用户名: 密码: 验证码:
零价铁非生物降解染料的过程及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零价铁是一种来源广泛,价格低廉的材料,近年来在染料废水处理中受到越来越多研究者的青睐。本学位论文主要研究了零价铁-水体系还原偶氮染料活性艳红X-3B(X3B)和零价铁-双氧水体系氧化氧杂蒽染料罗丹明B(RhB)的动力学与机理:
     (1)利用零价铁-水体系还原X3B。研究结果表明,相对于染料亚甲基蓝和罗丹明B,零价铁可有效还原降解X3B。通过分析溶液pH值、零价铁投加量和染料初始浓度对上述过程的影响,发现X3B的降解率随溶液pH的升高而降低;随零价铁投加量的增加而增大;随染料初始浓度的增加而降低。对X3B浓度为80mg·L-1反应的最佳条件为,溶液pH=4.0,零价铁投加量1.0g·L-1。零价铁还原X3B的过程呈准一级反应动力学特点,线性相关系数R2>0.96。利用紫外可见分光光度计、离子色谱等仪器分析了反应中间产物,发现零价铁还原偶氮染料X3B过程中并没有C1-和SO42-的产生,推测其可能的染料去除路径为:偶氮基被零价铁还原生成胺基,大的偶氮染料分子被降解成小分子芳胺。
     (2)利用零价铁-双氧水体系氧化RhB。研究结果表明,零价铁-双氧水体系可产生强氧化的羟基自由基·OH,在暗态下高效氧化降解RhB。本论文进行了溶液pH、零价铁投加量、双氧水投加浓度和染料初始浓度对上述过程的影响研究。研究发现,RhB的降解率随溶液pH的升高而降低,随零价铁投加量和双氧水浓度的增加呈先升高后降低的变化,随染料初始浓度的增加而降低。对RhB浓度为50mg·L-1反应的最佳条件为,溶液pH=4.0,零价铁投加量1.0g·L-1,双氧水浓度10mmol·L-1。零价铁还原RhB的过程呈准一级反应动力学特点,线性相关系数R2>0.90。利用紫外可见分光光度计、离子色谱、总有机碳仪等分析了中间产物,推测RhB经历了脱乙基、发色基团/芳香环开裂,然后矿化的途径,30min内约70%的RhB被矿化成CO2和H2O。
Zero-valent iron (ZVI) technologies for contaminated land and groundwater remediation have attracted much attention in recent years. Due to its low cost and benignity to environment, ZVI has been applied to deal with the reducible inorganic and organic contaminants. In this paper, reactive brilliant red X-3B (X3B) was used as a model pollutant of azo dye to examine the reductive capacity of the ZVI/H2O system. Rhodamine B (RhB) was used as a model pollutant of xanthene dyes to examine the oxidative capacity of the ZVI-based Fenton process with low dose of H2O2and the pH value over4.0was concentrated. The degradation kinetics and mechanism of X3B and RhB were discussed.
     (I) Degradation of X3B by ZVI in aqueous solution was investigated. The effects of ZVI dosage, initial concentration of X3B and initial pH value on the degradation of X3B were examined. The removal of X3B decreased with the increase of pH value and initial concentration of dye, but increased with the increase of ZVI dosage. The degradation of X3B could be described by the pseudo first-order kinetic model, and linear correlation coefficient R2>0.96. The degradation of80mg·L-1X3B achieved best with1.0g·L-1ZVI at pH4.0.
     The intermediates of X3B were analyzed with UV-Vis spectrophotometry and ion chromatography and the mechanism of reductive degradation of X3B was also discussed. The ion chromatography analysis showed that there were no Cl-and SO42-produced through ZVI/H2O systems, indicating that chloride ion and sulphonic groups could resist cut off from triazene ring and naphthalene ring, respectively.
     (Ⅱ) Degradation of RhB by ZVI-based Fenton process with H2O2was investigated. The effects of H2O2concentration, ZVI dosage, and initial concentration of RhB and initial pH value on the degradation of RhB were examined. The removal of RhB decreased with the increase of pH value and initial concentration of dye, but increased with the increase of ZVI dosage and H2O2concentration up to top then decreased. The degradation of RhB could be described by the pseudo first-order kinetic model, and linear correlation coefficient R2>0.90. The optimum degradation condition for50mg·L-1of RhB is pH=4.0with ZVI dosage1.0g·L-1and H2O210mmol·L-1.
