1. [地质云]滑坡
MEMS热电堆红外探测器的结构设计及制造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会中,无论是军用还是民用领域,红外探测器都有越来越重要的地位。热电堆红外探测器作为非制冷型红外探测器的一种,自20世纪80年代MEMS(微机械系统)工艺技术的引进,陆续出现了IC兼容的微机械硅基红外探测器类型,相较传统方法制作的热电堆器件具有低成本、低功耗、小型化等特点,受到国内外研究人员越来越多的关注。但是近年来的研究在设计与工艺兼容方面始终存在一些弊端,因此本文针对结构和工艺兼容进行一系列创新,通过大量的工艺制备实验,完整的得出一种制备简单、与CMOS兼容性强的新型热电堆红外探测器工艺流程。
     本文的主要研究重点有:
     (1)理论设计方面,针对成本和IC兼容性方面进行了几点创新,包括有:突破单层硅片干法刻蚀对尺寸的限制和SOI衬底价钱昂贵,不易于成批制造的缺点,采用了氧化层上的多晶硅(Si-SiO_2-POLY)作为衬底;两层热偶条采用叠放的方式,有效节省结构空间,中间采用LPCVD制作氧化硅作为热电隔离。通过热平衡分析设计的结构模型,从热偶条长度、宽度、厚度、对数和吸收区边长几个方面的优化对比。
     (2)工艺方面,针对本设计的探测器结构,分析在制备过程中的工艺步骤。对这些工艺过程进行实验对比,实验包括有:多晶硅高深宽比凹槽(大于2μm)的刻蚀实验中侧壁形貌和尺寸控制与刻蚀条件的关系;使用氧化硅进行深槽填充时填充程度和填充后表面平整度的测试实验;关于在高深宽比结构内形成所需尺寸结构的条件研究和XeF_2干法释放的条件实验等。并对实验结果进行分析说明。
     (3)另外,本文采用卤素气体对非晶硅进行刻蚀出现的针状结构(“黑硅”)作为探测器的表面吸收层。通过不同刻蚀条件得到表面黑化程度不同的样片;并对样片的红外吸收率进行测试。
     本文通过对各项工艺制备条件的对比,得到了不同实验中多组样片结果,进行了wafer表面或者掰片后侧壁的电镜测试。通过对测试结果进行分析,最终验证了设计中各项创新点在实际工艺制备中的可行性。在克服所有工艺难题的基础上,整合本设计的工艺制备步骤,成功的得出具有腐蚀自停止、以厚多晶硅作衬底释放结构的热电堆红外探测器的制备流程。
In present society, the IR(infrared radiation) detector plays a more and more importantrole in both military and civil domain. With the introduction of MEMS(Micro-Electro-Mechanical Systems) process to IR technology in 1980’s , the thermopileinfrared detector, as a kind of uncooled IR detector, has directed to some IC compatible typesbased on silicon which have caused lots of attentions for the advantages of low cost, lowenergy consumption and miniaturization comparing with the conventional device. However,there are a lot of disadvantages in the design and IC compatibility of resent research. In thedissertation, some innovations on structure and IC compatibility are put forward to integratethe detector. Accordding to lots of process experiments, a new thermopile infrared detectorwhich is fabricated simplily and CMOS compatible is obtained.
     The design has some research spots more excellent than conventional thermopile IRdetector:
     (1) In the theory and design, there are some innovation spots for the cost and IC compatibility,including: To break the Silicon substrate’limitation to release and save the price of SOI, anew substrate structure which has the polysilicon on the SiO2layer (Si-SiO_2-POLY) ispresent; The two materials of thermocouple are terrace and insulated by LPCVD siliconoxide so that the place is saved. The stationary heat model is built to analyze the device.Establish the detector’s size and influences of absorbing area。
     (2) In the process, analyses the MEMS process in the detector’s structure designed and dosome experiments make sure the design is IC compatible, including: when dry etching ofpolysilicon quirk(GT 2μm),the relationship between the factor of etching and the patternand size of sidewall; after filling the quirk with silicon oxide, the condition of surface test; structure formation in the deep and narrow hole and the XeF_2dry etching condition etc.Besides, analyse and explain the experimental results.
     (3) In addition, the thesis presents a needle-like array ofα-Si which appears in halogen gasdry etching as the absorbing material on the surface. According to change the etchingcondition, a series of sample wafers are achieved. Testing and checking the IRabsorptivity of these samples under different wavelength light source.
