用户名: 密码: 验证码:
大豆细胞质雄性不育恢复基因的SSR标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是世界上重要的油料作物之一,同时也是重要的工业生产原料。针对我国对大豆需求的逐年增加,及大豆遗传改良进度缓慢的事实,在耕种面积不断减少的情况下,只能从提高大豆的单位面积产量上来实现大豆的增产。而利用杂种优势是挖掘大豆潜力、显著提高大豆产量的重要途径。
     大豆细胞质雄性不育细胞质的发现和利用,标志着我国在大豆杂种优势研究上取得了突破性进展。“三系”是大豆杂交种选育的基础材料。其中,强恢复系的选育非常繁琐,且恢复力只能通过与不育系的测交来鉴定,既耗时又费力。利用DNA分子标记技术筛选与育性恢复基因连锁的标记,可对恢复基因进行精确定位。利用分子标记辅助育种可以缩短恢复系育种年限,同时也为育性恢复分子机理的研究和最终克隆育性恢复基因打下基础。因此,定位细胞质雄性不育恢复基因具有重要意义。
     本研究以单基因配子体遗传的RN型细胞质雄性不育系JLCMS9A导入恢复系JLR2的恢复基因构建的回交导入系的BC9F
     2代分离群体为材料,开花期对F2单株的花粉育性进行观察,确定F2单株的育性。根据F2单株花粉育性观察结果,确定F2群体中可育单株和半不育单株比例为1:1,这一结果表明RN型大豆细胞质雄性不育符合单基因配子体不育的遗传模式。提取F2分离群体的单株及父、母本单株的基因组DNA,根据F2单株育性鉴定结果,随机取20株完全可育单株DNA等量混合构建典型可育基因池,取20株典型半不育单株DNA等量混合构建典型半不育基因池,取20株不育系母本单株DNA构建完全不育基因池;选用200对均匀分布在大豆20个连锁群上的经典SSR引物,筛选三个典型基因池,获得了具有多态性的引物Sctt011,并将恢复基因定位在J连锁群上。进一步在J连锁群上选择和设计了93对SSR引物进一步筛选基因池。最终获得3个与恢复基因紧密连锁的分子标记,分别为JS22、JS30和JS51,与恢复基因的遗传距离分别为7.6cM、10.7cM和5.2cM。
     通过本研究所获得的连锁标记,有望加速RN型恢复系的选育速度,间接推进杂交大豆新品种育种进程,这对于增强我国大豆育种的自主创新能力,促进大豆产业可持续发展,具有重要的理论和实践意义。同时,也为今后克隆恢复基因和解析RN型细胞质雄性不育育性恢复机制奠定基础。
Soybean is an important grain and oil crop, also it is an important industrial rawmaterials. Domestic demand for soybeans increased year by year, but the production ofsoybean was grown slowly. To increasing the production of soybean, that the only way is toimprove the unit output. And useing heterosis is one important way to diging latent capacityand improving the production of soybean.
     The discovery of cytoplasmic male sterile cytoplasm in soybean and the utilization ofsoybean hybrids are the breakthrough developments. Cytoplasmic male sterility"three–lines” are the basic materials for soybean hybrid breeding. Breeding for strong restorer linesis very complicated and restoring ability can only be identified by testcross with malesterile lines, which is time-consuming and labor-intensive.Through screening makers linkedwith restore gene closely by DNA molecular maker technology, we can accurately locaterestore genes. Molecular assisted breeding can shorten the breeding time, and it also lay thefoundation for studing molecular mechanism of fertility restoration and eventually cloningof restorer gene. Therefore, carried out the research of cytoplasmic male sterility restoregenes location has important significance.
     F2segregating population, which was obtained by crossing between the gametophytegenetically RN-cytoplasmic male sterile line and backcrossing lines with strong restorergene.Then it will be used for the Rf gene mapping through determination of the inheritancepattern by sterility identification of each generation and further polymorphism analysis byhigh density of SSR markers and fine mapping of the restorer gene.
     Firstly,the RN type soybean cytoplasm sterile lines9A cross with strong restorer linesJLR2to get F2segregating population. According to the results of microscope detection, theF1is semi-sterility, ratio of fertile to semi–sterility in F2separation population is1:1.Theresults of this study show that RN type soybean cytoplasmic male sterile lines is controlledby single gene gametophyte sterility.
     Gene pools from F2segregating population was screened with200SSR primers, andSctt011showed polymorphism among the three gene pools, which was located in J linkagegroups. Then,93additional SSR primers from J linkage groups were chosen to screen genepolls. Finally, three primers are linked with restorer gene which are JS22,JS30and JS51, and the genetic distances are7.6cM,10.7cM and5.2cM,respectively.The restorer genewas located in J linkage groups.