     The results showed that the degradation and mineralization of RhB occurred with low dose of H2O2and ZVI. The intermediates of RhB were analyzed with UV-Vis spectrophotometry and ion chromatography and the mechanism of oxidative degradation of RhB was also discussed. The reactive oxygen species (·OH) produced in ZVI-based Fenton process with H2O2is the key to the degradation of RhB by ways of N-de-ethylation, chromophore cleavage, ring-opening and mineralization. It can be seen that about70%of RhB decomposed into CO2and H2O within30min.
引文
[1]胥维昌.染料行业废水处理现状和展望[J].染料工业.2002, 39(6):35-39.
    [2]国家统计局.中国环境统计年鉴[M].中国统计出版社,2010.
    [3]梁志荣.染料废水物理化学处理技术的现状与进展[J].四川环境.2003, 22(6):25-29.
    [4]Hou M F, Li F B, Liu X M, et al. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron[J]. Journal of Hazardous Materials.2007, 145(1-2):305-314.
    [5]Jen J F, Leu M F, Yang T C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography[J]. Journal of chromatography A.1998,2(796):283-288.
    [6]冀静平,祝万鹏.膨润土的改性及对染料废水的处理研究[J].中国给水排水.1998,14(4):7-9.
    [7]雷乐成,汪大翠.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [8]王敏欣,谷庆宝,等.无机改性粉煤灰对模拟染料废水吸附脱色的作用[J].黑龙江矿业学院学报.2000,10(3):13-19.
    [9]王万林.我国复合型无机高分子絮凝剂的研究及应用进展[J].工业水处理.2008(4):1—5.
    [10]许骏,王志,王纪孝,等.反渗透膜技术研究和应用进展[J].化学工业与工程.2010,27(4):351—357.
    [11]王静荣,李书申.超滤法回收PVA并回用于生产的放大实验[J].环境化学, 1993,12(6):484-489.
    [12]Koyuncu I. Influence of dyes, salts and auxiliary chemicals on the nanofiltration of reactive dye baths:experimental observations and model verification[J]. Desalination.2003,154(1):79-88.
    [13]王振余,郭树才. 炭膜处理染料水溶液的研究[J].膜科学与技术.1997, 17(5):7-10.
    [14]张艳,赵宜江.陶瓷微滤膜处理印染废水的膜再生研究[J].水处理技术.2000,26(6):336-339.
    [15]魏微,胡浩权,秦国彤,等.炭膜处理印染废水的影响因素[J].水处理技术.2007,33(2):31-33.
    [16]吴克宏,唐建伟,倪中华,等.超声波强化陶瓷膜分离实验研究[J].膜科学与技术.2009,29(2):90-93.
    [17]Majewska-Nowak K M. Development of new rod-type membranes for effluent decolorization:performance tests on model dye solutions[J]. Journal of Membrane Science.1992,68(3):307-317.
    [18]蔡千华编译.利用超导磁分离技术处理造纸厂废水[J]. 国际造纸.2007, 26(6):28-30.
    [19]陈显利,焦雨红,张浩,等.超导磁分离在造纸厂污水净化中的应用[J].科技导报.2009(3):61-66.
    [20]高延耀,顾国维,周琪.水污染控制工程(下册)[M].高等教育出版社,2010.
    [21]van der Zee F P, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies[J]. Water Research.2005,39(8):1425-1440.
    [22]耿云波,刘永红,赵鹏飞.印染废水生物处理技术的应用现状及研究进展[J].工业用水与废水.2010, 41(4):1-4.
    [23]赵大传,张洪荣,贾洪斌.核桃壳固定化微生物处理高浓度印染废水的研究[J].工业水处理.2004,24(4):17-19.
    [24]赵军,赵晓祥,鲁丹. 复合微生物絮凝剂的培养及其对印染废水处理的研究[J].工业用水与废水.2008,39(6):71—74.
    [25]Glaze W H, Kang J W, Chapin D H. The Chemistry of water and wastewater treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone:Science & Engineering.1987,9(4):335-352.
    [26]Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environmental Science & Technology.1996.30(1):153-160.
    [27]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature.1972(37-38):37-38.
    [28]邓克俭.催化分子氧降解水中有机污染物的研究[D].武汉大学, 2004.
