用户名: 密码: 验证码:
威兰胶发酵及其流变性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
威兰胶是鞘氨醇单胞菌Sphingomonas sp. ZW-3分泌的高分子粘性多糖,与众不同的分子结构赋予了它卓越的流变学性质,因此,在石油开采、建筑混凝土等领域极具开发潜力。
     本文旨在以各种低成本原料进行威兰胶发酵研究,实现威兰胶的低成本生产,并探索与其分子量相关的流变学性质。首先,研究不同营养条件下Sphingomonas sp. ZW-3分批发酵及补料分批过程;其次,分析不同营养条件下威兰胶流变学性质,对其平均分子量及其分布、假塑性及粘性、储能模量及损耗模量进行比较,并对样品的抗盐耐温性进行初步探索。论文主要研究成果如下:
     首先,在已优化培养条件的基础上利用低成本碳源如甘蔗糖蜜、甘油、果葡糖浆及木薯淀粉开展威兰胶发酵研究。结果表明:前三种碳源的威兰胶产量不够理想,仍需深入研究;而基于木薯淀粉的高温α-淀粉酶、葡萄糖淀粉酶水解规律的分析,不同DE值木薯淀粉水解液为碳源的分批发酵结果表明,DE=87%时威兰胶产量为21.2 g/L,稍高于葡萄糖为碳源时的威兰胶产量(20.2 g/L)。
     其次,考察了不同氮源豆粕、玉米浆干粉及复合氮源(硝酸钠和大豆蛋白胨混合物)及碳源(葡萄糖、蔗糖)对威兰胶分批发酵影响。结果表明:与所考察碳源相比,氮源对威兰胶产量影响显著,豆粕为氮源时威兰胶产量最高(约20.0 g/L),玉米浆干粉为氮源时次之(17.0-18.0 g/L),复合氮源为氮源时威兰胶产量约15.0 g/L。补料分批发酵结果表明:初糖浓度10.0 g/L比20.0 g/L对威兰胶合成更有利,发酵72 h的威兰胶产量达到24.8 g/L。
     再次,基于不同氮源及碳源的威兰胶分批发酵分析,对不同威兰胶样品的高分子流变学性质进行比较。对各种威兰胶样品溶液进行零剪切粘度测试、稳态流变学测试及动态粘弹性测试,并对所得测定数据进行Carreau模型、Power Law模型拟合及复数粘度(logη*)对(logω)的线性拟合。结果表明:与所考察碳源相比,氮源对威兰胶平均分子量及分子量分布影响显著;产自复合氮源的威兰胶平均分子量最高,分子量分布最窄,储能模量最高;产自氮源豆粕的威兰胶次之,而产自玉米浆干粉的威兰胶平均分子最低,分子量分布最宽,储能模量最低,损耗模量最高。
     最后,考察NaCl添加对威兰胶海水溶液表观粘度的影响,并对其在NaCl质量分数10%时的耐高温性能进行研究。结果表明:低浓度NaCl有利于提高威兰胶海水溶液表观粘度,而高浓度NaCl有降低该体系粘度的性能。标准海水浓度下葡萄糖豆粕来源的威兰胶溶液的表观粘度较高,且在100℃下稳定,而在120℃下商品威兰胶溶液粘度保留能力较强,但粘度明显降低。
Welan gum, a kind of highly vicious extracellular polysaccharide produced by Sphingomonas sp. ZW-3, has found great potential application in oil recovery, concrete construction industry for its unique rheological properties.
     The proposal of this thesis is to produce welan gum by optimizing various low-cost raw materials, and study the molecular weight characterization with rheological properties. At first, welan batch fermentation under different nutrition conditions with Sphingomonas sp. ZW-3 was explored, and different modes of fed-batch fermentation were tested. Then, the rheological properties of welan solutions were analyzed, and their average molecular weight and molecular weight distribution, pseudoplasticity and viscosity, storage modulus and loss modulus were compared. In addition, preliminary exploration on welan samples’temperature resistance and salt tolerance was carried out. Outlines of this thesis are as follows:
     At first, a series of low-cost carbon sources such as sugar molasses, glycerol, fructose syrup and cassava starch were used for welan fermentation. The results indicated that the first three carbon sources could not achieve high welan yield, which needs further research. According to the principles of cassava starch hydrolysis with highly thermostableα-amylase and glucoamylase treatment, welan batch fermentation process with cassava starch hydrolysate of different DE value as carbon sources showed that welan yield from batch fermentation with DE=87% cassava starch hydrolysate reached 21.2 g/L, which was a little higher than that of batch fermentation with glucose as carbon sources.
