用户名: 密码: 验证码:
基于压电导波的钢梁损伤检测数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,土木工程结构损伤检测与健康监测研究已在全世界范围内受到广泛关注。压电陶瓷材料具有正、逆压电效应,而且还具有响应快、成本低等优点,它的出现为结构损伤检测和健康监测提供了新的传感手段。本文将压电陶瓷片(PZT)分别用作驱动器和传感器,基于压电导波技术开展了矩形钢梁损伤识别数值研究。
     压电导波技术的实现过程为:分别将PZT粘贴在梁的不同位置,并对其中一个(或一对)PZT施加汉宁窗调制的正弦波脉冲激励信号,使梁中产生应力波。波会沿着梁长方向进行传播,当波在传播过程中遇到裂纹、端部时会产生反射。用另一个(或一对)PZT作为传感器来接收驱动器产生的发射波以及裂纹和端部的反射波,并对接收的波动信号进行分析可以实现裂纹定位和定量识别。论文着重阐述了压电导波有限元分析的要点;对贴有四个压电片的钢梁进行了数值分析,验证了裂纹的出现不改变结构波传播速度的理论;比较了五种不同的激励信号,并确定了本文研究所使用的激励信号。采用选取的激励信号分别对两端自由、一端固定一端自由、两端简支等三种边界条件下有损伤和无损伤矩形钢梁进行损伤检测数值研究。在此基础上,还在不同损伤位置、不同损伤程度以及不同传感器位置情况下开展了压电智能梁的波动分析,进一步验证了压电导波技术的损伤定位与定量识别的能力。
     数值研究结果发现:利用压电导波技术可以对钢梁裂纹损伤进行定位和定量识别。今后将开展基于压电导波的钢梁损伤识别试验研究以及混凝土结构损伤识别数值与试验研究。
In recent years, damage detection and health monitoring of structures in civil engineering has received extensive attention all over the world. Piezoelectric ceramic materials have many advantages, not only positive and inverse piezoelectric effect, but also fast response and low cost, and the emergence provides a new sensing method for structural damage detection and health monitoring. In this paper, piezoelectric patches (PZT) are used as the actuator and the sensor, simulation study on damage identification of rectangular steel beam basing on piezoelectric guided wave technology has been carried out.
     The implementation process of piezoelectric guided wave technology is as follows : piezoelectric patches are attached on different locations in the beam respectively, and one ( or a pair ) PZT is excited by a signal, which contains sinusoidal tone burst modulated by a Hanning window. Then a stress wave appers in th steel beam. Wave can propagate in the beam length direction. The wave can reflect when it meet a crack or the end of tne beam in the propagation. Another ( or a pair ) PZT, as a sensor, can receive the wave launched by the actuator and the wave reflected by the ends, then the localization and quantification of damage can realized according to analysing the received wave signal. The paper emphatically points out key points about the guided wave in the finite element analysis; A steel beam with four piezoelectric pitchs attached on the surface is simulated to validate a conclusion, which is the appearance of crack does not change the wave propagation speed in structure; Compare the sensor signal under five different excitation signals to determine the ideal excitation signal in the article; The above selected signal is respectively excited on healthy and damaged beams containing three different boundary conditions to make numerical studies on damage detection, which are two free ends, one fixed one free, and two simple supported. Based on these, Fluctuation analysis of piezoelectric smart beam under conditions of different damage location, different degree of damage and different sensor location can be carried out, to further validate the capabilities of piezoelectric guided wave technology in damage localization and quantification.
     The numerical study results show that the technology of piezoelectric guided wave can localize and quantify the damage. In the later study, we will carry out experimental research on damage detection of the steel beam and numerical and experimental study on concrete structrue based on piezoelectric guided wave technology.