    [29]Cheng M, Song W, Ma W, et al. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation[J]. Applied Catalysis B-Environmental.2008,77:355-363.
    [30]Zhao D, Sun C Y, Chen C C, et al. Photochemical degradation of organic pollutants polybrominated diphenyl ether congeners and cyanuric acid[J]. Progress in Chemistry.2009,21:400-405.
    [31]Chen C C, Li J, Zhao W, et al. Visible light induced photocatalytic reaction of rhodamine B dye via 12-tungstosilicic acid in water[J]. Science in China (Series B). 2003(6):577-582.
    [32]马万红,籍宏伟,李静,等.活化H202和分子氧的光催化氧化反应[J].科学通报.2004(18):1821-1829.
    [33]Ma W H, Li J, Tao X, et al. Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged iron(II) bipyridine under visible irradiation[J]. Angewandte Chemie International Edition.2003,42(9):1029-1032.
    [34]Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. Journal of the American Chemical Society.2004,126(15):4782-4783.
    [35]Fenton. Oxidation of tartaric acid in the presence of iron[J]. Journal of Chemical Society, Transactions.1894,65(65):899-911.
    [36]Hou M F, Liao L, Zhang W, et al. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2[J]. Chemosphere.2011(83):1279-1283.
    [37]Bergendahl J A, Thies T P. Fenton's oxidation of MTBE with zero-valent iron[J]. Water Research.2004,38(2):327-334.
    [38]刘鼎,许宜铭.杂多酸存在下X3B染料光降解和Cr(VI)光还原的协同反应机理[J].物理化学学报.2008(9):1584-1588.
    [39]袁勤生.现代酶学[M].上海:华东理工大学出版社,2007.
    [40]Hou M F, Wan H F, Liu T L, et al. The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron[J]. Applied Catalysis B-Environmental.2008,84(1-2):170-175.
    [41]王新新,张颖,李慧,等.零价铁对铬污染底泥的修复及其对微生物群落结构 的影响[J].环境科学学报.2009(2):297—304.
    [42]饶品华,肖稳发,徐菁利,等.天然有机物对零价铁去除水体中砷的影响研究[J].环境污染与防治.2009,31(6):43-46.
    [43]张珍,郝志伟,刘文莉,等.零价铁对重金属和硝酸根的同步去除研究[J].环境科学.2009,30(3):775-779.
    [44]唐次来,张增强,李荣华.不同阴离子对Fe0还原硝酸盐的影响[J].环境科学学报.2009,29(4):732—739.
    [45]陈少瑾,梁贺升.零价铁还原脱氯污染土壤中PCBs的实验研究[J].生态环境学报.2009,18(1):193—196.
    [46]戴友芝,吴兰艳,田凯勋,等.超声波/零价铁体系降解五氯酚的机理[J].环境科学学报.2008,28(2):331-336.
    [47]戴友芝,张良长,田凯勋,等.零价铁协同超声波降解2,3,4,6-四氯酚的特性[J].环境化学.2009,28(1):49-53.
    [48]解清杰,何佳,黄卫红.六氯苯污染水体的零价铁修复[J].江苏大学学报:自然科学版.2009,30(1):75-79.
    [49]谢凝子,吴双桃,陈少瑾,等.Fe0对土壤中3-硝基甲苯的还原作用[J].环境化学.2009,28(2):173-176.
    [50]谢凝子,吴双桃,陈少瑾,等.土壤中零价铁还原3-氯硝基苯的作用[J].环境工程学报.2009,3(2):359-362.
    [51]吴双桃,邱罡,谢凝子,等.Fe0还原土壤中对硝基甲苯的实验研究[J].农业环境科学学报.2009,28(2):239-243.
    [52]何立平,杨迎春,徐成华,等.Fe/活性炭多相类Fenton法湿式氧化罗丹明B废水的研究[J].环境工程学报.2009(8):1433-1437.
    [53]王宇品.利用Fe0-EDTA-空气体系绿色降解染料废水研究[D].西北师范大学,2009.
    [54]杨颖,王黎明,关志成. 零价铁法处理活性艳橙X-GN染料废水[J].清华大学学报(自然科学版), 2005(03).
    [55]Deng Y, Englehardt J D. Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate[J].Journal of Hazardous Materials.2008, 153(1-2):293-299.