     The linked markers with restorer gene identified in this study will accelerate thebreeding process of RN-restorer lines, and lay the foundation for Rf gene cloning andRN-CMS fertility restoration mechanism exploration in future.
引文
[1]曾昭海,褚庆全,赵晓萌,胡跃高等.我国大豆产业发展趋势与对策[J].中国农业科技导报2005,7(6):43-48.
    [2]戴明阳.中国大豆产业路在何方(N).工人日报,2012-12-29(7).
    [3] Kaul M L H. Male Sterility in Higher Plants[M]. Berlin: Springe-Verlag,1988:2-5.
    [4]赵丽梅.大豆细胞质雄性不育的遗传和分子基础研究[D].长春:东北师范大学生命学院,2005.
    [5] Hanson MR. Plant mitochondrial mutation and male sterility[J]. Anu Rev Gent,1991,25:86-461.
    [6]刘庆昌.遗传学[M].北京:科学出版社,2007.
    [7]荆玉祥.植物分子生物学[M].北京:科学出版社,1995:50-61.
    [8]孔祥海.植物细胞质雄性不育分子生物学的研究进展[J].中国农业生态学报,2004,12(3):35-39.
    [9] Davis H. Willam, Route to Hybrid Soybean Production[P]. US Patent,1985,NO.4545146.
    [10] ALBERTSEN M C, PALMER R G. A comparative light-and electron-microscopicstudy of microsporogenesis in male sterile(ms1)and male fertile soybeans[J]. AmericanJournal of Botany,1979,66(3):253-265.
    [11] BRIM C A, YOUNG M F. Inheritance of a male-sterile character in soybeans[J]. CropScience,1971,(11):564-566.
    [12] BUSS G R. Inheritance of a male-sterile mutant from irradiated Essex soybean [J].Soybean Genetics Newsletter,1983,(10):104-108.
    [13] CERVANTES-MARTINEZ I, XU M, ZHANG L. Molecular Mapping of Male–Sterility Loci ms2and ms9in Soybean[J]. Crop Science,2007,47:374-379.
    [14] DELANNAY X, PALMER R G. Genetics and cytology of the ms4male-sterilesoybean[J]. The Journal of Heredity,1982,73:219-223.
    [15] GRAYBOSCH R A, BERNARD R L,CREMEENS C R, etal. Genetic and cytologicalstudies of a male-sterile, female-fertile soybean mutant[J]. The Journal of Heredity,1984,75:383-388.
    [16] OWEN F V. A sterile character in soybeans[J]. Plant Physiology,1928,(3):223-226.
    [17] PALMER R G. Inheritance of male-sterile, female-fertile mutant ms3[J].SoybeanGenetics Newsletter,1979,(6):63-64.
    [18] PALMER R G. Genetics of four male-sterile, female-fertile soybean mutants[J]. CropScience,2000,40:78-83.
    [19]孙寰,赵丽梅,黄梅.大豆质核互作不育系研究[J].科学通报,1993,38(16):1535-1536.
    [20]孙寰,赵丽梅,黄梅.质核互作雄性不育大豆及生产大豆杂交种的方法[P].中国专利,2000, ZL97112173.7.
    [21] Sun H, Zhao L M, Huang M. Studies on Cytoplasmic-Nuclear Male Sterile Soybean[J]. Chinese Science Bul-letin,1994,39(2):175-176.
    [22] Sun H, Zhao L M, HuangM. Cytoplassmic-Nuclear Male Sterile Soybean Line FromInterspecific Crosses Be-tween G.Max and G.soja[C]. World Soybean ResearchConference V, Kasetsart University Press, Bangkok,Thailand,1997,99-102.
    [23] Sun H, Zhao L M, Huang M. Cytoplasmic-genetic Male Sterile Soybean and Methodfor Producing Hybrid Soybean[P]. US Patent2001, NO.US6,320,098B1.
    [24]汤复跃.大豆M型细胞质雄性不育恢复基因的SSR标记定位[D].安徽:安徽农业大学生命学院,2008.
    [25]孙寰,赵丽梅,王曙明.大豆杂种优势利用研究进展[J].中国油料作物学报,2003,25(1):92-96.
    [26]赵丽梅,孙寰,王曙明,等.大豆杂交种“杂交豆1号”选育报告[J].中国油料作物学报,2004,26(3):15-17.
