1. [地质云]滑坡
纳米锑基合金负极材料的微观结构与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池负极材料作为提高锂离子二次电池能量及循环寿命的重要因素,在世界范围内得到了广泛的研究。与商业化的碳极相比,合金负极材料具有理论容量高、快速充放电能力等优点,因而是一类非常有发展前景的高比能锂离子电池负极材料。其中SnSb中的Sn和Sb都具有储锂活性,比SnCu SnNi等活性/惰性体系具有更高的理论比容量,得到了更广泛的研究。但由于合成的合金负极材料的粒径大,分布不均,合金粉末存在团聚现象严重,导致电池循环寿命差。
     通过化学还原法得到了由纳米SnSb合金和微米级Ag组成的复合负极材料。充放电前后FE-SEM形貌分析及交流阻抗分析表明,微米级Ag的存在使复合材料表面和内部逐渐形成了不规则的层状结构和大小不一的空隙,大大减小了锂离子的扩散距离,减少了滞留在活性物质中的锂,增加了体积膨胀时所需的空间,有效的防止复合负极材料在多次体积膨胀过程中的粉化脱落,大大提高了SnSb-Ag复合合金负极材料的循环稳定性。通过优化Ag的含量及充放电电压区间,SnSbAgo.2复合材料的循环性能最好,在0.1-0.5V电压区间进行充放电时,循环性能最好,50次循环后其比容量仍达到518mAh/g,与第二次放电容量相比,其容量保持率高达82.04%。
     研究表明,将Sn-基合金或者纳米粒子与碳纳米管复合可以有效提高负极材料的电化学性能。在SnSb-Ag/CNT复合材料的制备过程中,选择管径为60-100nm的碳纳米管,且在制备过程中将CNTs分散在NaBH4溶液中,电化学性能较好,50次循环后其容量仍高达573.8mAh/g。
     通过比较SnSb-Ag和SnSb-Ag/CNT充放电前后的微观形貌变化,以及充放电曲线和循环伏安曲线发现Ag和CNTs对SnSb-Ag/CNT复合材料的电化学性能的提高有很大的作用:CNTs由于管径大,阻止了合金粒子间的团聚,增大了合金粒子间的缓冲空间,减小了锂离子的扩散距离和锂在活性物质中的滞留;同时能有效缓冲合金粒子体积膨胀时中产生的巨大应力,减弱了粒子之间的作用力,降低了粒子的粉化速率。而Ag的存在使整个充放电过程处在复杂的多步的反应过程中,有效地缓解了反应过程中新析出的纳米粒子的团聚,促进反应的充分进行,从而提高了循环性能。通过优化复合材料中Ag和CNTs的比例,以及控制充放电区间,SnSbAg0.1/6%CNT在0.05-1.5V时电化学性能更为优越,50次循环以后,放电比容量仍达到639.6mAh/g,且能适应高低温环境中。
Improving the energy capacity and cycle life of lithium-ion batteries is an important target, and as such, research on lithium-ion battery anode materials has generated much interest. Compared with graphite anodes, alloy anode materials have a high theoretical capacity and a fast charge/discharge rate, making alloys a class of very promising high-specific energy Li-ion battery anode materials. Both Sn and Sb in SnSb alloy anode materials have the capacity to store lithium, resulting in a higher theoretical specific capacity than other active/inert systems, such as SnCu and SnNi materials, and have been widely studied. Alloy anode materials undergo severe structural and volume changes during the charge/discharge cycle process across large sizes, resulting in uneven ion distribution, serious agglomeration and poor cycle stability.
     Nano-SnSb and micro-sized Ag alloy composite anode materials were synthesized using chemical reduction method. The addition of Ag made SnSb-Ag composite alloy anode materials, which formed a laminated structure with irregular gap sizes on the surface and interior of the structure after several cycles of insertion-extraction of lithium ions. This approach greatly shortened the lithium ion diffusion distance, reduced the trapping of lithium in the active materials, and increased the space available for volume expansion. As a result, powder drop off during the volume expansions was prevented, resulting in greatly improved cycle stability for the SnSb-Ag composite alloy anode materials.The SnSbAgo.2composite alloy anode material showed excellent electrochemical performance with a50-cycle capacity of518mAh/g, with a reversible capacity retention rate of82.04%between0.1V and1.5V.