     Second, influences of different nitrogen sources (soybean flour, dried corn steep liquor powder and combined nitrogen sources (the mixture of NaNO3 and soybean peptone) and different carbon sources (glucose and sucrose) on welan batch fermentation were investigated. The results showed nitrogen sources had greater impact on welan yield in comparison with tested carbon sources. The highest welan yield of 20.0 g/L was obtained with soybean flour as nitrogen sources. The welan yield of 17.0-18.0 g/L was achieved with dried corn steep liquor powder as nitrogen source. The lowest welan yield of 15.0 g/L was from combined nitrogen sources. The results of fed-batch fermentation suggested that the starting glucose concentration 10.0 g/L was more favorable for welan production as compared to the initial 20.0 g/L glucose, and the final welan yield was 24.8 g/L.
     Then, according to welan batch fermentation under different carbon and nitrogen sources, polymer rheological properties of the produced welan solutions were analyzed by using zero shear viscosity measurement, steady flow measurement and dynamic viscoelasticity measurement. The resultant data was applied to Carreau model, Power Law model and the linear simulation of complex viscosity log (η*) to log (ω). The analysis indicated that welan average molecular weight and molecular weight distribution were greatly affected by nitrogen sources in comparison with tested carbon sources. Welan samples derived from combined nitrogen media exhibited highest average molecular weight, narrowest molecular weight distribution and highest storage modulus. Welan sample from soybean flour nitrogen sources media was modest, while welan sample produced from dried corn steep liquor powder media exhibited lowest average molecular weight, widest molecular weight distribution, lowest storage modulus but highest loss modulus.
     Finally, influences of NaCl on viscosity of welan standard sea-water solutions was tested, and their high temperature resistance at NaCl 10%(w/w)was also studied. The results suggested that low NaCl concentration was favorable for improving the viscosity of welan standard sea-water solutions, and high NaCl concentration would decrease the viscosity. The viscosity of welan standard sea-water solutions was higher, and stable at 100℃. But when the temperature was increased to 120℃, the viscosity retention ability of commercial welan sea-water solutions was stronger with viscosity also apparently reducing.
引文
[1]王歆童.结冷胶发酵工艺的研究[D]: [硕士学位论文].开封:河南大学, 2011.
    [2] Fialho A M, Moreira L M, Granja A T, etc. Occurrence, production, and applications of gellan: current state and perspectives [J]. Appl Microbiol Biotechnol, 2008, 79(6): 889-900.
    [3] Iroakazi O. Effects of salinity on the effects of hydraulic characteristics of welan gum fluids in straight and coiled tubing [D]: [硕士学位论文]. Oklahoma: University of Oklahoma, 2009.
    [4]周浩然.微生物多糖威兰胶生产工艺的研究[D]: [硕士学位论文].无锡:江南大学, 2009.
    [5] Li H, Xu H, Xu H, etc. Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428 [J]. Appl Microbiol Biotechnol, 2009, 86(1): 295-303.
    [6]韩永顺,李良玉.不同来源糖蜜酒精发酵特性的研究[J].酿酒科技, 2010, (8): 59-61.
    [7]黄靖华,孙靓,孙菲菲等.甘蔗糖蜜发酵生产L-乳酸工艺条件研究[J].广西科学, 2011, 18(3): 273-277.
    [8]李永成,蒙诗奎.蔗糖糖蜜发酵生产L-苹果酸的研究[J].安徽农业科学, 2011, 39(1): 234-235, 249.
    [9] Blanch M, Legaz M E, Vicente C. Xanthan production by Xanthomonas albilineans infecting sugarcane stalks [J]. J Plant Physiol, 2008, 165(4): 366-374.
    [10] Banik R M, Santhiagu A, Upadhyay S N. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology [J]. Bioresour Technol, 2007, 98(4): 792-797.
    [11] Roukas T. Pretreatment of beet molasses pullulan production to increase pullulan production [J]. Process Biochem, 1998, 33(8): 805-810.
    [12]胡秋龙,郑宗明,刘灿明等.生物柴油副产物甘油发酵生产1,3-丙二醇的研究[J].中国油脂, 2010, 35(10): 52-56.
    [13]周星,陈立功,朱立业.生物柴油副产物粗甘油开发利用的研究进展[J].精细石油化工进展, 2010, 11(4): 44-48.