    [27]赵丽梅,孙寰,黄梅,等.大豆结实率与花粉败育率之间的关系[J].大豆科学,2004,23(4):249-252.
    [28]李磊,胡亚敏,杨庆芳.对8909和8912两个不育组合的观察与分析[R].见:河北农科院主编.第五届全国大豆会论文集.承德:河北农业出版社,1993.23-24.
    [29] Peng Y H,Yang G B,Yuan J Z. Genetic analysis of a new type of male sterilesoybean[C]. World Soybean Research Conference V,Kasetsart University Press,Bangkok,Thailand,1997:90.
    [30]赵丽梅,孙寰,黄梅.大豆细胞质雄性不育系ZA的选育和初步研究[J].大豆科学,1998,17(3):268-270.
    [31]许占友,李磊,邱丽娟,等.大豆三系的选育及恢复基因的SSR初步定为研究[J].中国农业科学,1999,32(2):32-38.
    [32]许占友,李磊,常汝镇,等.大豆质核互作雄性不育系核不育基因的遗传分析[J].中国农业科学,1999,32(增刊):1-8.
    [33] Gai J Y,Cui Z L,Ji D F,etal.A report on the nuclear cytoplasmic male sterility from across between two soybean cultivars[J]. Soybean Genetics Newsletter,1995,22(1):55-58.
    [34]丁德荣,盖钧锰,崔章林等.大豆质核互作雄性不育系NJcMSIA及其保持系NJCMSIB的选育与验证[J].科学通报,1998,43(17):1901-1902.
    [35]张天真.作物育种学总论[M].北京:中国农业出版社,2005.234-235.
    [36]盖钧镒,丁德荣,崔章林,等.大豆质核互作雄性不育系NJCMS1A的选育及其特性研究[J].中国农业科学,1999,32(5):23-27.
    [37]王曙明,孙寰,王跃强,等.大豆杂种优势及其高优势组合选配的研究I.F1代籽粒产量的杂种优势与高优势组合选配[J].大豆科学,2002,21(3):161-167.
    [38] Lewers K S and Palmer R G. Recurrent selection in soybean[J]. Plant BreedingReview,1997,15:275-313.
    [39] Burton J W and Carter Jr T E. A method for production of experimental quantities ofhybrid soybean seed. Crop Sci.1983,23(2):388-390.
    [40]孙寰.吉林大豆[M].长春:吉林科学技术出版社,2005,132-161.
    [41]司丽珍,王明军,邱家驯,等.大豆雄性核不育互交群体RS6Y在南京和Raleigh的异地产量轮回选择响应.大豆科学,2002,21(1):31-35.
    [42]张磊,戴瓯和.大豆质核互作不育系W931A的选育研究[J].中国农业科学,1997,30(6):90-91.
    [43]彭宝,赵丽梅,王曙明,等.杂交豆2号选育及高产制种技术研究[J].吉林农业科学,2008,33(2):3-4
    [44]张磊,戴瓯和,黄志平,等.杂交大豆杂优豆1号选育[J].大豆通报,2007,(2):14-16.
    [45]孙寰,赵丽梅,王曙名,等.大豆杂种优势利用研究进展[J].中国油料作物学报,2003,25(1):92-100.
    [46]于伟,李磊,李智,等.大豆质核互作不育系杂交种制种技术研究I.不育系繁种技术研究[J],中国油料作物学报,2001,23(2):11-13.
    [47]白羊年,陈健,喻德跃,等.大豆雄性不育系和大豆资源有关开花授粉性状的研究[J].大豆科学,2002.21(1):18-24.
    [48]赵丽梅,孙寰,马春森,等.大豆昆虫传粉研究初探[J].大豆科学,1999,18(1):73-76.
    [49]丁德荣,盖钧镒.南方地区大豆雄性不育材料的传粉昆虫媒介及其传粉异交结实程度[J].大豆科学,2000,19(1):74-79.
    [50]卫保国,畅建武,孙贵臣,等.大豆田间昆虫传播花粉研究[J].中国学术期刊文摘(科技快报),1997,3(8):1020-1021.
    [51]李建平,李茂海,杨桂华,等.大豆不育系传粉昆虫及传粉技术研究[J].吉林农业科学,2002,27(增刊):4-6.
    [52]赵丽梅,孙寰,彭宝,等.国内外大豆杂种优势利用研究概况[J].吉林农业大学学报,2008,30(4):401-406.
    [53] Erickson Jr EH. Soybean pollonation and honey prodiction a research progressreport[J]. American Bee Journal,1984,124(1):775-779.