     Recent research has demonstrated that the electrochemical performance of some Sn-based metals and nanoparticles can be significantly improved using CNTs (carbon nanotubes) as compounds. The SnSb-Ag/CNT composites, using L60-100nm CNTs and dispersing CNTs in NaBH4aqueous solution, will get good cycle performance with a50-cycle capacity of573.8mAh/g.
     Ag and CNTs play an important part in electrochemical properties by comparing the micro structures before and afer cycling, the CV curves, charge and discharge profiles. Silver was used to promote the entire charge-discharge process in the complex multi-step reaction process and, to some extent, alleviate the reunion of the nanoparticles in the reaction process, fully promote the reaction and improve the cycling performance. During the Li intercalation process, CNTs, with a large space volume and formed a network structure, prevented particle aggregation and increased the buffer space between the alloy particles, which greatly reduced the diffusion distance of lithium ions and the occurrence of lithium trapping in the active electrode materials. CNTs also have excellent mechanical properties and toughness, they effectively buffer enormous stresses during the volume expansion of alloy particles, weakening the forces between the particles and reducing the rate of formation of powder particles, resulting in good electrochemical performance. The SnSbAg0.1/6%CNT composite anode exhibited excellent cycle life by controlling the lithiation of the anode material. The reversible capacity for the50th cycle was639.6mAh/g between0.05and1.5V.
引文
[1]Wachtler M., Winter M., Besenhard J.O. Anodic materials for rechargeable Li-batteries[J]. Journal of Power Sources,2002,105(2):151-160.
    [2]Zhang Wei-Jun. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(3):877-885.
    [3]Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta,1999,45(1-2):31-50.
    [4]Dunlap R. A., Small D. A., MacNeil D. D., Obrovac M. N., Dahn J. R. A Mossbauer effect investigation of the Li-Sn system[J]. Journal of Alloys and Compounds,1999,289(1-2):135-142.
    [5]Wang Jiqiang. BEHAVIOR OF SOME BINARY LITHIUM ALLOYS AS NEGATIVE ELECTRODES IN ORGANIC SOLVENT-BASED ELECTROLYTES. [J]. Journal of the Electrochemical Society,1986,133(3):457-460.
    [6]Lee H. Y., Lee S. M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochemistry Communications,2004,6(5):465-469.
    [7]Morishita T., Hirabayashi T., Okuni T., Ota N., Inagaki M. Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery[J]. Journal of Power Sources, 2006,160(1):638-644.
    [8]Yang J., Takeda Y., Imanishi N., Xie J. Y., Yamamoto O. Intermetallic SnSbx compounds for lithium insertion hosts[J]. Solid State Ionics,2000,133(3-4):189-194.
    [9]Rom I., Wachtler M., Papst I., Schmied M., Besenhard J. O., Hofer F., Winter M. Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries[J]. Solid State Ionics,2001,143(3-4):329-336.
    [10]Zhao Hailei, Ng D. H. L., Lu Zhongqin, Ma Nangang. Carbothermal synthesis of SnxSb anode material for secondary lithium-ion battery[J]. Journal of Alloys and Compounds,2005,395(1-2):192-200.
    [11]Trifonova A., Wachtler M., Wagner M. R., Schroettner H., Mitterbauer C., Hofer F., Moller K. C, Winter M., Besenhard J. O. Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb[J]. Solid State Ionics,2004,168(1-2):51-59.
    [12]Yang J., Winter M., Besenhard J. O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J]. Solid State Ionics,1996,90(1-4):281-287.
    [13]Besenhard J. O., Yang J., Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. Journal of Power Sources,1997,68(1):87-90.
    [14]Wachtler M., Besenhard J. O., Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells[J]. Journal of Power Sources,2001,94(2):189-193.
    [15]Simonin L., Lafont U., Kelder E. M. SnSb micron-sized particles for Li-ion batteries[J]. Journal of Power Sources,2008,180(2):859-863.
