用户名: 密码: 验证码:
大型柱塞缸双球铰结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柱塞式液压缸是大型液压机本体结构中应用最多的执行元件。其中,双球铰结构是工作缸柱塞与活动横梁的主要连接形式。当液压机受偏心载荷作用时,柱塞偏转与导套及密封处接触产生侧向推力,侧推力的作用加速了导套及密封的磨损。因此,侧推力成为评价双球铰结构优劣的关键性问题。双球铰结构主要由上下球铰和中间杆三部分构成,在传统液压机设计理论中,认为增长中间杆长度并减小球铰的球面半径能够更好的减小侧推力。然而,在当今液压机的设计制造中,尤其是在大型液压机柱塞缸设计中,对双球铰结构的设计与传统理论不尽相同,尤其是该结构主要尺寸的确定依据尚不明晰。
     本文从侧推力产生的机理展开研究,对偏心载荷下,双球铰式柱塞结构进行了受力分析,讨论在不同接触条件下,柱塞侧壁处侧推力的产生机理及作用方式。并以大型非线性有限元软件MSC.Marc为平台,建立了该结构的三维有限元仿真模型,系统的研究了中间杆长度及直径、上下球铰半径和导套间隙等对侧推力产生的影响规律。研究表明:相同双球铰结构下,柱塞与导套在不同位置发生接触后,侧推力的作用方式及效果各不相同。相同接触条件下,不同结构柱塞与导套发生接触后,随着中间杆长度的增长,侧推力呈减小趋势;随着中间杆直径的增大,侧推力呈减小趋势;随着球铰球面半径的增大,侧推力呈增大趋势;随着导套间隙的增大,侧推力呈减小趋势;
     以某厂125 MN锻造液压机为原型,按照1:10的尺寸比例设计制备了双球铰柱塞式液压缸侧推力实验装置,配备了五组不同规格尺寸的中间杆和球铰,进行了在偏心载荷下,不同双球铰结构柱塞所受侧推力大小的实验。实验结果表明:中间杆长度、上下球铰半径和导套接触位置对侧推力的影响规律与计算结果基本吻合。
     通过对大型柱塞缸双球铰结构的研究后得出:在工程设计中,中间杆长度系数取0.64~0.83;中间杆直径系数取:0.59~0.63;球铰球面半径系数取:1~1.15;
As an actuator, the plunger type cylinder has been widespread used on the structureof large-scale hydraulic press. The double spherical structure is the major joint formbetween the plunger and the moving beam. When the hydraulic press received theoff-center load, the plunger deflected, contacted with the guide and seals, then producedthe side thrust which may speed up the wear and tear. So that, the effect of side thrustbecame a core evaluation criteria when the double spherical structure was discussed.Including the two spherical hinges and a connecting rod between them, there are threemain parts in the double spherical structure. In the traditional hydraulic design theory, it isthe most important ways to reduce the side thrust by increasing the length of connectingrod and decreasing the radius of spherical hinges. However, the reality is not that.Contrasted with the previous theory, there are some differences in the designs hydraulicpress nowadays, especially on the large-scale plunger cylinder, even have not a clearevaluation for the major sizes on the structure of double spherical joint .
     First, the research on the mechanism of side thrust as a beginning, on the off-centerload condition, do the force analysis about the structure above, then discussed the differenteffects on the side thrust of plunger when changing the contact conditions. Based on largenon-linear finite element software MSC.Marc as the platform, the three-dimensional finiteelement simulation model was established. Through a lot of numerical simulations, theinfluencing rule of spherical hinge radius, the rod length and guide clearance on the sidethrust were summarized systematically. The research shows that: With the same sphericalstructure, the different contact positions may lead the different ways and effects on theside thrust. Under the same contact condition, the thrust decreases with the increase of therod length and the rod diameter. The thrust increases with the increase of the sphericalhinge radius. The thrust decreases with the increase of the guide clearance.
     In this paper, a experimental plunger cylinder and a test device was produced as theprototype of 125 MN forging hydraulic press according to the proportion of 1:10, whichequipped with five groups of different sizes of rods and hinges. Experiments on the test ofthe side thrust were done in the work conditions of off -center loads. Through the data getting from transducers, The comparison between the result of experiments and thetheoretical analysis can be done as a proving. The experimental result shows that the rulesgot by theoretical analysis are basically true.
     Through the whole research on the double spherical structure: In the engineeringdesign, the rod length factor: 0.64~0.83. the rod diameter factor: 0.59~0.63. the sphericalhinge radius factor: 1~1.15.
