用户名: 密码: 验证码:
沂河流域船流街剖面古洪水沉积记录研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取沂河中游船流街(clj)剖面作为研究沂河流域古洪水记录的典型剖面,测年结果显示clj剖面记录了沂河流域约6728-21640 a B.P.时期洪水发生的信息。对剖面沉积物分别进行粒度、磁化率、烧失量、Fe2O3、Rb、Sr含量测量,将测量结果以多种指标方式、从不同角度进行研究与分析,探讨沂河流域古洪水的发生及其气候背景。
     沉积物粒度的分析结果发现:各粒度组分变化、粒度参数和累积概率曲线对古洪水都有很好的指示意义,可用于推断洪水的发生,分析洪水发生时的水动力条件,而且在判别不同期洪水时,利用中值粒径变化率要优于中值粒径变化曲线。clj剖面中,在仅凭粒度变化很难区分不同的沉积旋回的情况下,烧失量指标弥补了中值粒径变化率的不足,指示了中值粒径变化率没能反映的另外两期洪水。中值粒径变化率与烧失量这两个指标相互印证,共同反映了clj剖面所记录的更新世末期至全新中期,沂河流域至少发生了13期洪水。
     沉积物的磁化率与中值粒径和Fe2O3含量变化综合对比分析,讨论clj剖面所记录的气候环境变化,得出clj剖面13期洪水的洪水规模大小及对应的气候特点:(1)9-11层(10439-21640 a B.P.)为寒冷干旱气候环境,对应第1-3期洪水,1-3期为特大洪水期,但在第1期洪水末期存在一个洪水间歇期较长的小洪水偶发阶段。(2)8层,(9564-10439 aB.P.)为温干的气候环境,对应第4期洪水,为小规模洪水偶发期。(3)7层,(8647-9564a B.P.)为寒冷干旱气候环境,对应第5期洪水,较大规模洪水发生期。(4)6层,(8277-8647a B.P.)为温暖湿润气候环境,对应第6期洪水,小规模洪水偶发期。同时6层的干裂结构还指示了,第6期洪水过后经历了一个较长的气候干旱时期,此时期内无洪水发生而没有沉积物沉积,所以对这一干旱时期缺少地质记录。(5)4-5层,(7802-8277 a B.P.)温暖湿润气候环境,气候有向着干旱方向发展的趋势,5层对应第7期洪水,为剖面所记录的全新世以来规模最大的大洪水发生期。4层对应两期洪水,分别为第8、9期洪水,第8、9期为较小规模洪水偶发期,洪水规模可能小于第5期洪水。(6) 2-3层,(7472-7802 a B.P.)为寒冷干旱气候环境,这两层自下向上分别对应第10、11期洪水,第10期为洪水频发期,并且其洪水的规模比第5期洪水的规模还要大。第11期为大小洪水频繁交替发生期。(7)1层,(6728-7472 a B.P.)底部与第11期洪水末期相对应的是温暖湿润的气候环境,1层中、上部所代表的时期为温干气候环境,分别对应第12、13期洪水,第13期为较小规模洪水发生期,洪水规模大于第9期洪水,而第12期洪水规模大于第5期洪水,并且第12期洪水沉积物上、下部位的烧失量均向高值突出,这说明第12期洪水发生前后均经历了较长时间的洪水间歇期。
     综合整个剖面及其气候特点发现,clj剖面更新世末期至全新世初期发生的洪水为特大级洪水,这一时期的特大级洪水是对冰消期以来全球气候变化的响应,而且沂河流域大、小规模的洪水在不同时期交替发生,并且在洪水规模极小甚至出现长期干旱时,接踵而来的便是较大强度的洪水。
The Yihe River Basin is one of China's major agricultural production bases since ancienttimes and it had given birth to the brilliant Longshan Culture. It was also home to the DongyiCulture during the Holocene Epoch. However, during the Holocene Epoch, droughts and floodsfrequently occurred in the Yihe River Basin, thus exerted a profound impact on the social andcultural development there. The decline of ancient culture in the basin is closely related to theoccurrence of paleofloods. Therefore, the analysis of the Yihe River Basin before written recordsof paleoflood situation from the perspective of geological history has an important significanceto understand the watershed paleoflood rules and paleoclimate features. Meanwhile, it provides atheoretical basis for the Yihe River Basin disaster mitigation of flood control and water resourcesdispatch.