    [16]Huang K. L., Zhang G., Liu S. Q., Yang S. Synthesis and electrochemical performance of Sn-SnSb/graphite composite materials[J]. Chinese Journal of Inorganic Chemistry,2006, 22(11):2075-2079.
    [17]Huang K. L., Zhang G., Liu S. Q. Effect of graphite content on electrochemical performance of Sn-SnSb/graphite composite powders[J]. Transactions of Nonferrous Metals Society of China,2007, 17(4):841-845.
    [18]Park M. S., Needham S. A., Wang G. X., Kang Y. M., Park J. S., Dou S. X., Liu H. K. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries[J]. Chemistry of Materials,2007,19(10):2406-2410.
    [19]Fan S. F., Sun T., Rui X. H., Yan Q. Y., Hng H. H. Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries[J]. Journal of Power Sources,2012,201(288-293.
    [20]Seng K. H., Guo Z. P., Chen Z. X., Liu H. K. SnSb/Graphene Composite as Anode Materials for Lithium Ion Batteries[J]. Advanced Science Letters,2011,4(1):18-23.
    [21]Larcher D., Beaulieu L. Y., MacNeil D. D., Dahn J. R. In situ X-ray study of the electrochemical reaction of Li with eta'-Cu6Sn5[J]. Journal of the Electrochemical Society,2000,147(5):1658-1662.
    [22]Choi W., Lee J. Y., Lim H. S. Electrochemical lithiation reactions of Cu6Sn5 and their reaction products[J]. Electrochemistry Communications,2004,6(8):816-820.
    [23]Wolfenstine J., Campos S., Foster D., Read J., Behl W. K. Nano-scale Cu6Sn5 anodes[J]. Journal of Power Sources,2002,109(1):230-233.
    [24]Tamura N., Ohshita R., Fujimoto M., Fujitani S., Kamino M., Yonezu I. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J]. Journal of Power Sources,2002,107(1):48-55.
    [25]Tamura N., Ohshita R., Fujimoto M., Kamino M., Fujitani S. Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries[J]. Journal of the Electrochemical Society, 2003,150(6):A679-A683.
    [26]Finke A., Poizot P., Guery C., Tarascon J. M. Characterization and Li reactivity of electrodeposited copper-tin nanoalloys prepared under spontaneous current oscillations[J]. Journal of the Electrochemical Society,2005,152(12):A2364-A2368.
    [27]Tamura N., Fujimoto A., Kamino M., Fujitani S. Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries[J]. Electrochimica Acta,2004,49(12):1949-1956.
    [28]Xue M. Z., Fu Z. W. Electrochemical reactions of lithium with transition metal stannides[J]. Solid State Ionics,2006,177(17-18):1501-1507.
    [29]Zhang J. J., Xia Y. Y. Co-Sn alloys as negative electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,2006,153(8):A1466-A1471.
    [30]Dahn J. R., Mar R. E., Abouzeid A. Combinatorial study of Snl-xCox (0< x< 0.6) and [Sn0.55Co0.45](1-y)C-y (0< y< 0.5) alloy negative electrode materials for Li-ion batteries[J]. Journal of the Electrochemical Society,2006,153(2):A361-A365.
    [31]Ronnebro E., Yin J. T., Kitano A., Wada M., Tanase S., Sakai T. Structural analysis by synchrotron XRD of a Ag52Sn48 nanocomposite electrode for advanced Li-ion batteries[J]. Journal of the Electrochemical Society,2004,151(10):A1738-A1744.
    [32]Yin J. T., Wada M., Yoshida S., Ishihara K., Tanase S., Sakai T. New Ag-Sn alloy anode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society,2003,150(8):A1129-A1135.
    [33]Kropf A. J., Tostmann H., Johnson C. S., Vaughey J. T., Thackeray M. M. An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries[J]. Electrochemistry Communications,2001,3(5):244-251.
    [34]Fransson L. M. L., Vaughey J. T., Benedek R., Edstrom K., Thomas J. O., Thackeray M. M. Phase transitions in lithiated Cu2Sb anodes for lithium batteries:an in situ X-ray diffraction study[J]. Electrochemistry Communications,2001,3(7):317-323.