引文
[1]朱钒,张志,张道富等.国内外液压机技术现状及发展趋势[J].机床与液压,2000(1):6~7.
    [2]刘庆教.谈液压缸行业现状和发展趋势[J].工程机械文摘,2011(2):34~37.
    [3]张晓峰.依托创新追赶液压缸国际先进水平[J].运营指南,2011(2):45~46.
    [4]俞新陆,杨津光,巢克念.液压机[M].北京:机械工业出版社,1990:110~130.
    [5]孙雅权.对锻造水压机柱塞结构的探讨[J].一重技术,1992,(2):14~17.
    [6]邹春来,黄明辉,王亚军.巨型压机主工作缸柱塞与活动横梁连接方式的研究.现代制造工程[J],2009,(2):101~104.
    [7]赵长财,李文平,周维海.液压机柱塞球面支承的力学及机构分析[J].重型机械,1996(4):15~18.
    [8]李范坤,钟掘.300MN模锻水压机侧推力研究[J].中国有色金属学报,1995,(3):134~137.
    [9]刑维才.对20000kN快锻液压及工作缸的剖析[J].重型机械,1993,(3):57~58.
    [10]岳竹墅.柱塞缸导套尺寸的检验[J].电炉,1990(4):32~34.
    [11]郭立新.锻压机导套对立柱作用反力的分析研究[J].冶金设备,2000,(3):5~8.
    [12]韩忠义,张向红.球面接触轴颈摩擦问题的探讨[J].机械设计与制造,2007,(11):106~107.
    [13] Gawrys, E.,Kollek, W. Frictional Force of Hydraulic Cylinder Seals[J]. Effect of the Surface Geometry,TZ fur Metallbearbeitung 1985,79(5): 29~30.
    [14] Wu, Chunnan. Development of a new hydraulic cylinder with built-in compound control function ofdisplacement and thrust[J], Proceedings of the IEEE International Conference on Control Applications2004(2): 1177~1182.
    [15]赵长财,张涛,袁荣娟.液压及立柱导套接触应力研究[J].重型机械,1995(4):14~16.
    [16]金淼,聂绍珉等.偏载下液压机动梁与立柱间接触状态分析[C].第二届全球华人先进塑性加工技术研讨会论文集,2005(2).
    [17]夏卫明,潘世宏.液压摆式剪板机主油缸活塞杆侧推力有限元分析[J].锻压装备与制造技术,2009(1):73~75.
    [18] Lara les,DeRouen Al,Stillhard Bruno. New life for hydraulic press. Machine Design[J],1989,61(20):50~52.
    [19] Osiecki, Andrzej; Niegoda, Jozef. Friction in the Plunger Joint of Axial Multiplunger Machines[J].Przeglad Mechaniczny,1976,(6):185~189.
    [20]张葵,李建华.球轴承摩擦力矩的分析计算[J].轴承,2001(1):8~11.
    [21]赵志强.浅谈球面支承的应用[J].橡胶技术与装备,1987(1):37~39.
    [22]王文娟.液压缸的结构设计与数值模拟[J].科学论坛, 2010(11):101~102.
    [23]张巧玲,毕卫红.基于应力集中原则设计测力传感器[J].数字技术与应用, 2010(9):51~52.
    [24] Li Xuewen,Ai-Kash Soh,Chen Wanji. A new non-smooth model for three dimensional frictional contactproblems[J]. Computational Mechanics, 2000,26(6):528~535.
    [25] S. A. Losev. Study of thousand-ton hydraulic press designed by UZTM. Refractories[J],1962,3(3-4):102~104.
    [26]刘忠伟,邓英剑,刘少军,等. 300MN模锻水压机主工作缸缸体的可靠性分析[J].重型机械,2006,(5):16~19.
    [27]陈延明.摩擦力矩的测量及力矩测量仪的应用[J].轴承,1994(10):30~32.
    [28] V. G. Attaryan. Modernization of the 1500-ton hydraulic press[J]. Metallurgist,1959,3(8):353~355.
    [29] Wriggers P. Finite element methods for contact problems with friction[J]. TribologyInternational,1996,29(8):651~658.
    [30]张向,陈军,阮雪榆.塑性成形有限元模拟六面体网格划分和再划分技术[J].模具技术,2000, (5):6~11.
    [31]于复曾.液压机柱塞缸孔的加工[J].锻压设备与制造技术, 1979(3):60~65.