     Accordding to comparing the process fabrication condition, several groups of samplesare obtained in different experiments, the whole wafer’s surface or sidewall pattern after breakoff the wafer are tested by SEM. After analyse the test results, the feasibility of theinnovation spots in the design in the process fabrication is proved. Based on it, the completefabrication process is integrated to make a whole fabrication flow of the thermopile infrareddetector which has self-stopping in etching polysilicon to release the device.
引文
[1]徐峥宜.微机械热电堆红外探测器.博士学位论文.中国科学院上海微系统与信息技术研究所, 2002
    [2]R. Vanzetti(著),张守一,郭迪忠等.红外技术的实际应用.北京:科学出版社,1981: 1~2
    [3]杨恒昭. CMOS兼容的干法刻蚀释放热电堆红外探测器.硕士学位论文.中国科学院上海微系统与信息技术研究所, 2008
    [4]刘月英.硅铝结构热电堆红外探测器.硕士学位论文.中国科学院上海微系统与信息技术研究所, 2003
    [5]M.C. Foote. E.W. Jones,“High Performance MicroMachined Thermopile LinearArray”, Proc.SPIE, Infrared Detetors and Focal Plane Array V, pp.192-197, 1998
    [6]蔡小五,韩郑生,马斌,梁平治.微机械非制冷红外探测器的研制.第十四界全国半导体集成电路、硅材料学术会议.2005, 513~517
    [7]M. Hirota, F. Satou, M. Saito, Y.Kishi, Y. Nakajima, M. Uchiyama,“Thermoeletric infrared imager and automotive application”, SPIE, Vol.4369,pp.312-321, 2001
    [8]王海棠,黄琦兰,刘尚.基于NDIR法汽车尾气分析仪的设计与实现.2006,25(6): 48~53
    [9]潘中桥.碳氢类气体红外传感器系统的研究.硕士学位论文.上海大学, 2009
    [10]MIN-YOUNG KIM, TAE-SUNG OH. Electrodeposition. ThermoelectricCharacteristics of Bi2Te3and Sb2Te3Films for Thermopile Sensors Applications.Journal of ELECTRONIC MATERIALS, Vol.38, No.7, 2009
    [11]Yu.A.Astrov, L.M.portsel, A.N.Lodygin, V.B.Shuman, N.V.Abrosimov. Planarsulfur-doped silicon detectors for high-speed infrared thermography. Infrared Physicsand Technology. 2009, 52: 25-31
    [12]Haisheng San, Xuyuan Chen, Peng Xu, Fangqiang Li. A MEMS-Based InfraredEmitter Array for Combat Identification. Proc.of SPIE.2008, 6940:69401T-1~9
    [13]Chen-Hsun Du, Chengkuo Lee. Investigation of thermopile using CMOScompatible process and front-side Si bulk etching. Proceedings of SPIE. 2000,4176:168~177
    [14](美)徐泰然著,王晓浩等译. MEMS和微系统—设计与制造.北京:机械工业出版社, 2004: 284~285
    [15]刘义东,李铁,王翊,王跃林. CMOS兼容的微机械P-N多晶硅热电堆红外探测器.功能材料与器件学报.2007, 13(3): 312~316
    [16]Thomas Kiyong Jun.Design, modeling and fabricated of an infrared thermopiledetector based on MEMS technology. PhD Dissertation. University of California, LosAngeles, 2002
    [17]Selim Eminoglu, Deniz Sabuncuoglu Tezcan. Low-cost uncooled infrareddetectors in CMOS process.Sensors and Actuators A, 2003, 109: 102-113
    [18]A.F.Loffe. Semiconductor Thermoelements and Thermoelectric Cooling. London,England: Infosearch Ltd, 1957
    [19]S.C.Allison, R.L.Smith, D.W.Howard, C. Gonzalez, S.D.Collins. A bulkmicromachined silicon thermopile with high sensitivity. Sensors and Actuators A.2003, 104:32~39
    [20]H Wu, S Grabarnik,A Emadi, G de Graaf and R F Wolffenbuttel. A thermopiledetector array with scaled TE elements for use in an integrated IR microspectrmeter.Journal of Micromechanics and Microengineering.2009,19:055016-1~055016-9
    [21]Shu-Jung Chen,Chih-Hsiung Shen. A New High-Filling-Factor CMOS-Compatible Thermopile. IEEE TRANSACTIONS ON INSREUMENTATION ANDMEASUREMENT.2007,56(4):1231~1238