    [35]Sarakonsri I., Johnson C. S., Hackney S. A., Thackeray M. M. Solution route synthesis of InSb, Cu(6)Sn(5) and Cu(2)Sb electrodes for lithium batteries[J]. Journal of Power Sources,2006, 153(2):319-327.
    [36]Saadat S., Tay Y. Y., Zhu J. X., Teh P. F., Maleksaeedi S., Shahjamali M. M., Shakerzadeh M., Srinivasan M., Tay B. Y., Hng H. H., Ma J., Yan Q. Y. Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes[J]. Chemistry of Materials,2011, 23(4):1032-1038.
    [37]Eom J. Y., Kwon H. S. Preparation of Single-Walled Carbon Nanotube/Silicon Composites and Their Lithium Storage Properties [J]. ACS Applied Materials & Interfaces,2011,3(4):1015-1021.
    [38]Nguyen H. T., Yao F., Zamfir M. R., Biswas C., So K. P., Lee Y. H., Kim S. M., Cha S. N., Kim J. M., Pribat D. Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery Anodes[J]. Advanced Energy Materials,2011,1 (6):1154-1161.
    [39]Lv R. G., Yang J., Wang J. L., NuLi Y. N. Electrodeposited porous-microspheres Li-Si films as negative electrodes in lithium-ion batteries[J]. Journal of Power Sources,2011,196(8):3868-3873.
    [40]Fleischauer M. D., Obrovac M. N., McGraw J. D., Dunlap R. A., Topple J. M., Dahn J. R. Al-M (M =Cr, Fe, Mn, Ni) thin-film negative electrode materials[J]. Journal of the Electrochemical Society,2006, 153(3):A484-A491.
    [41]Honda H., Sakaguchi H., Fukuda Y., Esaka T. Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery[J]. Materials Research Bulletin,2003, 38(4):647-656.
    [42]Hou X. H., Yu H. W., Hu S. J. preparation and properties of Sn-A1 thin-film electrode material for lithium ion batteries[J]. Acta Physica Sinica,2010,59(11):8226-8230.
    [43]Zhou W. C., Upreti S., Whittingham M. S. Electrochemical performance of Al-Si-graphite composite as anode for lithium-ion batteries[J]. Electrochemistry Communications,2011,13(2):158-161.
    [44]Weydanz W. J., Wohlfahrt-Mehrens M., Huggins R. A. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries[J]. Journal of Power Sources,1999,81:237-242.
    [45]Yang Jun, Wachtler Mario, Winter Martin, Besenhard Jurgen O. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters,1999,2(4):161-163.
    [46]Kim J. W., Ryu J. H., Lee K. T., Oh S. M. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries[J]. Journal of Power Sources,2005, 147(1-2):227-233.
    [47]Vaughey J. T., Fransson L., Swinger H. A., Edstrom K., Thackeray M. M. Alternative anode materials for lithium-ion batteries:a study of Ag(3)Sb[J]. Journal of Power Sources,2003,119:64-68.
    [48]Ulus A., Rosenberg Y., Burstein L., Peled E. Tin alloy-graphite composite anode for lithium-ion batteries[J]. Journal of the Electrochemical Society,2002,149(5):A635-A643.
    [49]Ryu J. H., Kim J. W., Sung Y. E., Oh S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochemical and Solid State Letters,2004,7(10):A306-A309.
    [50]Wagner M. R., Raimann P. R., Trifonova A., Moeller K. C., Besenhard J. O., Winter M. Electrolyte decomposition reactions on tin-and graphite-based anodes are different[J]. Electrochemical and Solid State Letters,2004,7(7):A201-A205.
    [51]Stjerndahl M., Bryngelsson H., Gustafsson T., Vaughey J. T., Thackeray M. M., Edstrom K. Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries[J]. Electrochimica Acta,2007, 52(15):4947-4955.
    [52]Zhao H. L., Zhu Z. M., Yin C. L., Guo H., Ng D. H. L. Electrochemical characterization of micro-sized Sb/SnSb composite anode[J]. Materials Chemistry and Physics,2008,110(2-3):201-205.