    [32] S.A.Losev. Study of thousand-ton hydraulic press designed by UZTM[J]. Refractories and IndustrialCeramics,1962,3(3): 102~104.
    [33]常研.一种球铰式连接结构[J].电子机械工程,2001(1):14~15.
    [34]胡新华,杨继隆,姜伟.静压支承球铰副的支承特性研究[J].液压与气动,2002(11):33~34.
    [35]黄学玲,锻压测试技术[M].北京:机械工业出版社,1982:87~91.
    [36]余新陆,液压机的设计与应用[M].北京:机械工业出版社,2006.(12):20~28.
    [37]林荣川,郭隐彪,魏莎莎等.液压缸临界载荷计算和最优设计[J].中国机械工程,2011(4):389~393.
    [38]杨慧丽,周天武.判定力矩正负方向的简易方法.装备制造技术[J],2011,(9):20~21.
    [39] Hild,P.,Laborde,P. Quadratic finite element methods for unilateral contact problems[J]. AppliedNumerical Mathematics,2002,(41):401~421.
    [40] NieShaomin,JinMiao.Discrete Optimization Approach For 3-D space Plate-system Structure[J]. ChineseJournal of Mechanical Engineering,2004:171~177.
    [41]杨政辉.柱塞式液压缸密封系统的分析与应用[J].液压与气动,2011,(4):45~47.
    [42]李静明,许贤良,张立祥.液压缸活塞上的O型密封设计[J].煤矿机械,2010,(1):16~18.
    [43]文海鹏.柱塞加工工艺改进分析[J].金属加工,2009(19),20~38.
    [44]马履中.球面运动副摆动力矩及转动力矩的设计计算及实验测定方法[J].机械设计与研究,1992,(4) :38~42.
    [45]李晓谦,胥光申,卢秉恒等.小型测力传感器的设计与研制[J].传感技术学报,1992,(3) :7~11.
    [46]曲海龙,董丽华.水压试验机主液压缸设计[J].设计与计算,2010,(3):11~13.
    [47]赵万军,张大可,钱利霞.单缸液压机上横梁偏心载荷处理研究[J].煤矿机械,2008,(4):46~48.
    [48]夏卫明,嵇宽斌,潘世宏.液压摆式剪板机主油缸活塞杆侧推力有限元分析[J].锻压装备与装备技术,2009,(5):73~76.
    [49]吴赵发.国外主要公司的侧向推力装置[J].机电设备,1987(4):16~18.
    [50]梁米.300MN模锻水压机关键部件接触力学行为分析[D].中南大学工学硕士学位论文.2010. 32~40.
    [51]李范坤,钟掘. 300MN模锻水压机侧推力研究[J].中国有色金属学报, 1995(3):134~137 .
    [52]高连军.高精度测力传感器的设计[J].计量与测试技术,2007,(8):35~36.
    [53] Bin Guo;Feng Gong;Chunju Wang;Debin Shan Size Effects on Friction of C3602 in CylinderCompression[J]. Advanced Tribology,2009,(10):509~510.
    [54] Achten P,Brink T,Schellekens M. Design of a variable displacement floatingcup pump[J]. The NinthScandinavian International Conference on Fluid ,2005,10(2):251~254.
    [55] DEEKEN M.Simulation of the tribological contacts in an axial piston machine[J] .lhydraulik undPneumatik 2003,47:11~12.
    [56] Wang Dong,Li Zhuangyun,Zhu Yuquan.Study ofthe Key Problems in a Water Hydraulic PistonPump andIts Applications[J]. Industrial Lubrica-tion and Tribology,2001,53(5):211~216.
    [57] Manring N.D.The torque on the input shaft of an axial piston swash.plate type hydrostatic pump[J].Journal of Dynamic Systems Measurement and Control,1998,(120):57~62.
    [58] Noah D.Manring.Friction forces within the cylinder bores of swash-plate type axial-piston pumps andmotors[J].Journal of Dynamic systems, measurement, and control ,1999,121(3):531~537.
    [59] S Nowak. Keeping Friction in Check, Sealing Technolo-gy[J].1999,62(7): 6~8.
    [60] Kazama T,Yamaguchi A,Xiongying Wang,et al. Experi ment on Hydrostatic Thrust Bearings in MixedLubrication for High Pressure Hydraulic Pumps and Motors[J].Fluid Power. Third J HPS InternationalSymposium,1996, 75-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700