矿床原生晕轴(垂)向分带特征及深部矿体预测的勘查地球化学标志.矿床地质,2008,27(1):64-70.
    孙祥,罗毅,张明林.小兴安岭北东段火山岩型铀成矿地质条件及找矿方向.世界核地质科学,2011,28(4):208-213.
    孙忠军.矿产勘查中化探异常下限的多重分形计算方法.物探化探计算技术,2007,29(1):54-57.
    唐忠,叶松青,杨言辰.黑龙江逊克高松山金矿成因模式.世界地质,2010,29(3):400-407.
    田锋.谢家沟金矿元素地球化学特征及原生晕叠加模型[硕士学位论文].北京:中国地质大学(北京),2005:1-63.
    涂光炽.中国火山岩型金矿床.中国金矿床研究新进展.第一卷(上篇).北京:地震出版社,1994,65-82.
    王宝珍.间隙统计法在识别地球化学异常下限中的应用.物探化探计算技术,1992,14(3):23.
    王超,孙华山,曹新志,等.山东招远上庄金矿原生晕特征及深部成矿预测.金属矿山,2006,11:54-56.
    王崇云.地球化学找矿基础.北京:地质出版社,1987:35-40.
    王洪黎,李艳军,徐遂勤,等.浅成低温热液型金矿床若干问题的最新研究进展.黄金,2009,30(7):9-13.
    王艳忠,郎利国,于明军.高松山矿区地质物化探特征及找矿意义.第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会论文摘要集,2005:236-240.
    王艳忠,郎利国,于明军,等.高松山金矿区地质、物化探特征及找矿方向.吉林地质,2006,25(2):36-41.
    王艳忠,边红业,于明军,等.黑龙江乌云盆地典型金矿床地质特征及下步找矿方向.中国西部科技,2009,8(30):1-3.
    毋瑞身.低温浅成热液金矿若干问题探讨.贵金属地质,1993,2(1):47-53.
    毋瑞身,田昌烈,杨芳林,等.新疆阿希地区金矿概论.贵金属地质,1996,5(1):5-21.
    息朝庄,戴塔根,王明艳.青海双朋西金矿区原生晕特征及其指示意义.金属矿山,2009,3:84-86.
    解庆林.浓集指数法确定矿床原生晕元素轴向分带序列.地质与勘探,1992,(6):55-57.
    谢淑云,鲍征宇.地球化学场的连续多重分形模式.地球化学,2002,31:191-200.
    谢学锦.原生晕找矿法.地质知识,1954,5:37-40.
    谢学锦.测定土壤中微量组的地球化学野外方法.地质学报,1957,37:351.
    谢学锦,陈洪才.原生晕方法在普查勘查中的应用.地质学报,1961,4:261-272.
    谢学锦,邵跃.地球化学岩石测量方法与推断解释方法.物化探研究报导,1965,5:1.
    杨大欢,郭敏,李瑞,等.一种求地球化学异常下限的新方法-含量排列法.物探化探计算技术,2009,31(2):154-157.
    杨天奇,魏仪方,何高文.中国陆相火山岩区特大型金矿床模型.北京:冶金工业出版社,1994:1-200.
    杨小峰,刘长垠,张泰然,等.地球化学找矿方法.北京:地质出版社,2007:30-35
    姚玉增,巩恩普,梁俊红,等.R型因子分析在处理混杂原生晕样品中的应用-以河北丰宁银矿为例.地质与勘探,2005,41(2):51-55.
    尹冰川,冉清昌.小兴安岭-张广才岭地区区域成矿演化.矿床地质,1997,16(3):235-242.
    尹西君,连永牢,潘超.黑龙江省逊克县高松山金矿区岩石地球化学特征.黄金地质,2010,10(31):22-26.
    余金生,李裕伟.地质因子分析.北京:地质出版社,1985:1-420.
    张德全,李大新,赵一鸣,等.福建紫金山矿床-我国大陆首例石英-明矾石型浅成低温热液铜-金矿床.地质论评,1991,37(6):481-491.
    张定源.银岩锡矿原生晕元素分带序列计算方法研究.地质与勘探,1989,(5):45-49.
    张华良,刘振义,刘朝杰.数学地质.北京:冶金工业出版社,1994:114-141.
    章永梅,顾雪祥,程文斌,等.内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景预测.地学前缘,2010,17(2):209-221.
    赵洪海,薛继广,李晓东,等.黑龙江省逊克县高松山金矿构造控矿特征及找矿方向.中国西部科技,2011,10(26):14-16.
    赵鹏大.定量地质学理论与方法.北京:地质出版社,2004:178-180.
    赵鹏大,胡旺亮,李紫金.矿床统计预测.北京:地质出版社,1994:260-276.
    赵琦.原生晕垂直分带的元素比重指数计算法.物探与化探,1989,(2):157-159.
    朱宝华.王勇智.赵军.黑龙江省高松山金矿物化探找矿效果浅析.中国西部科技,2010,9(29):8-9.
    朱章森,温世明.来利山锡矿原生晕分带性研究及矿化露头评价.物化探计算技术,1986,8(3):209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700