    [53]Beaulieu L. Y., Beattie S. D., Hatchard T. D., Dahn J. R. The electrochemical reaction of lithium with tin studied by in situ AFM[J]. Journal of the Electrochemical Society,2003,150(4):A419-A424.
    [54]Chang H. H., Wu H. C., Wu N. L. Enhanced high-temperature cycle performance of LiFePO(4)/carbon batteries by an ion-sieving metal coating on negative electrode[J]. Electrochemistry Communications,2008,10(12):1823-1826.
    [55]Yang J., Wachtler M., Winter M., Besenhard J. O. Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries[J]. Electrochemical and Solid State Letters,1999, 2(4):161-163.
    [56]Limthongkul P., Jang Y. I., Dudney N. J., Chiang Y. M. Electrochemically-driven solid-state amorphization in lithium-metal anodes[J]. Journal of Power Sources,2003,119:604-609.
    [57]Ferguson P. P., Dunlap R. A., Dahn J. R. An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn(30)Co(30)C(40)[J]. Journal of the Electrochemical Society,2010,157(3):A326-A332.
    [58]Li H., Shi L. H., Wang Q., Chen L. Q., Huang X. J. Nano-alloy anode for lithium ion batteries[J]. Solid State Ionics,2002,148(3-4):247-258.
    [59]Kasavajjula U., Wang C. S., Appleby A. J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources,2007,163(2):1003-1039.
    [60]Courtney I. A., McKinnon W. R., Dahn J. R. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium[J]. Journal of the Electrochemical Society,1999, 146(1):59-68.
    [61]Li H., Shi L. H., Lu W., Huang X. J., Chen L. Q. Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries[J]. Journal of the Electrochemical Society,2001, 148(8):A915-A922.
    [62]Kepler K. D., Vaughey J. T., Thackeray M. M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system[J]. Journal of Power Sources,1999, 81:383-387.
    [63]Reddy M. A., Varadaraju U. V. NbSb2 as an anode material for Li-ion batteries[J]. Journal of Power Sources,2006,159(1):336-339.
    [64]Li T. Z., Sun Y. H., Xi W. D. Determination of ceftiofur residues in milk by receptor-based microplate with elisa assay[J]. Chemical Journal of Chinese Universities-Chinese,2008,29(3):473-476.
    [65]Yoon S., Manthiram A. Sb-MO(x)-C(M=A1, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries[J]. Chemistry of Materials,2009,21(16):3898-3904.
    [66]Liu Y., Wen Z. Y., Wang X. Y., Yang X. L., Hirano A., Imanishi N., Takeda Y. Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating[J]. Journal of Power Sources,2009,189(1):480-484.
    [67]Kim I., Kumta P. N., Blomgren G. E. Si/TiN nanocomposites-Novel anode materials for Li-ion batteries[J]. Electrochemical and Solid State Letters,2000,3(11):493-496.
    [68]Jeong G. J., Kim Y. U., Sohn H. J., Kang T. Particulate-reinforced Al-based composite material for anode in lithium secondary batteries[J]. Journal of Power Sources,2001,101(2):201-205.
    [69]Kim I., Blomgren G. E., Kumta P. N. Nanostructured Si/TiB2 composite anodes for Li-ion batteries[J]. Electrochemical and Solid State Letters,2003,6(8):A157-A161.
    [70]Wolfenstine J. CaSi2 as an anode for lithium-ion batteries[J]. Journal of Power Sources,2003, 124(1):241-245.
    [71]Saint J., Morcrette M., Larcher D., Laffont L., Beattie S., Peres J. P., Talaga D., Couzi M., Tarascon J. M. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites[J]. Advanced Functional Materials,2007,17(11):1765-1774.
    [72]Yang J., Takeda Y., Imanishi N., Yamamoto O. Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries[J]. Journal of the Electrochemical Society,1999, 146(11):4009-4013.
    [73]Chaoli Y., Hailei Z., Hong G., Weihua Q., Xidi J. Electrochemical properties of SnSb alloy anode materials synthesized by carbothermal reduction[J]. Rare Metal Materials and Engineering, 2007, 36(8):1403-1406.