     Based on the fieldwork, the Chuanliujie (clj) Profile is selected as the typical profile of thepaleoflood record of the Yihe River watershed.14C and OSL were used to determine the age ofthe profile-clj according to the differences of sediment material component content. The datingresults show that profile-clj records the paleoflood information of the Yihe River Basin about6728-21640 a B.P. period. These indicators of sediment grain size, magnetic susceptibility, losson ignition(LOI), Fe2O3and Rb, Sr content measurement were measured, then used to explorethe occurrence of the paleoflood of the Yihe River watershed and their paleoclimate backgroundby analyzing them from different angles.
     Sediment grain size analysis includes the content of different particle-levels, grain sizeparameters, the probability cumulative curves, the change rate of median particle size. The resultshows that the indicators of the content of different particle-levels, grain size parameters, and theprobability cumulative curves have a good indication of the significance that can be used to inferthe occurrences of flood and analyse the hydrodynamic conditions. To distinguish the differentstages of flood, the change rate of median particle size is superior to the median particle size.Since flood sediment grain size is affected directly by the flood size, the sediment grain size is a direct reflection of the flood size, which can be used to reflect the scale and intensity of floods.
     LOI is a good indicator of the significance of the division of the different periods of flood.When LOI value is high, it indicates the pedogenic role of this period and the well-developedvegetation, which are often signs of a longer flood intermittent period, while when the LOI valueis low, it indicates big floods or frequent flooding period. When it is too difficult for the onefoldgrain size to distinguish the different sedimentary cycles, LOI indicator makes up for lack of thechange rate of median particle size which did not reflect the other two of floods. The twoindactors of the change rate of median particle size and LOI confirm each other, reflecting thatthe Yihe River Basin produced at least 13 floods from the late Pleistocene Epoch to the middleHolocene Epoch.
     Based on the comprehensive analysis of Sediment magnetic susceptibility, median grain sizeand the changes of Fe2O3content, the essay then discusses the climatic and environmentalchanges recorded in the profile-clj. High magnetic susceptibility values is corresponded to coldarid environments, and low magnetic susceptibility values is corresponded to warm and humidenvironment. The result is more or less consistent with the wet and dry climate change reflectedby the content of Rb and Sr and Rb/Sr ratios in the the profile-clj. The comparative analysis ofthe paleoclimate characteristics and paleoflood scale reflected by sediment grain size suggeststhe paleoflood scale and corresponding paleoclimate characteristics of the 13 paleofloodsrecorded in the profile-clj: (1) Layer 9-11 (10439-21640 a B.P.) The climate conditions then werecold and dry, which is corresponded to the1st-3th floods period, the large floods period. But inthe end of the 1st flood period, there was a small-scale flood period with long intermittentbetween floods. (2) Layer 8 (9564-10439 B.P.) The climate then was warm and dry climate,which is corresponded to the 4th floods period, the occasional small-scale floods period. (3)Layer 7 (8647-9564 a B.P.) The climatic conditions then was cold and dry, which iscorresponded to the 5th flood period, the large-scale floods period. (4) layer 6 (8277-8647 a B.P.)The climatic conditions then was warm and humid, which is corresponded to the 6th floodsperiod, the occasional flooding of small-scale. The weather-shack structure of the 6th layer alsoindicates that a long drought period followed the 6th floods period, which had no flood sedimentdeposition, thus it is lack of geological record of this drought period. (5) Layer 4-5 (7802-8277 aB.P.) It was a warm and humid climate then, and the climate trends changed toward the arid direction. The 5th layer is corresponded to the 7th floods peroid, the largest major floods afterthe Holocene Epoch recorded in the profile-clj. The 4th Layer is corresponded to the 8th and 9thfloods peroid, which occasional flooding of smaller-scale occurred and the flood scale may besmaller than the 5th floods period. (6)Layer 2-3 (7472-7802 B.P.) It was a cold and dry climatethen, and the two layers from bottom to top correspond to the 10th and 11th floods period. The10th layer was frequent flood period and the size of the flood is bigger than that of the 5th floodsperiod. The 11th layer is corresponded to the period which the size of the flood frequentlyalternated. (7) Layer 1 (6728-7472 a B.P.). The 1th layer bottom corresponds to the late 11thfloods period, which was warm and humid, while the middle and upper part of the 1th layerindicates a warm dry climate, which are respectively corresponding to the 12th and 13th floodsperiod. The 13th floods period is smaller floods period, with a flood scale that is bigger than the9th. However, the flood scale of the 12th floods period is smaller than the 9th. In addition, the12th flood period lasted for a long time before and after the flood the interim period.