    [22]M.Boutchich,K.Ziouche,M.Ait-Hammouda Yala,P.Godts,D.Leclercq.Packagefree infrared micro sensor using polysilicon thermopile. Sensors and Actuators A2005,121:52~58
    [23]Masaki Hirota, Yasushi Nakajima. 120×90 Element Thermopile Array Fabricatedwith CMOS Technology. Proceedings of SPIE .2003,4820:239-249
    [24]Yanlong Li,Hong Zhou,Tie Li,Yi Wang,Yanxiang Liu,Yuelin Wang.CMOScompatible 8×2 thermopile array. Sensors and Actuators A. 2010,161:52~58
    [25]Kaiqun Wang,Chenyang Xue,Ting Liang,Binbin Jiao. Thermopile InfraredDetector with Detectivity Greater Than 108cmHZ(1/2)/W.Spring Science.2010,1~8
    [26]Dehui Xu,Bin Xiong,Yuelin Wang. Integrated micromachined thermopile IRdetectors with an XeF2dry-etching process.2009,11~22
    [27]刘义东.CMOS兼容的微机械P/N多晶硅热电堆红外探测器.硕士学位论文.2006
    [28] http://wenku.baidu.com/view/68bab77302768e9951e738bd.html
    [29] http://baike.soso.com/v4214206.htm?ch=ch.bk.innerlink
    [30]C.Calaza,N.Viarani,G.Pedretti,M.Gottardi,A.Simoni,V.Zanini,M.Zen. Anuncooled infrared focal plane array for low-cost applications fabricated with standardCMOS technology.Sensors and Actuators A.2006,132:129~138
    [31]Danijela Randjelovic, Anastasios Petropoulos. Multipurpose MEMS thermalsensor based on thermopiles. Sensors and Actuators A. 2008,141:404-413
    [32]T.Elbel. Miniatured thermoelectric radiation sensors. Sensors and Materials.1991,3:97~109
    [33]R.Lenggenhager, H.Baltes, T.Elbel. Thermoelectric infrared sensors in CMOStechnology. Sensors and Actuators A.1993,37~38:216~220
    [34]A Graf, M Arndt, M Sauer, G Gerlach. Review of micromachined thermopiles forinfrared detection. Measurement Science and Technology. 2007,18:R59~R75
    [35]孟立凡,郑宾.传感器原理及技术.北京:国防工业出版社,2005:129~130
    [36]Claes G.Mattsson, Goran Thungstrom, Kent Bertilsson,Hans-Erik Nilsson, HansMartin. Design of a micromachined thermopile infrared sensor with a self-supportedSiO2/SU-8 membrane. IEEE SENSORS JOURNAL.2008,8(12):2044~2052
    [37](美)夸克等著,韩郑生等译.半导体制造技术.北京:电子工业出版社,2008:442~449
    [38]Till Huesgen, Peter Woias,Norbert Kockmann. Design and fabrication of MEMSthermoelectric generators with high temperature efficiency. Sensors and ActuatorA.2008,145:423
    [39](法)M. Elwenspoek等著,姜岩峰译.硅微机械加工技术.北京:化学工业出版社,2006:166~172
    [40]王楷群.热电堆红外探测器的设计与性能测试.硕士学位论文.2010
    [41]Fulvio Mancarella, Alberto Roncaglia, Mara Passini,Michele Sanmartin, GianCarlo Cardinali, Maurizio Severi. Wafer-level testing of thermopile IR detectors. The4thIEEE Conference on Sensors.2005,2:1133~1136
    [42]王会强,郝丽娜,郝晓剑,周汉昌.MEMS热电堆高温测试系统中的MEMS传感器动态性能测试.计量与测试技术.2010,37(5):44-46
    [43]John C.Brasunas. Measuring and modeling the frequency response of infrareddetectors. Infrared Physics and Technology.1997,38:69~74
    [44]R.Lenggenhager, H.Baltes, J.Peer, M. Foster. Thermoelectric infrared sensors byCMOS technology. IEEE electron device letters.1992,13(9):454~456
    [45]A.Dehe, K. Fricke, H.L.Hartnagel. Infrared thermopile sensor based onAlGaAs-GaAs micromachining. Sensors and Actuator A.1995,46:432~436
    [46]Yung-Jr Hung, Kai-Chung Wu, San-Liang Lee, Yen-Ting Pan. Aligned SiliconNanowire Arrays for Achieving Black Nonreflecting Silicon Surface.IEEE.2010,61~62
    [47]缪家鼎,徐文娟,牟同升.光电技术.浙江:浙江大学出版社,2001:7~8
    [48](美)Donald A. Neamen著,赵毅强等译.半导体物理于器件(第三版).北京:电子工业出版社,2006:3~8