    [74]Chao S. C, Song Y. F., Wang C. C, Sheu H. S., Wu H. C, Wu N. L. Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy [J]. Journal of Physical Chemistry C, 2011, 115(44):22040-22047.
    [75]Park C. M., Sohn H. J. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries[J]. Electrochimica Acta, 2009, 54(26):6367-6373.
    [76]Wang F., Yao G., Xu M. W., Zhao M. S., Zhang P. X., Song X. P. Ag-Sb composite prepared by chemical reduction method as new anode materials for lithium-ion batteries[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(5):442-445.
    [77]Shieh D. T., Yin J. T., Yamamoto K., Wada M., Tanase S., Sakai T. Surface characterization on lithium insertion/deinsertion process for sputter-deposited AgSn thin-film electrodes by XPS[J]. Journal of the Electrochemical Society, 2006, 153(1):A106-A112.
    [78]Imai Y., Watanabe A. Energetics of compounds related to Mg(2)Si as an anode material for lithium-ion batteries using first principle calculations[J]. Journal of Alloys and Compounds, 2011, 509(30):7877-7880.
    [79]Iida T., Hirono T., Shibamura N., Sakaguchi H. Mg(2)Ge/Si composite electrodes prepared by gas-deposition as anodes for lithium rechargeable battery[J]. Electrochemistry, 2008, 76(9):644-648.
    [80]Wang X. Y., Wen Z. Y., Lin B., Lin J., Wu X. W., Xu X. G. Preparation and electrochemical characterization of tin/graphite/silver composite as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2):508-512.
    [81]Park C. M., Sohn H. J. Electrochemical Characteristics of TiSb(2) and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries[J]. Journal of the Electrochemical Society, 2010, 157(1):A46-A49.
    [82]Si Q., Hanai K., Imanishi N., Kubo M., Hirano A., Takeda Y., Yamamoto O. Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries[J]. Journal of Power Sources, 2009, 189(l):761-765.
    [83]Ding N., Xu J., Yao Y. X., Wegner G., Lieberwirth I., Chen C. H. Improvement of cyclability of Si as anode for Li-ion batteries[J]. Journal of Power Sources, 2009, 192(2):644-651.
    [84]Trahey L., Vaughey J. T., Kung H. H., Thackeray M. M. High-Capacity, Microporous Cu(6)Sn(5)-Sn Anodes for Li-lonBatteries[J]. Journal of the Electrochemical Society,2009,156(5):A385-A389.
    [85]Huang L., Yang Y., Xue L. J., Wei H. B., Ke F. S., Li J. T., Sun S. G. Electrodeposition and electrochemical properties of novel ternary tin-cobalt-phosphorus alloy electrodes for lithium-ion batteries[J]. Electrochemistry Communications,2009, 11(1):6-9.
    [86]Yoshio M., Tsumura T., Dimov N. Electrochemical behaviors of silicon based anode material[J]. Journal of Power Sources,2005,146(1-2):10-14.
    [87]Todd A. D. W., Ferguson P. P., Barker J. G., Fleischauer M. D., Dahn J. R. Comparison of Mechanically Milled and Sputter Deposited Tin-Cobalt-Carbon Alloys Using Small Angle Neutron Scattering[J]. Journal of the Electrochemical Society,2009,156(12):A1034-A1040.
    [88]Lu L., Chen X., Huang X., Lu K. Revealing the Maximum Strength in Nanotwinned Copper[J]. Science,2009,323(5914):607-610.
    [89]Zhang W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24.
    [90]Lee K. L., Jung J. Y., Lee S. W., Moon H. S., Park J. W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries[J]. Journal of Power Sources,2004,129(2):270-274.
    [91]Graetz J., Ahn C. C., Yazami R., Fultz B. Highly reversible lithium storage in nanostructured silicon[J]. Electrochemical and Solid State Letters,2003,6(9):A194-A197.
    [92]Moon T., Kim C., Park B. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries[J]. Journal of Power Sources,2006,155(2):391-394.
    [93]Takamura T., Uehara M., Suzuki J., Sekine K., Tamura K. High capacity and long cycle life silicon anode for Li-ion battery[J]. Journal of Power Sources,2006,158(2):1401-1404.