    [54] Robacker D C,Flottum R K, Sammataro D, etal.Effects of cli-matic and edaphicfactors on soybean flowers and on the subse-quent attractiveness of the plants to honeybees[J].Field CropsResearch,1983,6:267-278.
    [55] Wang Z,Weber J T, Zhong G. Survey of plants hort tandem DNA repeats[J]. TheorAppl Genet,1994,88:1-6.
    [56]梁慧珍,王珍,李卫东.微卫星序列的长度多态性及在大豆研究中的应用[J].分子植物育种,2004,2(5):721-727.
    [57]王彪,邱丽娟.大豆SSR技术研究进展[J].2002,19(1):44-48.
    [58] Akkaya M S, Bhagwat A A, Cregan P B,1992. Length polymorphism sequence repeatDNA in soybean[J]. Genetics,132:1131-1139.
    [59]宋启建,等.大SSR分子标记的创制及其应用[J].大豆科学,1999,18(3):248-254.
    [60] Sugimoto,T.Yoshida, S. Watanabe, K.etal. Identification of SSR markers linked to thePhytophthora resistance gene Rps1-d in soybeans[J]. Plant Breeding.2008,127:154-159.
    [61]刘丽君,孙欣,薛永国,等.大豆抗疫霉根腐病基因SSR标记[J].大豆科学,2008,27(3):379-382.
    [62]范爱颖,王晓鸣,方小平,等.大豆品种豫豆25抗疫霉根腐病基因的鉴定[J].作物学报,2009,35(10):1844-1850.
    [63]于安亮,徐鹏飞,王金生,等.大豆品种绥农10抗疫霉根腐病遗传分析及抗病基因的SSR标记[J].中国油料作物学报,2010,32(4):462-466.
    [64]武晓玲,周斌,孙石,等.大豆对大豆疫霉菌株Pm14抗性的遗传分析及基因定位[J].中国农业科学,2011,44(3):456-460.
    [65]张玉东,盖钧镒,马育华,等.大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J].作物学报,1989,15(3):213-220.
    [66] Kiihl R A S, Hartwig E E. Inheritance of reaction to soybean mosaic virus in soybeans[J]. Crop Science,1979,19:372-375.
    [67] Buzzell R I, Tu J C. Inheritance of a stem tip necrosis reaction to soybean mosaic virus[J]. The Journal of Heredity,1989,80(5):400-401.
    [68] Buss G R, Roane C W, Tolin S A, etal. Inheritance of reaction to soybean mosaicvirus in two soybean cultivars [J]. Crop Science,1989,29:1439-1441.
    [69]王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90.
    [70]栾晓燕,李宗飞,满为群,等.与大豆SMV3号株系抗性相关的分子标记的鉴定[J].分子植物育种,2006年,4(6):841-845.
    [71]卢双勇,韩英鹏,滕卫丽,等.大豆抗花叶病毒及耐疫霉根腐病的SSR标记分析[J].大豆科学,2008,27(5):746-750.
    [72] Shi, A. N. Chen, P. Y. Li, D. X. Zheng,etal. Genetic confirmation of2independentgenes for resistance to soybean mosaic virus in J05soybean using SSRmarkers.Journal of Heredity [J].2008.99:6,598-603.37ref.
    [73]白丽,李海朝,马莹,等.大豆对大豆花叶病毒SC-11株系抗性的遗传及基因定位[J].2009,28(1):1-6.
    [74] WANG Kun, LIWen-fu, ZHANG Lei, etal. Genetic Analysis and Molecular Mappingof Two SMV-Resistance Traits in Soybean:Adult-Plant Resistance and Resistance toSeed Coat Mottling[J]. Agricultural Sciences in China,2010,9(1):11-18.
    [75]王惠,于佰双,段玉玺,等.大豆胞囊线虫抗性基因的SSR标记研究[J].大豆科学,2007,26(2):204-207.
    [76]袁翠平,卢为国,刘章雄,等.大豆抗胞囊线虫4号生理小种新品系SSR标记分析[J].作物学报,2008,34(10):1858-1864.
    [77]杨柳,师臣,田中艳,等.大豆胞囊线虫病3号生理小种抗性QTL定位的研究[J].2010,29(2):215-217.
    [78]陈立君,郭强,刘迎雪,等.大豆灰斑病1号生理小种抗性基因的SSR标记[J].中国农学通报,2009,25(09):43-46.
    [79]李广军,李河南,程利国,等.大豆对豆卷叶螟抗性的QTL定位[J].中国油料作物学报,2009,31(3):365-369.
    [80]方元丽,徐冉,丁艳鹏,等.大豆抗烟粉虱基因SSR分子标记的引物筛选[J].湖北农业科学,2009,48(4):773-775.