    [56]Bremner D H, Burgess A E, Houllemare D, et al. Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide[J]. Applied Catalysis B-Environmental.2006,63(1-2):15-19.
    [57]Kallel M, Belaid C, Mechichi T, et al. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron[J]. Chemical Engineering Journal.2009,150(2-3):391-395.
    [58]张德莉,黄应平,罗光富,等Fenton及Photo-Fenton反应研究进展[J].环境化学.2006,25(2):121-127.
    [59]Shu H Y, Chang M C, Chang C C. Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution[J]. Journal of Hazardous Materials.2009,167(1-3):1178-1184.
    [60]Alhamedi F H, Rauf M A, Ashraf S S. Degradation studies of Rhodamine B in the presenceof UV/H2O2[J]. Desalination.2009(239):159-166.
    [61]Zhou T, Lim T T, Li Y Z, et al. The role and fate of EDTA in ultrasound-enhanced zero-valent iron/air system[J]. Chemosphere.2010,78(5):576-582.
    [62]Devi L G, Kumar S G, Reddy K M, et al. Photodegradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron, influence and mechanism[J]. Journal of Hazardous Materials.2009(164):459-467.
    [63]Liao C H, Kang S F, Hsu Y W. Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide[J]. Water Research.2003, 37(17):4109-4118.
    [64]刘国光,张学治,许亚杰,等.铁、锌、铁酸锌掺杂对纳米级二氧化钛光催化降解罗丹明B活性的影响[J].环境工程.2003, 21(2):72-74.
    [65]Wang Z Y, Chen C, Wu F Q, et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals[J]. Journal of Hazardous Materials. 2009,164(2-3):615-620.
    [66]邢其毅,徐瑞秋,周政,等. 基础有机化学(下册)[M]. 高等教育出版社,2003.
    [67]Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology.1994,28(12):2045-2053.
    [68]Cao J, Wei L, Huang Q, et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution[J]. Chemosphere.1999,38(3):565-571.
    [69]Hwang Y, Kim D, Shin H. Mechanism study of nitrate reduction by nano zero valent iron[J]. Journal of Hazardous Materials.2011,185(2-3):1513-1521.
    [70]Dickinson M, Scott T B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent[J]. Journal of Hazardous Materials.2010,178:171-179.
    [71]Chen J, Al-Abed S R, Ryan J A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials.2001, 83(3):243-254.
    [72]Burris D R, Campbell T J, Manoranjan V S. Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System[J]. Environmental Science & Technology.1995,29(11):2850-2855.
    [73]Kuroda K, Labun P A, Welsch G, et al. Oxide-formation characteristics in the early stages of oxidation of Fe and Fe-Cr alloys[J]. Oxidation of Metals.1983(19): 117-127.
    [74]Noubactep C. A critical review on the mechanism of contaminant removal in Fe0-H2O systems[J]. Environmental Technology.2008,8(29):909-920.
    [75]Noubactep C. Characterizing the discoloration of methylene blue in Fe0/H2O systems[J]. Journal of Hazardous Materials.2009,166:79-87.
    [76]Naka D, Kim D, Strathmann T J. Abiotic Reduction of Nitroaromatic Compounds by Aqueous Iron(II)-Catechol Complexes[J]. Environmental Science & Technology. 2006,40(9):3006-3012.
    [77]邓南圣,吴峰.环境光化学[M]. 北京:化学工业出版社, 2003.
    [78]Zawaideh L L, Zhang T C. The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in FeO-water systems[J]. Water Science and Technology.1998,38(7):107-115.
    [79]Huang C P, Wang H W, Chiu P C. Nitrate reduction by metallic iron[J]. Water Research.1998,32:2257-2264.
    [80]Choe S, Ljestrand H, Khim J. Nitrate reduction by zero-valent iron under different pH regimes[J]. Applied Geochemistry.2004,19:335-342.
    [81]Hsu J, Lin C, Liao C, et al. Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design[J]. Chemosphere.2008,72(7):1049-1055.
    [82]Su C, Puls R W. Nitrate reduction by zerovalent iron:Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environmental Science & Technology.2004,38(9):2715-2720.
    [83]Liou Y H, Lo S, Kuan W H, et al. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate[J]. Water Research.2006,40:2485-2492.
    [84]Vione D, Minero C, Maurino V, et al. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst[J]. Applied Catalysis B-Environmental.2005,1-2(58):79-88.
