用户名: 密码: 验证码:
电镀废水纳滤膜(NF)浓缩回用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的高速发展,我国工业废水排放量急速增加,但随之也带来了大量污染。在各种污染源中电镀废水以其毒性大,排放量大,难治理,尤其值得关注。目前膜分离法处理电镀污水以双膜法MF+RO最为主流。但RO膜易受到各种污染因素的影响,且RO膜对于进水要求高,所以限制了整个膜系统处理回用电镀废水的效率,至多只能达到50%-65%。而纳滤(简称NF)是近几年发展较快的一项膜技术。其具有筛分效应和Donnan电荷效应的分离特性,这使得NF膜对于二价或高价离子截留效果更好,加之其较强的抗污染性,因此在RO膜系统处理的基础上能应用NF膜深度浓缩电镀废水,提高整个系统的回用率达到90%左右,具有一定的优势。
     本论文将考察纳滤膜浓缩处理电镀废水的可行性,研究浓差极化、操作压力和原料液浓度对截留性能的影响,揭示其规律,模拟工程效果,为纳滤膜处理实际电镀综合废水提供指导,取得的主要研究结果和结论包括:
     1.本论文分别考察了陶氏NF270-400和NF90-400型纳滤膜在不同操作压力、不同进水水质等条件下的分离特性及处理效果。通过条件实验研究发现NF90和NF270膜在处理综合电镀废水的效果上有明显的差异,NF90以其表面固定电荷密度高的特性,相比NF270表现出了更高更加稳定的重金属离子截留率能力,且截留能力相对稳定在90%左右,但其产水量相比NF270却相对较小,只有NF270的1/3左右。且两种膜在进水压力为1.6Mpa时表现出最好的离子截留能力,即便在进水电导率30000μs/cm时,即原水浓缩7倍左右时,产水Zn2+浓度仍能控制1.2mg/L以下,Ni2+浓度能控制在0.4mg/L以下,符合国家排放标准。
     2.论文进一步对NF90/270纳滤膜浓差极化进行分析,以实际的综合电镀废水为考察体系,在最佳操作压力1.6Mpa下考察了传质系数与浓差极化程度随膜面流速的变化关系。结果表明,两者传质系数k都随膜面流速增加而增加,浓差极化程度相应下降;同时渗透通量J对浓差极化有一定的影响,当渗透率增加时,传质系数k下降,浓差极化程度增加。而NF90相对NF270受到浓差极化的影响程度较大,即使在增加表面流速的情况下也很难降低到1.2以下,而采用的NF270膜元件,当膜面流速达到0.20m/s时浓差极化可以降到相对较小的程度,适合工程实际运行。
     3.论文最后对实际工程采用NF270膜元件进行运行测试,在进水为16000μs/cm时,压力为1.6MPa时,NF产水电导率稳定低于7000μs/cm,总系统浓水即NF浓水的电导率稳定在33000μs/cm至42000μs/cm, NF系统回收率在75%左右,RO/NF组合系统可实现95%的回收率,可以满足回用水水质和水量的设计要求。
With the high-speed development of national economy, China's industrial wastewater emissions increased sharply, and it also brings large quantity of pollution. Electroplating wastewater is difficult to handle with because it has the characteristic of toxic compound and large quantity of emission. Membrane separation technology as one kind of high efficient water treatment methods has been widely used in power plant sewage treatment cycle and sea water desalination and recycling of industrial waste water treatment. And the membrane separation of MF+RO is applied mostly to deal with electroplating wastewater. But RO membrane is susceptible to many kinds of pollution factors, and the inflow water for RO membrane requires high standard, which limits the reuse efficiency of the whole membrane treatment system to only 50%-65%.
     Nanofiltration is a kind of membrane technology which developed rapidly in the recent years. It has the screening effect and Donnan effects of separation electric charge, and with which the Donnan effect functioned mainly. And together with its strong resistance to pollution that makes the interception of NF membrane for divalent ion represent much better. So it has certain advantage in the application of NF membrane system which based on RO system which can make the reuse efficiency of the whole membrane treatment system to almost to 90%. This thesis studies the application of NF membrane system which based on RO system. we investigated the influence of operating pressure, concentration polarization and different nano filtration membrane modules (NF90 & NF270) on efficiency of interception. And the reuse possibility of electroplating wastewater was initially tested through the engineering case.
     According to the research on working state of single nano filtration membrane that dispose the synithetical electroplating wastewater, we investigated the influence of operating pressure and different nano filtration membrane modules (NF90 & NF270) on efficiency of interception. The experiments showed remarkable differences between NF90 and NF270 when treating synithetical electroplating wastewater. NF90 with its characteristics of high fixed surface charge density showed a higher and more stable heavy metal ions interception rate compared with NF270 and interception rate was stable around 90%. But the water production rate of NF90 is relatively small compared with NF270, and only about 1/3 of NF270's. The both NF270 and NF90 system showed a high efficiency of interception when the operating pressure was about 1.6MPa. Even the inflow water conductivity is around 30000μs/cm, the concentration ofZn2+ of water production can still be controlled around 1.2mg/Land concentration of Ni2+ was around 0.4 mg/L, which accorded with the national discharge standard.