    [14]李洵,周志明,谢丹,等.生物质基粗甘油反应蒸馏制备羟基丙酮[J].太阳能学报, 2009, 30(9): 1159-1162.
    [15] Li H, Xu H, Guo C J. Optimizing the production of welan gum by Alcaligenes facalis NX-3 using statistical experiment design [J]. Afr J Biotechnol, 2010, 9(7): 1024-1030.
    [16]孙靓,孙菲菲,黄艳燕,等.木薯淀粉发酵生产L-乳酸的培养条件优化[J].中国酿造, 2007, (7): 33-37.
    [17]古碧,林莹,李凯等.不同品种(系)木薯淀粉糊化特性研究[J].淀粉与淀粉糖, 2009, 30(12): 20-23.
    [18]罗志刚,王颖,罗发兴.黄原胶对木薯淀粉糊性质的影响[J].华南理工大学学报(自然科学版), 2010, 38(12): 95-99.
    [19] Saha B C. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693 [J]. Appl Microbiol Biotechnol, 2006, 72(4):676-680.
    [20]牛建双,吕淑霞,赵朔,等.玉米浆对Vc二步发酵产2-酮基-L-古龙酸影响的研究[J].微生物学杂志, 2011, 31(2): 29-31.
    [21]王丽君,梁万秋,李华乔.发酵过程玉米浆质量研究[J].科技创新导报,2011, (6): 6.
    [22]李黔蜀,叶华,贺立虎.玉米浆作为氮源对透明质酸发酵的影响[J].杨凌职业技术学院学报, 2011, 10(2): 5-7.
    [23] Li H, Xu H, Li S, etc. Effects of dissolved oxygen and shear stress on the synthesis and molecular weight of welan gum produced from Alcaligenes sp. CGMCC2428 [J]. Process Biochem, 2011, 46(5): 1172-1178.
    [24]陈芳.韦兰胶生产工艺初探及流变特性研究[D]: [硕士学位论文].南昌:南昌大学, 2007.
    [25]陈超.黄原胶产生菌的筛选及发酵条件优化[D]: [硕士学位论文].济南:山东轻工业学院, 2010.
    [26]孙万贵.一种应用黄原胶菌株提高黄原胶产量的方法[P].中国专利, CN10 2212490A, 2011-10-12.
    [27] Casas J A, Santos V E, Garcia O F. Xanthan gum production under several operational conditions: molecular structure and rheological properties [J]. Enzyme Microb Technol, 2000, 26(2-4): 282-291.
    [28]陈亚敏.结冷胶发酵生产工艺技术优化研究[D]: [硕士学位论文].杭州:浙江大学, 2011.
    [29]徐晓琴.少动鞘脂单胞菌高产结冷胶的发酵条件及动力学研究[D]: [硕士学位论文].杭州:浙江大学, 2011.
    [30]李会,李莎,冯小海等. Alcaligenes sp. NX-23产威兰胶的补料分批发酵工艺研究[J].食品与发酵工业, 2009, 35(1): 1-4.
    [31] Lawford H G,Phillips K R,Lawford G R. A two stage continuous process for the production of thermogelable curdlan-type exopolysaccharides [J].Biotechnol Lett, 1982, 4(11): 689-694.
    [32]常春,马晓建,方书起等.黄原胶补料分批发酵工艺的试验研究[J].食品科学, 2005, 26(12): 261-264.
    [33]段效辉.普鲁兰多糖高产菌株Y68多糖发酵生产及其机理初步研究[D]: [博士学位论文].青岛:中国海洋大学, 2007.
    [34]刘佳.产热凝胶粪产碱杆菌的生理代谢研究[D]: [硕士学位论文].无锡:江南大学, 2010.
    [35]李卫旗,吴学谦.黄单胞菌XC-82.R5二步发酵工艺研究[J].工业微生物, 1998, 28(2): 26-29.
    [36]向红.细菌细胞壁肽聚糖的生物合成[J].六盘水师专学报(自然科学版), 1995,4: 16-19.
    [37]刘芳,杨跃寰.细菌细胞壁肽聚糖的研究[J].四川理工学院报(自然科学版), 2011, 24(6): 628-631.
    [38]王建枝,龚成新.阿尔茨海默病患者脑中双螺旋丝的体外去磷酸化作用[J].中华神经科杂志. 1998, 31(3): 146-148.
    [39]吴晓俊,刘涤,胡之壁.黄芪毛状根中尿苷二磷酸葡萄糖焦磷酸酶活性与多糖含量关系的研究[J].上海中医药大学学报, 2000, 14(2): 53-55.