引文
[1] McCann D M,Forde M C.Review of NDT methods in the assessment of concrete and masonry structures.NDT & E International,2001,34(2):71-84
    [2]孙慷,张褔学.压电学(第一版).北京:国防工业大学出版社,1984.117-125
    [3]张褔学.现代压电学(第一版).北京:科学出版社,2001.84-101
    [4]焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展.防灾减灾工程学报,2006,26(1):102-108
    [5] C H Keilers,F-K Chang.Identifying delamination in composite beams using built-in piezoelectrics.Journal of intelligent Material Systems and Structures,1995,6:649-663
    [6] M Lin,X Quing,A Kumar et al.SMART layers and SMART suitcase for structural health monitoring applications.Proceedings of SPIE,2001,4332:98-106
    [7] J B Ihn,F-K Chang.Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network : I Diagnostics.Smart Material Structures,2004,13:609-620
    [8] J B Ihn,F-K Chang.Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network:II Validation using riveted joints and repair patches.Smart Materials and Structures,2004,13(3):621-630
    [9] J Yang,F-K Chang.Detection of bolt loosening in C-C composite thermal protection panels:I Diagnostic principle.Smart Materials and Structures,2006,15:581-590
    [10] J Yang,F-K Chang.Detection of bolt loosening in C-C composite thermal protection panels:II Experimental verification.Smart Materials and Structures,2006,15:591-599
    [11] Sauvik Banerjee,Fabrizio Ricci,Ernesto Monaco et al.A wave propagation and vibration-based approach for damage identification in structural components.Journal of Sound and Vibration,2009,322(1):167-183
    [12] Magdalena Rucka,Experimental and numerical study on damage detection in an L-joint using guided wave propagation.Journal of Sound and Vibration,2010,329:1760-1779
    [13] J Grabowska , M Palacz , M Krawczuk.Damage identification by wavelet analysis.Mechanical Systems and Signal Processing,2008,22:1623-1635
    [14] Shi Yan,Wei Sun,Gangbing Song et al.Health monitoring of reinforced concrete shear walls using smart aggregates.Smart materials and Structures,2009,18(4):470-475
    [15] G Song,H Gu,Y L Mo et al.Concrete structural health monitoring using embedded piezoceramic transducers.Smart materials and Structures,2007,16:959-968
    [16] Wang S C,Wu F,Chang F-k.Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete.Smart materials and Structures,2001,10:548-552
    [17] Jeongho Han,Chun-Gon Kim,Jung-Yub Kim.The propagation of Lamb waves in a laminated composite plate with a variable stepped thickness.Composite Structures,2006,76:388-396
    [18] Wies?aw Ostachowicz,Marek Krawczuk et al.Wave propagation in delaminated beam.Computers and Structures,2004,82:475-483
    [19] Haikuo Peng,Guang Meng,Fucai Li.Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection.Journal of Sound and Vibration,2009,320:942-954
    [20] Wieslaw Ostachowicz,Pawel Kudela et al.Damage localisation in plate-like structures based on PZT sensors.Mechanical Systems and Signal Processing,2009,23:1805-1829
    [21] Suresh Bhalla,Chee Kiong Soh,Zhengxing Liu.Wave propagation approach for NDE using surface bonded piezoceramics.NDT&E International,2005,38:143-150
    [22] Giurgiutiu V,Bao J,Zhao W.Active Sensor Wave Propagation Health Monitoringof Beam and Plate Structures.Proceedings of the SPIE’s 8th International Symposium on Smart Structures and Materials,2001,Vol 4327:234-245
    [23]孙明清,李卓球,侯作富.压电材料在土木工程结构健康检测中的应用.混凝土,2003,10(3):22-24
    [24]赵晓燕.基于压电陶瓷的结构健康监测与损伤诊断[博士学位论文].大连:大连理工大学,2008
    [25]赵晓燕,李宏男.基于压电陶瓷的混凝土裂缝损伤监测.压电与声光,2009,31(3):437-443
    [26]孙威.利用压电陶瓷的智能混凝土结构健康监测技术[博士学位论文].大连:大连理工大学,2009
    [27]孙威.利用压电波动法对混凝土偏心受压柱裂缝实时监测的试验研究.混凝土,2009,9(239):1002-3550
    [28]刘洋,王乘,张锋.基于压电晶体传感器的椭圆损伤定位算法.传感技术学报,2005,18(3):596-599
    [29]李以农,陈兵奎,郑玲.压电材料在结构缺陷识别中的应用机理研究.机械工程材料,2003,27(6):25-28
    [30]郭浩,李平,文玉梅等.埋入压电材料的机敏混凝土研究.传感技术学报,2007,20(1):202-207
    [31]文玉梅,李平,刘双林等.压电机敏混凝土原理.压电与声光,2002,24(3):196-198
    [32]陈雨,文玉梅,李平等.混凝土中压电陶瓷在变荷载作用下的特性研究.压电与声光,2005,27(6):700-703
    [33]孙明清,李卓球.压电陶瓷-混凝土机敏结构研究.混凝土,2004,2:5-9
    [34]孙明清,W J Staszewski,李卓球等.压电陶瓷片/混凝土复合机敏结构中的表面波法.建筑材料学报,2004,7(2):145-149
    [35]孙明清,Staszewski W J,Swamy R N.压电陶瓷片用于检测混凝土的波速和动弹模.武汉理工大学学报,2004,26(6):1-4
    [36]孙明清,Staszewski W J,Swamy R N.混凝土中的Lamb波传播.武汉理工大学学报,2004,26(1):31-34
    [37]金传喜,武新军,夏志敏等.导波检测用激励源的设计及应用.制造业自动化,2006,28(10):79-81
    [38]姜德义,郑拯宇,李林等.压电陶瓷片耦合振动模态的ANSYS模拟分析.传感技术学报,2003,4:453-456
    [39]陈重华,肖鸣山,刘云书.压电陶瓷应用(第一版).济南:山东大学出版社,1985.1-24
    [40]郭伟国,李玉龙,索涛.应力波基础简明教程.西安:西北工业大学出版社,2007.1-31
    [41]邓凡平.ANSYS 10.0有限元分析自学手册.北京:人民邮电出版社,2007.2-23
    [42]党沙沙,许洋,张红松等.ANSYS 12.0多物理耦合场有限元分析从入门到精通.北京:机械工业出版社,2010.78-83
    [43]叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003.490-508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700