     We further investigated the influence of concentration polarization of NF90 and NF270 system when treating the electroplating wastewater. In the best operating pressure under 1.6Mpa, we investigated the relationship between mass transfer coefficient and surface velocity. The results show that the mass transfer coefficient k increased with surface velocity, together with decrease of polarization degree. And at the same time, the Penetration Flux J also had a certain effect. When permeability increase, the mass transfer coefficient k decreased, and polarization degree increased. And NF90 was relatively highly influenced by the concentration polarization compared with NF270. Even we increased the surface velocity cannot control NF90's polarization degree under 1.2 while the surface velocity of NF270 membrane reached 0.20m/s the polarization can be controlled to a relatively small degree, which was suitable for the engineering practical operation.
     We further tested the NF270 membrane system on an actual engineering practical operation project, in which the conductivity of inflow water was around 16000 [i s/cm, pressure was around 1.6MPa. The conductivity of water production by NF system was steadily under 7000μs/cm, The reuse efficiency of NF membrane system was about 75%, while the reuse efficiency of RO/NF combination system can reach 95%, and can reach the reuse water requirements both in quality and quantity that engineering practical operation project was designed for.
引文
[1]阳永陶.电镀废水处理技术的发展现状及前景展望.建材与装饰,2011,(8):23-24.
    [2]王亚东,张林生.电镀废水处理技术的研究进展.安全与环境工程,2008,15(3):69-72.
    [3]吴舜泽等.荷电NF膜对有机物的分离.水处理技术,2002,26(5)249-252
    [4]高从堵等.NF[C].第二届全国膜和膜过程学术会议.杭州,1996,15.
    [5]Xiao Lin, Wang, Toshinori, et al. Electrolyte transport through nanofihration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model. Membrane Sci,1995,(103):117-133.
    [6]杨月明.我国电镀废水处理现状及展望.广州化工,2011,39(15):60-62.
    [7]谢芳.浅谈目前电镀废水处理的几种方法.中国高新技术企业,2009,23(11):103-104.
    [8]朱靖.张瑶电镀废水综合治理技术及应用.水处理技术,2008,34(6):89-91.
    [9]常江.纳滤膜法处理含Ni2+电镀废水及其资源化利用与工业实践研究.硕士论文无锡:江南大学,2009.7.
    [10]吴昊.RO-EDI复合处理电镀镍漂洗水.硕士论文杭州:浙江大学,2008.7.
    [11]苏英,庞新民,王宗惠.两种镍化合物在体外对免疫细胞功能作用的研究卫.生毒理学杂志,1999,(13):134-135.
    [12]张静清.镍的毒性和含镍废水的治理.电镀与环保,1987,(4):33-34.
    [13]GB/21900-2008.电镀污染物排放标准.北京:环境科学出版社.2008.
    [14]魏广艳.重金属捕集剂对电镀废水处理效果的研究与应用.硕士论文南京:河海大学,2006.7.
    [15]黄中子,李寒娥,胡日利.电镀废水氧化破氰工艺优化试验.中南林学院学报,2006,26(2):96-99.
    [16]夏爱军,王江梅,张新国.还原法处理电镀废水后铬反弹成因分析与对策.环境污染与防治,2003,25(2):107-108.
    [17]杨晓玲.用气浮法处理含重金属废水.云南冶金,2000,29(4):38-40.
    [18]Jog Thoming. Optimal Design of Zero-Warer Discharge Rius ingSystems. Environ Sci Tech,2002,(36):1107-1112.
    [19]郑广宏,肖方.含Cr(Ⅵ)电镀废水治理技术研究进展.工业用水与废水,2008,39(5):11-14.
    [20]梅建庭.风化煤对电镀废水中Pb2+、Cu2+、Ni2+、Zn2+的吸附与解析.材料保护,2000,33(6):15-17.
    [21]陈利,沈江南,阮慧敏.真空膜蒸馏浓缩反渗透浓盐水的工艺研究.过滤与 分离,2009,19(3):4-6.
    [22]付政辉,李志健.电凝聚气浮技术在废水处理中的应用.内蒙古环境科学,2009,21(1):60-63.
    [23]赵瑞廷,唐海燕.电解法处理废水的研究进展.内蒙古石油化工,2002,27(3):28-29.
    [24]曾睿,王熙.生物法处理电镀废水技术的研究进展.涂料涂装与电镀,2006,4(3):40-42.
    [25]张宏梅.生物絮凝剂在环境废水处理中的应用.化工技术与开发,2007,36(7):41-43.