    [94]Takamura T., Ohara S., Uehara M., Suzuki J., Sekine K. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life[J]. Journal of Power Sources,2004, 129(1):96-100.
    [95]Hatchard T. D., Obrovac M. N., Dahn J. R. A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with L3i[J]. Journal of the Electrochemical Society,2006,153(2):A282-A287.
    [96]Song S. W., Striebel K. A., Reade R. P., Roberts G. A., Cairns E. J. Electrochemical studies of nanoncrystalline Mg2Si thin film electrodes prepared by pulsed laser deposition[J]. Journal of the Electrochemical Society,2003,150(1):A121-A127.
    [97]Song S. W., Striebel K. A., Song X. Y., Cairns E. J. Amorphous and nanocrystalline Mg2Si thin-film electrodes[J]. Journal of Power Sources,2003,119:110-112.
    [98]Hatchard T. D., Dahn J. R. Electrochemical reaction of the SiAg binary system with li[J]. Journal of the Electrochemical Society,2005,152(7):A1445-A1451.
    [99]Fleischauer M. D., Obrovac M. N., Dahn J. R. Simple model for the capacity of amorphous silicon-aluminum-transition metal negative electrode materials[J]. Journal of the Electrochemical Society, 2006,153(6):A1201-A1205.
    [100]Fleischauer M. D., Dahn J. R. Combinatorial investigations of the Si-Al-Mn system for Li-ion battery applications[J]. Journal of the Electrochemical Society,2004,151(8):A1216-A1221.
    [101]Hatchard T. D., Obrovac M. N., Dahn J. R. Electrochemical reaction of the Sil-xZnx binary system with Li[J]. Journal of the Electrochemical Society,2005,152(12):A2335-A2344.
    [102]Kim Y. U., Lee C. K., Sohn H. J., Kang T. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries[J]. Journal of the Electrochemical Society,2004, 151(6):A933-A937.
    [103]Kim H., Kim Y. J., Kim D. G., Sohn H. J., Kang T. Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries[J]. Solid State Ionics, 2001,144(1-2):41-49.
    [104]Obrovac M. N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters,2004,7(5):A93-A96.
    [105]Obrovac M. N., Krause L. J. Reversible cycling of crystalline silicon powder[J]. Journal of the Electrochemical Society,2007,154(2):A103-A108.
    [106]Vaughey J. T., O'Hara J., Thackeray M. M. Intermetallic insertion electrodes with a zinc blende-type structure for Li Batteries:A study of LixInSb (0<= x<= 3)[J]. Electrochemical and Solid State Letters,2000,3(1):13-16.
    [107]Park M., Jung H., Yoo S.1., Bates J. B., Joo S. K. Electrochemical properties of layer-built cells[J]. Journal of Power Sources,2006,158(2):1447-1450.
    [108]Chen Z. H., Chevrier V., Christensen L., Dahn J. R. Design of amorphous alloy electrodes for Li-ion batteries-A big challenge[J]. Electrochemical and Solid State Letters,2004,7(10):A310-A314.
    [109]Li J., Lewis R. B., Dahn J. R. Sodium carboxymethyl cellulose-A potential binder for Si negative electrodes for Li-ion batteries[J]. Electrochemical and Solid State Letters,2007,10(2):A17-A20.
    [110]Lestrie B., Bahri S., Sandu I., Roue L., Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries[J]. Electrochemistry Communications,2007,9(12):2801-2806.
    [Ill]Hochgatterer N. S., Schweiger M. R., Koller S., Raimann P. R., Wohrle T., Wurm C., Winter M. Silicon/graphite composite electrodes for high-capacity anodes:Influence of binder chemistry on cycling stability[J]. Electrochemical and Solid State Letters,2008,11(5):A76-A80.
    [112]Li J., Le D. B., Ferguson P. P., Dahn J. R. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries[J]. Electrochimica Acta,2010,55(8):2991-2995.
    [113]Profatilova I. A., Choi N. S., Yew K. H., Choi W. U. The effect of ethylene carbonate on the cycling performance of a Si electrode[J]. Solid State Ionics,2008,179(40):2399-2405.