    [81]胡国玉,赵晋铭,周斌,等.大豆耐低温出苗的遗传分析与分子标记[J].大豆科学,2008,27(6):905-910.
    [82]李灿东,蒋洪蔚,刘春燕,等.大豆定向选择群体耐旱性位点基因型分析及QTL定位[J].中国油料作物学报,2009,31(3):285-292.
    [83]吕彩霞,郭建秋,王英,等.对大豆耐萎蔫材料PI471938根系和地上部的性状鉴定、遗传分析及QTL定位[J].作物学报,2010,36(9):1476-1483.
    [84]李小威,董志敏,赵洪锟,等.用SSR标记进行野生大豆耐碱基因定位及QTL分析[J].吉林农业科学,2010,359(3):15-17.
    [85]马勇,刑朝柱,等.植物细胞质雄性不育恢复基因的研究进展[J].2008,6(4):733-738.
    [86]赵丽梅,王玉民,孙寰,等.大豆细胞质雄性不育恢复基因的SSR标记[J].大豆科学,2007,26(6):835-839.
    [87]董建生,杨守萍,喻德跃,等.大豆质核互作雄性不育系NJCMS2A的育性恢复性遗传和育性恢复基因的SSR标记[J].大豆科学,2008,27(2):181-185.
    [88] Yang S P, Duan M P,Meng Q C, etal. Inheritance and gene tagging of male fertilityrestoration of cytop lasmic nuclear malesterileline NJCMS1A in soybean [J]. PlantBreeding,2007,126:302-305.
    [89]汤复跃,张磊,陈培,等.大豆M型细胞质雄性不育恢复基因标记定位[J].大豆科学,2009,28(4):578-582.
    [90] Y.WA N G, L.ZHAO, X.WA N G and H.SUN. Molecular mapping of a fertility restorergene for cytoplasmic male sterility in soybean[J]. Plant Breeding,2010,129:9-12.
    [91]李曙光,赵团结,盖钧镒.大豆质核互作雄性不育系NJCMS3A双亲雄性育性基因的SSR标记[J].作物学报,2010,36(7):1061-1066.
    [92] Kato K K and Palmer R G. Molecular mapping of the male-sterile, female-sterilemutant gene (st8) in soybean[J]. Journal of Heredity,2003,94(S):425-428.
    [93] Kato K K and Palmer R G. Genetic identification of a female partial-sterile mutant insoybean[J]. Genome,2003,46(1):128-134.
    [94]罗赓彤,战勇,刘胜利,等.新大豆1号和石大豆1号高产纪录的创造[J].大豆科学,2001,20(4):270-273.
    [95] Singh, R. K. Raipuria, R. K. Bhatia, V. S.etal. SSR markers associated with seedlongevity in soybean. Seed Science and Technology[J].2008,36:1,162-167.
    [96] Singh, R. K. Raipuria, R. K. Bhatia, V. S. Identification of SSR markers associatedwith seed coat permeability and electrolyte leaching in soybean[J]. Physiology andMolecular Biology of Plants.2008,14:3,173-177.18ref.
    [97]万昆,姜成喜,刘章熊,等.大豆株高QTL定位研究[J].大豆科学,2009,28(5):791-794.
    [98]孙亚男,齐照明单,大鹏,等.大豆株高QTL的定位与整合分析[J].分子植物育种,2010,8(4):687-693.
    [99]汪霞,徐宇,李广军,等.大豆百粒重QTL定位[J].作物学报,2010,36(10):1674-1682.
    [100]王海杰,杨存义,江炳志,等.大豆生育期性状QTL定位[J].中国油料作物学报,2010,32(3):362-368.
    [101]王英,程立锐,冷建田,等.开花后不同光周期条件下大豆农艺性状和品质性状的QTL分析[J].作物学报,2010,36(7):1092-1099.
    [102] Kim MyungSik Park MinJung,etal. SSR marker tightly linked to the Ti locus inSoybean [Glycine max (L.) Merr.][J]. Euphytica.2006.152:3,361-366.22ref.
    [103]康明,王继安,杨明亮,等.大豆高油酸、低亚麻酸性状的分子标记[J].东北农业大学学报,2008,39(9):1-5.
    [104]梁慧珍,王树峰,余永亮,等.大豆异黄酮与脂肪、蛋白质含量基因定位分析[J].中国农业科学,2009,42(8):2652-2660.
    [105]林延慧,张丽娟,李伟,等.大豆蛋白质含量的QTL定位[J].大豆科学,2010,29(2):207-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700