    [85]Meunier B, Sorokin A. Oxidation of pollutants catalyzed by metallophthalocyanines[J]. Accounts of Chemical Research.1997,30(11):470-476.
    [86]Berglund G I, Carisson G H, Smith A T. The catalytic pathway of horseradish peroxidase at high resolution[J]. Nature.2002,23(417):463-468.
    [87]Chen R, Pignatello J J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology.1997,31(8):2399-2406.
    [88]Lorimer J P, Mason T J, Cuthbert T C, et al. Effect of ultrasound on the degradation of aqueous native dextran[J]. Ultrasonics Sonochemistry.1995,2(1):S55-S57.
    [89]Jeong J, Yoon J. pH effect on OH radical production in photo/ferrioxalate system[J]. Water Research.2005,39(13):2893-2900.
    [90]GB/T 2441.4-2010,尿素的测定方法第4部分:铁含量邻菲啰啉分光光度法[S].2010.
    [91]Kormann C, Bahnemann D W, Hoffmann M R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand[J]. Environmental Science & Technology.1988, 22(7):798-806.
    [92]GB/T 9732-2007,化学试剂铵测定通用方法[S].2007.
    [93]You Y, Han J, Chiu P C, et al. Removal and inactivation of waterborne viruses using zerovalent Iron[J]. Environmental Science & Technology.2005,39(23): 9263-9269.
    [94]王文成,吴德礼,马鲁铭.零价金属还原降解水中污染物的应用研究综述[J].四川环境.2007,26(3):99-103.
    [95]毛立群,杨建军,郭泉辉,等.活性艳红X-3B水溶液的光化学与光催化协同脱色反应[J].催化学报.2001(2):181-184.
    [96]王子,马鲁铭.催化铁还原技术在工业废水处理中的应用进展[J].中国给水排水.2009,25(6):9-13.
    [97]Zhang Y, Dou X, Liu J, et al. Decolorization of reactive brilliant red X-3B by heterogeneous photo-Fenton reaction using an Fe-Ce bimetal catalyst[J]. Catalysis Today.2007,126(3-4):387-393.
    [98]李昱昊,毛立群,张顺利,等.活性艳红X-3B水溶液的光催化脱色及矿化过程研究[J].感光科学与光化学.2004(5):383—390.
    [99]吴峰,华河林,邓南圣.三种偶氮染料降解历程在紫外-可见光谱上的表现[J].环境化学.2000(4):348-351.
    [100]Bokare A D, Chikate R C, Rode C V, et al. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution[J]. Applied Catalysis B-Environmental.2008,79:270-278.
    [101]Bokare A D, Chikate R C, Rode C V, et al. Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation[J]. Environmental Science & Technology.2007,41(21):7437-7443.
    [102]Yamazaki I, Piette L H. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide[J]. Journal of the American Chemical Society.1991,113(20):7588-7593.
    [103]Walling C. Intermediates in the reactions of Fenton type reagents[J]. Accounts of Chemical Research.1998,31(4):155-157.
    [104]Goldstein S, Meyerstein D. Comments on the mechanism of the "Fenton-Like" reaction[J]. Accounts of Chemical Research.1999,32(7):547-550.
    [105]Li G, Wong K H, Zhang X, et al. Degradation of Acid Orange 7 using magnetic AgBr under visible light:The roles of oxidizing species[J]. Chemosphere.2009, 76(9):1185-1191.
    [106]Ai Z, Lu L, Li J, et al. Fe@Fe2O3 core-shell nanowires as iron reagent.1. Efficient degradation of rhodamine B by a novel sono-Fenton process[J]. The Journal of Physical Chemistry C.2007,111(11):4087-4093.
    [107]He Z, Sun C, Yang S, et al. Photocatalytic degradation of rhodamine B by Bi2WO6with electron accepting agent under microwave irradiation:Mechanism and pathway[J]. Journal of Hazardous Materials.2009,162:1477-1486.
    [108]Edvinsson T, Li C, Pschirer N, et al. Intramolecular charge-transfer tuning of perylenes:Spectroscopic features and performance in dye-sensitized solar cells[J]. The Journal of Physical Chemistry C.2007,111(42):15137-15140.
    [109]Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells[J]. Chemical Reviews.2007,107(4):1324-1338.
    [110]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700