     Climatic characteristics of the whole profile imply that the floods recorded in the profile-cljfrom the late Pleistocene Epoch to the early Holocene Epoch are large scale floods. The largescale of the floods in this period was a response to global climate change since deglaciation. Thelarge-scale and small-scale floods occured alternately at different times in the Yihe River Basin,and greater intensity of floods followed after small-scale floods or long-term droughts.
引文
[1]谢悦波,姜洪涛.古洪水研究-挖掘河流大洪水的编年史[J].南京大学学报,2001, 37(3): 390-395.
    [2]Baker V. R.. Paleoflood hydrology: Origin, progress, prospects [J]. Geomorphology, 2008, 101: 1-13.
    [3]Benito G., Sope ab A., Sánchez-Moyac Y., Machadod M. J., et al. Palaeoflood record of the Tagus River(Central Spain) during the Late Pleistocene and Holocene [J]. Quaternary Science Reviews, 2003, 22:1737-1756.
    [4]Knox J. C. Large increases in flood magnitude in response to modest changes in climate. Nature, 1993,361 : 430-432.
    [5]申洪源,张红梅,赵海英.全新世古洪水研究进展与趋势[J].地球与环境, 2010, 38(1): 117-121.
    [6]詹道江,谢悦波.洪水计算的新进展—古洪水研究[J].水文, 1997, 1-6.
    [7]查小春,黄春长,庞奖励.关中西部漆水河全新世特大洪水与环境演变[J].地理学报, 2007, 62(3):291-300.
    [8]姚平,黄春长,庞奖励,等.北洛河中游黄陵洛川段全新世古洪水研究[J].地理学报, 2008, 63(11):1198-1206.
    [9]李瑜琴,黄春长,查小春等.泾河中游龙山文化晚期特大洪水水文学研究[J].地理学报, 2009, 64(5):541-552.
    [10]于兴修.沂河中游洪涝灾害初步研究[J].南京师范大学学报(自然科学版), 1999, 22(2): 97-105.
    [11]高华中,朱诚,曹光杰.山东沂沭河流域2000BC前后古文化兴衰的环境考古[J].地理学报, 2006,61(3): 255-261.
    [12]杨达源,谢悦波.古洪水平流沉积[J].沉积学报, 1997, 15(3): 29-32.
    [13]杨达源,谢悦波.黄河小浪底段古洪水沉积与古洪水水位的初步研究[J].河海大学学报, 1997,25(3): 86-89.
    [14]Yang D Y, Yu G., Xie Y B, et al. Sedimentary records of large Holocene floods from the middle reachesof the Yellow River, China [J]. Geomorphology 2000, 33: 73–88.
    [15]谢悦波,杨达源.古洪水平流沉积基本特征[J].河海大学学报, 1998, 26(6): 5-10.