    [26]包亚强,魏立安.反渗透技术处理与回用电镀废水的研究.江西科学,2008,26(5):782-784.
    [27]李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状.电镀与精饰,2003,25(5):31-34.
    [28]陈观文,徐平.分离膜应用与工程案例.北京:国防工业出版社,2007,204-347.
    [29]李凤娟,王薇,杜启云.反渗透膜的应用进展.天津工业大学学报,2008,28(2):25-28.
    [30]栾金义.采用包含萃取剂的大孔聚合物处理废水.环境保护,1998,(3):19-20.
    [31]朱慎林,朴香兰.反应萃取处理含Cr6+废水研究.环境保护,1997,(8):11-13.
    [32]Raman L P, Cheryan M, Rajagapalan N, et al. Nano filtration for membrane separations. Chemical Engineering Progress,1994, (5):68-74.
    [32]Peter Eriksso. Nano filtration extends the range of membrane filtration. Environmental Progress,1988,7(1):58-62.
    [34]曹国凭,张学峰.纳滤膜技术及其应用的研究进展.水利科技与经济,2006,10(12):684-685.
    [35]任志伟.纳滤膜分离技术的发展及应用.价值工程,2011,30(15):45-46.
    [36]B. Vander Bruggen, J. Schacp, D. Wilms, C.Vandecasteele. Influence of molecular size, polarity and charge on the retention of orgnaic molecules by nano filtration. Journal of Membrane Science,1999,(156)29-41.
    [37]Luomin, HouLian, WangZhansheng. A study on organics rejiection mechanism by nanoflltration membranes. Enviromental science,2000, (20):523-527.
    [38]B. Vander Bruggen, J. Schaep, W. Maes. Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination, 1998,(117):139-147.
    [39]J. M. M. Peeters, J. P. Boom, M. H. V. Mulder. Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci,1998 (145): 199-209.
    [40]Wang X L, Tsum T, Togo M. Evaluation of pore stracture and electrical propertics of nano filtration membrane. J Chem engineer. Japan,1995, (28): 186-192.
    [41]何启贤,刘久清.纳滤膜结构特征对纳滤过程分离性能的影响.工业水处理,2010,30(7):22-24.
    [42]Pierre Yves, Pontalier, Ali Ismail. Mechanisms for the selective rejection of solutes in nanofiltration membrane. Separation and Purification technology. 1997,(12):175-181.
    [43]Johan Scanp, Bait Van der Bruggan, Carlo Vandecasteele. Influence of ion size and charge in nanofiltration. Separation and pureification technology,1998, (14):155-162.
    [44]W. R. Bowen, A. W. Mohammed. Diafiltration by nanofiltration-prediction and optimization. AIChE,1998,44(8):1799-1812.
    [45]Geens J, van der Bruggen B, Vandecasteele C. Transport model for solvent permeation through nanofiltration membranes. Separation and Purification Technology,2006,48(3):255-263.
    [46]Yaro shchuL. Dielectric exclusion ofions from membranes. Advances in Colloid and Interfacee Science.2000,(85):193-230.
    [47]Serena Bandini, Daniele Vezzani. Nanofiltration modeling:the role of dieleetric exclusion in membrane Characterization. Chemical Engineering Science,2003 (58):3303-3326.
    [48]邢丹敏,张伟,孙同升.复合纳滤膜的性能研究.第二届全国膜与膜过程学术报告会,杭州:1996,10-18.
    [49]夏冰,董声华,金秀龙.荷电纳滤膜的研制[J].水处理技术,1992,18(2):75-83.
    [50]Ming Wu, Darren Delai Sun. Characterization and reduction of membrane fouling during Nanofiltration of semiconductor indium phosphide(InP) wastewater. Journal of Membrane Science,2005,(259):135-144.
    [51]楼永通,陈益棠,王寿根.膜分离技术在电镀镍漂洗水回收中的应用.膜科学与技术,2002,(2):43-47.
    [52]张国亮.高硬度水质下纳滤系统的运行状态及分析.膜科学与技术,2000, 20(2):43-48.
    [53]韩少卿,叶骥,薛强.超滤和纳滤膜分离技术提取螺旋霉素.中国抗生素杂志,2005,30(1):52-55.
    [54]张泽庆.纳滤膜分离技术及其在食品工业中的应用.过滤与分离,2007,17(4):19-21.
    [55]Julianna Gyura, Zita Sere, Matild Eszterle. Influence of operating parameters on separation of green syrup colored matter from sugar beet by ultra and Nan filtration. Journal of Food Engineering,2005, (66):89-96.
    [56]陶氏化学有限公司.FilmtecTM反渗透和纳滤膜产品与技术手册.陶氏化学有限公司,2010:58-59.
    [57]王乐夫.膜工艺-组件和装置设计基础.化学工业出版社,1998:77-78.
    [58]王晓琳,丁宁.渗透与纳滤技术与应用.化学工业出版社,1999:65-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700