    [114]Li M. Q., Qu M. Z., He X. Y., Yu Z. L. Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries[J]. Electrochimica Acta,2009, 54(19):4506-4513.
    [115]Choi N. S., Yew K. H., Lee K. Y., Sung M., Kim H., Kim S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources,2006, 161(2):1254-1259.
    [116]Han G. B., Ryou M. H., Cho K. Y., Lee Y. M., Park J. K. Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode[J]. Journal of Power Sources,2010,195(11):3709-3714.
    [117]Hassoun J., Panero S., Simon P., Taberna P. L., Scrosati B. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries[J]. Advanced Materials,2007,19(12):1632-1635.
    [118]Needham S. A., Wang G. X., Liu H. K. Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells[J]. Journal of Alloys and Compounds,2005, 400(1-2):234-238.
    [119]Zhao H. I.., Yin C. L., Guo H., He H. C, Qiu W. H., Li Y. Studies of the electrochemical performance of Sn-Sb alloy prepared by solid-state reduction[J]. Journal of Power Sources,2007, 174(2):916-920.
    [120]Hassoun J., Derrien G., Panero S., Scrosati B. A SnSb-C nanocomposite as high performance electrode for lithium ion batteries[J]. Electrochimica Acta,2009,54(19):4441-4444.
    [121]Wang F., Zhao M. S., Song X. P. Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries[J]. Journal of Power Sources,2008,175(1):558-563.
    [122]Park C. M., Yoon S., Lee S. I., Kim J. H., Jung J. H., Sohn H. J. High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries[J]. Journal of the Electrochemical Society,2007,154(10):A917-A920.
    [123]Yin J. T., Wada M., Tanase S., Sakai T. Electrode properties and lithiation/delithiation reactions of Ag-Sb-Sn nanocomposite anodes in Li-ion batteries[J]. Journal of the Electrochemical Society,2004, 151(6):A867-A872.
    [124]Zhao Y. M., Zhou Q., Liu L., Xu J., Yan M. M., Jiang Z. Y. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries[J]. Electrochimica Acta,2006, 51(13):2639-2645.
    [125]Song J. Y., Lee H. H., Wang Y. Y., Wan C. C. Two-and three-electrode impedance spectroscopy of lithium-ion batteries[J]. Journal of Power Sources,2002,111(2):255-267.
    [126]Wang Y. Y., Zhang P. X., Ren X. Z., Yi G. B. Preparation and Electrochemical Performance of SnSb-Ag Composite Alloy Anode Materials[J]. Journal of the Electrochemical Society,2011, 158(12):A1404-A1410.
    [127]Park C. M., Jeon K. J. Porous structured SnSb/C nanocomposites for Li-ion battery anodes[J]. Chemical Communications,2011,47(7):2122-2124.
    [128]Shi L. H., Li H., Wang Z. X., Huang X. J., Chen L. Q. Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries[J]. Journal of Materials Chemistry,2001,11(5):1502-1505.
    [129]Li H., Wang Q., Shi L. H., Chen L. Q., Huang X. J. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery[J]. Chemistry of Materials,2002, 14(1):103-108.
    [130]Coleman J. N., Khan U., Blau W. J., Gun'ko Y. K. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites [J]. Carbon,2006,44(9):1624-1652.
    [131]Chew S. Y., Ng S. H., Wang J. Z., Novak P., Krumeich F., Chou S. L., Chen J., Liu H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries[J]. Carbon,2009,47(13):2976-2983.
    [132]Du G. D., Zhong C., Zhang P., Guo Z. P., Chen Z. X., Liu H. K. Tin dioxide/carbon nanotube composites with high uniform SnO(2) loading as anode materials for lithium ion batteries[J]. Electrochimica Acta,2010,55(7):2582-2586.
    [133]Jhan Y. R., Duh J. G., Tsai S. Y. Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction[J]. Diamond and Related Materials,2011,20(3):413-417.
    [134]Hong J., Wang C. S., Kasavajjula U. Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries[J]. Journal of Power Sources,2006,162(2):1289-1296.