    [16]谢悦波,王文辉,王平.古洪水平流沉积粒度特征[J].水文, 2000, 20(4) : 18- 20.
    [17]谢悦波,费宇红,沈起鹏.古洪水平流沉积与水位[J].地球学报, 2001, 22(4): 320-324.
    [18]谢悦波.古洪水流量的误差计算[J].水文, 1997 (1): 6-11.
    [19]谢悦波,时明立,王井泉.黄河2360a.B.P古洪水流量推算误差分析[J].人民黄河, 1998, 20(9): 1-3.
    [20]Benito G., Thorndycraft V. R.. Palaeoflood hydrology and itsrole in applied hydrological sciences [J]. Journal of Hydrology, 2005, 313: 3–15.
    [21]Baker V. R., Kochel, R. C., Patton, P. C., et al. Paleohydrologic analysis of Holocene flood slackwatersediments. In: Collinson, J., Lewin, J. (Eds.), Modern and Ancient Fluvial Systems: Sedimentology andProcesses. Special Publication, vol. 6. International Association of Sedimentologists, 1983, pp. 229–239.
    [22]Moreno A., Valero-Garcés B. L., González-Sampériz P., et al. Flood response to rainfall variability duringthe last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain) [J]. J Paleolimnol2008, 40: 943–961.
    [23]文杨,黄春长,庞奖励,等.关中盆地黄土剖面古洪水平流沉积物鉴别研究[J].干旱区资源与环境,2008, 22(6): 90-94.
    [24]杨晓燕,夏正楷,崔之久.黄河上游全新世特大洪水及其沉积特征[J].第四纪研究, 2005, 25(1):80-85.
    [25]孙素梅,黄春长,庞奖励,等.黄土地区河谷古洪水平流沉积物特征研究[J].土壤通报, 2009, 40(1):72-76.
    [26]葛兆帅,杨达源,李徐生等.晚更新世晚期以来的长江上游古洪水记录[J].第四纪研究, 2004, 24(5):555-560.
    [27]张芸,朱诚.长江三峡考古遗址文化断层研究[J].地理学报, 2007, 62(3): 243-256.
    [28]谢悦波,杨玉荣,王辉.三峡河段古洪水平流沉积指标体系[J].人民长江, 1999, 30(8): 4 - 6.
    [29]Ely L. L. Response of extreme floods in the southwestern United States to climatic variations in the lateHolocene[J]. Geomorphology 1997, 19: 175-201.
    [30]吴庆龙,张培震,张会平,等.黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J].中国科学(D辑:地球科学), 2009, 39(8): 1148-1159.
    [31]Benito G., Sánchez-Moya Y., Sope a A.. Sedimentology of high-stage flood deposits of the Tagus River,Central Spain [J]. Sedimentary Geology, 2003, 157: 107–132.
    [32]Baker V. R.. Palaeoflood hydrology in a global context [J]. Catena, 2006, 66: 161–168.
    [33]Benito G., Thorndycraft V. R., Rico M., et al. Palaeoflood and floodplain records from Spain: Evidence forlong-term climate variability and environmental changes [J]. Geomorphology, 2008, 101: 68-77.
    [34]谢远云,李长安,王秋良.江汉平原近3 000年来古洪水事件的沉积记录[J].地理科学, 2007, 27(1):81-84.
    [35]Huang C. C., Pang J. L., Zha X. C., et al. Impact of monsoonal climatic change on Holocene overbankflooding along Sushui River, middle reach of the Yellow River, China [J]. Quaternary Science Reviews 2007,26: 2247–2264.
    [36]Zhang Q., Chen J. Q., Becker S. Flood/drought change of last millennium in the Yangtze Delta and itspossible connections with Tibetan climatic changes [J]. Global and Planetary Change 2007, 57: 213–221.
    [37]Zhang Q., Chen Y. D., Chen J. Q.. Flood/drought variability in the Yangtze Delta and association with theclimatic changes from the Guliya ice core: A wavelet approach [J]. Quaternary International 2008: 163–172.