    [40]于丽珺.土壤杆菌31749合成热凝胶的氮调控机理及高产策略研究[D]: [博士学位论文].无锡:江南大学, 2011.
    [41] Jagannath S, Ramachandran K B. Influence of competing metabolic processes on the molecular weight of hyaluronic acid sunthesized by Streptococcus zooepidemicus [J]. Biochem Eng J, 2010, 48(2): 148-158.
    [42] Duan X J, Niu H X, Tan W S, etc. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. J Microbiol Biotechnol, 2009, 19(3): 299-306.
    [43]刁虎欣,潘卫东,于宪潮等.发酵因素对黄原胶分子量的影响[J].食品与发酵工业, 1993, (3): 25-28
    [44]生举正.透明质酸合成途径在乳酸乳球菌中的建立及微生物生物合成透明质酸分子量调控机制的初步研究[D]: [博士学位论文].济南:山东大学, 2009.
    [45] Whitfield C, Larue K. Stop and go: regulation of chain length in the biosynthesis of bacterial polysaccharides [J]. Nat Struct Mol Biol, 2008, 15(2): 121-123.
    [46]卢伟丽.卡拉胶和褐藻胶流变学特性[D]: [硕士学位论文].青岛:中国海洋大学, 2008.
    [47]肖春,王睿,王玲玲等.掺杂型沥青前驱体流变性能研究[J].炭素技术, 2011, 30(4): 18-21.
    [48]李平.低速梯下钻井液流变性和触变性研究[D]: [硕士学位论文].成都:西南石油大学, 2009.
    [49]王莉莉,闵洁,沈秋惠.海藻酸钠和黄原胶糊料粘弹性行为的研究[J].印染助剂, 2011, 28(4): 11-14.
    [50]梁剑锋.甘蔗糖蜜制取高果糖浆工艺技术的研究[D]: [硕士学位论文].南宁:广西大学, 2008.
    [51] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31(3): 426-428.
    [52]李利军,孔红星,伍时华,等.蔗糖测定的紫外分光光度新方法研究及其应用[J].分析科学报, 2003, 19(4): 367-369.
    [53]白岚,杜继煜.蔬菜中硝态氮含量的测定[J].农业与技术. 2002, 22(6): 107-108, 110.
    [54] Hsu J P, Yang S C, Chen J C. Drag on two co-axial rigid spheres moving normal to a plane: Newtonian and Carreau fluids [J]. J Chin Inst Chem Eng, 2007,38(5-6): 409-418.
    [55] Takigawa T, Kadoya H, Miki T, etc. Dependence of zero-shear viscosity and steady-state compliance on molecular weight between entanglements for ethylene-cycloolefin copolymers [J]. Polym, 2006, 47(13): 4811-4815.
    [56] Choi S, Han C D. Molecular weight dependence of zero-shear viscosity of block copolymers in the disordered state [J]. Macromolecules, 2004, 37(1): 215-225.
    [57] Song K W, Kim Y S, Chang G S. Rheology of concentrated xanthan gum solutions: steady shear flow behavior [J]. Fiber Polym, 2006, 7(2): 129-138.
    [58] Wang B, Wang L J, Li D, etc. Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose [J]. Carbohydr Polym, 2009, 77(3): 472-481.
    [59]赵大伟.自絮凝颗粒酵母SPSCO01发酵糖蜜生产乙醇的研究[D]: [硕士学位论文].大连:大连理工大学, 2009.
    [60]余炜,伍时华,代周兴,等. L-亮氨酸发酵用糖蜜预处理方法的研究[J].广西工学院学报, 2005, 16(3): 15-18.
    [61]秦菊霞.蔗糖及甘蔗糖蜜发酵生产L-乳酸的研究[D]: [硕士学位论文].南宁:广西大学, 2008.
    [62] Bae S, Shoda M. Bacterial cellulose production by fed-fermentation in molasses medium [J]. Biotechnol Prog, 2004, 20(5): 1366-1371.
    [63]程可可,凌宏志,张丽莉,等.葡萄糖作辅助碳源对Klebsiela pneumonia发酵甘油生产1,3-丙二醇的影响[J].过程工程学报, 2004, 4(6): 561-566.
    [64]曾志刚,徐欣,王艾莉.果葡糖浆对环孢菌素A发酵影响的研究[J].中国抗生素杂志, 2010, 35(9): 668-671.
    [65]蒋芸.高粘体系威兰胶发酵工艺研究[D]: [硕士学位论文].无锡:江南大学, 2008.
    [66]李莎.威兰胶发酵工艺优化及结构性能的研究[D]: [硕士学位论文].南京:南京工业大学, 2005.
    [67]赵峰梅,崔凤霞,王咏梅.抗噬菌体菌株A46利用淀粉糖发酵2-KG的研究[J].山西农业科学, 2002, 30(4): 68-71.
    [68] Letisse P, Chevallereau P, Simon J L, etc. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, usingsequentially consumed nitrogen sources [J]. Appl Microbiol Biotechnol, 2001, 55(4): 417-422.
    [69] Yang M, Loa S T, Yang D B. Effects of yeast extract and glucose on xanthan production and cell growth in batch culture of Xanthomonas campestris [J]. Appl Microbiol Biotechnol, 1997, 47(6): 689-694.
    [70] Tako M, Teruya T, Tamaki Y, etc. Molecular origin for rheological characteristics of native gellan gum [J]. Colloid Polym Sci, 2009, 287(12): 1445-1454.
    [71] Li H, Xu H, Li S, etc. Strain improvement and metabolic flux modeling of wild-type and mutant Alcaligenes sp. NX-3 for synthesis of exopolysaccharide welan gum [J]. Biotechnol Bioprocess Eng, 2010, 15(5): 777-784.
    [72] Li H, Xu H, Li S, etc. Enhanced welan gum production using a two-stage agitation speed control strategy in Alcaligenes sp. CGMCC2428 [J]. Bioprocess Biosyst Eng, 2011, 34(1): 95-102.
    [73] Lopes L, Milas M, Rinaudo M. Influence of the method of purification on some solution properties of welan gum [J]. Int J Biol Macromol, 1994, 16(5): 253-261.
    [74] Morris E R, Gothard M G E, Hember M W N, etc. Conformational and rheological transitions of welan, rhamsan and acylated gellan [J]. Carbohydr Polym, 1996, 30(2-3): 165-l75.
    [75]菅红磊,朱莉伟,张卫明,等.两种皂荚多糖胶流变性质的表征[J].食品科学, 2010, 31(17): 68-72.
    [76]王伟,徐德时.壳聚糖浓溶液流变性质研究-零剪切粘度的测定和外推[J].高分子学报, 1995, (3): 291-295.
    [77]赵彦龙.沥青胶浆高温粘弹性能评价方法比较[J].公路交通科技, 2011, (8): 153-156.
    [78]朱永康.结构与性能的关系:线性宏观结构和星形支化宏观结构(3~4) [J].橡胶参考资料, 2006, 36(2): 44-50.
    [79] Plank J, Lummer N R, Bilic F D. Competitive adsorption between an AMPSVR-based fluid loss polymer and welan gum biopolymer in oil well cement [J]. J Appl Polym Sci, 2010, 116(5): 2913-2919.
    [80]李良训.高分子物理[M].北京:烃加工出版社, 1990. 147-148.
    [81]胡建国,赵玲,戴干策.黄原胶水溶液的流变性能[J].华东理工大学学报(自然科学版), 2011, 37(1): 16-19.
    [82]唐中山,苏红军,徐世艾.黄原胶流变学性质的实验研究[J].烟台大学学报(自然科学与工程版), 2008, 21(2): 130-133.
    [83]王莉莉,闵洁,沈秋惠.海藻酸钠和黄原胶糊料粘弹性行为的研究[J].印染助剂, 2011, 28(4): 11-14.
    [84]陈稀,黄海波,倪宜平,等.由聚丙烯溶液的流变性为测定其分子量分布[J].合成纤维工业, 1994, 17(4): 10-15.
    [85]欧阳坚,孙广华,王贵江.耐温抗盐聚合物TS-45流变性及驱油效率研究[J].油田化学, 2004, 21(4): 327, 330-332.
    [86] Urbani R, Brant D A. Kelco microbial polysaccharides S-130 (welan) and S-657 display similar dilute aqueous solution behavior [J]. Carbohydr Polym, 1989, 11(3): 169-191.
    [87] Campana S, Andrade C, Milas M, etc. Polyelectrolyte and rheological studies on the polysaccharide welan [J]. Int J Biol Macromol, 1990, 12(6): 379-384.
    [88]雷鸣,卢晓黎,陈正纲.黄原胶在低浓度时的流变特性及影响因素研究[J].食品科学, 2000, 21(12): 16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700