    [38]夏正楷,杨晓燕,叶茂林.青海喇家遗址史前灾难事件[J].科学通报, 2003, 48(11): 1203-1204.
    [39]张小虎,夏正楷,杨晓燕.青海喇家遗址废弃原因再探讨[J].考古与文物, 2009(1): 100-103.
    [40]朱诚,宋健,尤坤元,等.上海马桥遗址文化断层成因研究[J].科学通报, 1996, 41(2): 148-152.
    [41]夏正楷,王赞红,赵青春.我国中原地区3500aBP前后的异常洪水事件及其气候背景[J].中国科学(D辑:地球科学), 2003, 33(9): 881-888.
    [42]张强,杨达源,施雅风,等.川江中坝遗址5 000年来洪水事件研究[J].地理科学, 2004, 24(6):715-720.
    [43]史威,朱诚,李世杰,等.长江三峡地区全新世环境演变及其古文化响应[J].地理学报, 2009, 64(11):1303-1318.
    [44]丁召静,申洪源,贾玉芳.沂沭河流域气温变化的时空特征[J].临沂师范学院学报, 2010, 32(6): 86-90.
    [45]朱诚,于世永,史威,等.南京江北地区全新世沉积与古洪水研究[J].地理研究, 1997, 16(4): 23-30.
    [46]朱诚,郑朝贵,马春梅等.长江三峡库区中坝遗址地层古洪水沉积判定研究[J].科学通报, 2005,50(20): 2240-2250.
    [47]史威,朱诚,徐伟峰等.重庆中坝遗址剖面磁化率异常与人类活动关系[J].地理学报, 2007, 62(3):257-267.
    [48]谢远云.江汉平原江陵地区9 ka BP以来的气候演化[D].中国地质大学博士学位论文,中国:北京,2004.
    [49]李长安,黄俊华,张玉芬,等.黄河上游末次冰盛期古洪水事件的初步研究[J].地球科学, 2002,27(4): 456-458.
    [50]丁召静,申洪源,贾玉芳.激光粒度仪转速对河流砂质沉积物测量的影响[J].沉积学报, 2012, 30(3):106-111.
    [51]牛俊杰,赵景波,马莉,等.西安北郊渭河河漫滩沉积与洪水事件[J].地理研究, 2010, 29(8):1484-1492.
    [52]展望,杨守业,刘晓理,等.长江下游近代洪水事件重建的新证据[J].科学通报, 2010, 55(19):1908-1913.
    [53]史兴民,师静,万正耀.泾河近代洪水沉积物粒度特征分析[J].中国沙漠, 2009, 29(2): 359-364.
    [54]史兴民,万正耀,师静.渭河咸阳段近代洪水沉积物粒度特征分析[J].水土保持通报, 2008, 28(3):71-76.
    [55]赵景波,郁耀闯,周旗.渭河渭南段高漫滩沉积记录的洪水研究[J].地质论评, 2009, 55(2): 231-241.
    [56]赵景波,王长燕,周旗,等.兰州市黄河近代漫滩沉积与洪水事件研究[J].陕西师范大学学报(自然科学版), 2010, 38(2): 83-88.
    [57]万红莲,黄春长,庞奖励,等.渭河宝鸡峡全新世古洪水事件研究[J].陕西师范大学学报(自然科学版), 2010, 38(2): 76-82.
    [58]邬龙,付鹏,段利民.沁河古洪水沉积特征[J].人民黄河, 2010, 32(4): 43-45.
    [59]张天文,王建力,强杨,等.渝西北小流域平原洪水沉积物粒度特征及环境意义[J].西南大学学报(自然科学版), 2010, 32 (11): 111-117.
    [60]张俊娜,夏正楷.中原地区4 ka BP前后异常洪水事件的沉积证据[J].地理学报, 2011, 66(5):685-697.
    [61]Knox J C. Sensitivity of modern and Holocene floods to climate change [J]. Quaternary Science Reviews2000, 19: 439-457.
    [62]袁胜元,赵新军,李长安.古洪水事件的判别标志[J].地质科技情报, 2006, 25(4): 55-57.
    [63]戴小国,查小春,庞奖励.古洪水事件判别以及微形态学在古洪水事件判别中的应用[J].干旱区研究, 2009, 26(3): 340-346.
    [64]潘凤英,袁丁.兴化乌巾荡湖泊相沉积层中鉴别洪水沉积标志的研究[J].南京师范大学学报:自然科学版, 1996, 19(3): 78-84.
    [65]刘秀铭,刘东生,夏敦胜,等.中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析[J].中国科学(D辑:地球科学), 2007, 37(10): 1382-1391.
    [66]R.汤普森, F.奥尔德费尔德.环境磁学[M].北京:地质出版社, 1995, 9.
    [67]Oldfield F. Environmental magnetism: personal perspective. Quaternary Science Reviews, 1991, 10:73-83.
    [68]詹道江,谢悦波.古洪水研究[M].北京:中国水利水电出版社, 2001, 1-83.
    [69]Huang Chunchang, Pang J iang l,i ZhouQunying, et a.l H o locene pedogen ic change and the em ergen ceand decl ine of rain - fed cereal agricu lture on th e Ch in ese Loess P lateau [J] . Q uaternary Science R eviews, 2004, 23(23-24) : 2525- 2535.
    [70]李晓刚,黄春长,庞奖励,等.黄河壶口段全新世古洪水事件及其水文学研究[J].地理学报, 2010,65(11): 1371-1380.
    [71]郝高建,黄春长,刑莹莹,黄河晋陕峡谷吉县段全新世古洪水平流沉积特征研究[J].干旱区资源与环境, 2011, 25(3):106, 112.
    [72]王娟,黄春长,庞奖励,等.渭河下游全新世古洪水滞流沉积物研究[J].水土保持通报, 2011, 31(5):32-37.
    [73]赵明,黄春长,庞奖励,等.北洛河中游白水段峡谷全新世特大洪水水文学研究[J].自然灾害学报,2011, 20(5): 155-161.
    [74]赵景波,蔡晓薇,王长燕.西安高陵渭河近120年来的洪水演变[J].地理科学, 2007, 27(2): 225-230.
    [75]Chen J, An Z S, John H. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China duringthe last 130000 years and their implications for monsoon paleoclimatology. Quatres, 1999, 51: 215-219.
    [76]陈骏,安芷生,汪永进,等.最近800 ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学: D辑,1988, 28(6): 498-504.
    [77]陈骏,季峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学: D辑, 1997,27(6): 531-536.
    [78]申洪源,贾玉连,李徐生,等.内蒙古黄旗海不同粒级湖泊沉积物Rb、Sr组成与环境变化[J].地理学报, 2006, 61(11): 1208-1217.
    [79]余素华,朱照宇,李世杰,等.西昆仑山南侧甜水海湖岩芯铁变化的环境记录[J].地球化学, 1997,26(6): 88-98.
    [80]Taylor K C, Lamorey G W, Doyle G A,et al. The flickering switch of late Pleistocene climatic change [J].Nature, 1993, 361: 432-436.
    [81]沈永平,刘光秀,施雅风,等.青藏高原新仙女木事件的气候与环境[J].冰川冻土, 1996, 18(3):219-226.
    [82]杨志红,姚檀栋.古里雅冰芯中的新仙女木期事件记录[J].科学通报, 1997, 42(18): 1975-1978.
    [83]Yao Tandong, Thompson L G, Shi Yafeng et al. Climate variation since the Last Interglaciation recorded inthe Guliya icecore. Science in China: Series D, 1997, 40(6): 662-668.
    [84]Yi SH, Saito Y. Latest Pleistocene climate variation of the East Asian monsoon from pollen records of twoEast China regions [J]. Quaternary International, 2004, 121: 75-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700