用户名: 密码: 验证码:
入侵植物薇甘菊的转录组分析及其群体遗传特征初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薇甘菊Mikania micrantha H.B.K.为菊科假泽兰属植物,是世界上最有害的100种外来入侵物种之一。它原产于热带美洲,现广布于亚洲热带。作为一种典型的已造成严重生态危害的入侵杂草,研究薇甘菊具有重要的现实意义和科学价值。近年来国内外已相继开展了大量关于薇甘菊的生理生态、群落结构以及生态效应等各方面的研究。但相对而言,关于薇甘菊入侵遗传机制的研究则少得多。随着近年来新一代高通量测序技术的发展,从基因组层面探讨薇甘菊入侵性相关的分子基础、认识入侵性表达的分子调控机制、揭示外来种成功入侵的机理和“后适应”进化机制已成为可能。
     本研究作为一种在基因(转录)组水平上对非模式入侵植物进行入侵分子机制探讨的尝试,首先采用第二代高通量测序技术(Illumina GAII),以薇甘菊作为研究对象来进行转录组水平上的拼接和组装,并进一步探讨其入侵特性的分子基础。本论文研究内容包括以下两个部分,结果如下:
     1.薇甘菊个体转录组的分析:以个体薇甘菊全株为材料提取总RNA,反转录后采用新一代高通量测序技术(Solexa)进行测序,利用所得到的32百万对经过质量过滤的reads并采用多种拼接方法的整合,本研究成功组装了51,782条平均长度在734 nt、最大长度达到7,324nt的参考转录本拼接序列,72.9%的特异组装序列与NCBI数据库里的序列具有显著同源性,其中25,478条序列能够进行基因分类(gene ontology assignments),这项研究中所获得的序列代表了第一次大规模的涉及入侵杂草的表达基因的序列数据。进一步的研究结果鉴定出大量高表达并与入侵特性相关的候选基因:如基因组进化基因,可塑性基因,次生代谢和防御反应基因等。这一转录组资源提供了重要信息以促进有关薇甘菊的入侵生物学的研究。
     2.薇甘菊原产地与入侵地两个种群的群体遗传特性比较:选取中美洲哥斯达黎加群体(14),东莞以及广州(12)两个群体作为原产地与入侵地种群的代表,它们的幼苗在相同环境中培养一个月,将两个群体中个体的总RNA分别等量混和测序,以前一部分研究中所获得的个体薇甘菊转录组作为参考序列进行拼接和校正,寻找并验证SNP,根据群体转录组在参考转录本上的比对信息,在约7.8百万个序列位点中筛选出约27万个候选的SNP位点。在此基础上,进一步计算θ和π等群体遗传参数,其中,哥斯达黎加群体的θ和π分别为5.7‰和4.1‰,而在广东群体则分别为4.8‰和3.0‰,本研究获得了薇甘菊群体基因(转录)组水平遗传多样性的宝贵信息,同时得到了薇甘菊原产地群体的遗传多样性水平略高于入侵地群体的初步结论,并为进一步的研究提供了大量可供利用的SNP遗传信息。
     本研究成功应用了第二代测序技术Illumina GAII对典型入侵杂草薇甘菊的转录组进行了测序和自组装,并进一步在群体水平上获得了薇甘菊原产地与入侵地两个不同种群的遗传多样性信息和群体SNP位点信息。该结果对利用第二代测序技术研究非模式入侵生物的群体遗传学、转录组测序和自组装提供了重要的参考价值。该方法的应用将成为系统和全面研究基因(转录)组水平的入侵遗传特性提供了一种新的思路。
Mikania micrantha H.B.K. of Asteraceae has been listed as the first batch of alien invasive species in China. This species is such a highly hazardous weed that it has been listed as the world's 100 worst invasive alien species. M. micrantha is of the new world origin and is widely naturalized in the old world tropics. As a typical invasive weed, M. micrantha resulted in great ecological loss in China. The studies on M. micrantha could be of important practical significance and scientific value. In recent years, a large number of studies about M. micrantha have been reported, in which the fields such as the physiological ecology, community structure and ecological effects has been involved.
     However, the study of the genetic mechanisms of biological invasion is much less reported. With the development of next-generation high-throughput sequencing technology, it is possible to investigate the molecular mechanisms of biological invasions, through revealing the regulation of invasive expression and the molecular evolutionary process of "post-adaptation" on the basis of the genome data of invasive species, M. micrantha. However, the EST library construction and consequential sequencing on the genome level is based on the traditional Sanger methods which is laborious and cost a lot. With the advances of sequencing technology, a new generation of high-throughput sequencing technology which is more efficient and cost-effective has been used gradually in the field of invasive biology. However, de novo assembly of genome or transcriptome of non-model organisms is not only a difficult task but also a challenge considering only the short read length (75-90 nt) is available by the high-throughput sequencing technology nowadays. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we present here the first transcriptome analysis for an invasive weed (i.e. Mikania micrantha) for which no prior genomic information was available. We further explored its molecular basis of invasion characteristics. This thesis consists of the following two parts:
     1. The transcriptome analysis of individual M. micrantha: The entire plant, including roots, was used for RNA extraction. Paired-end short read sequencing was done on one lane of the Illumina GAII system after reverse transcription. The analysis was based on the 75-nucloetide short reads data generated. A total of 51,782 unique sequences with an average length of 734 nt and a maximum length of 7,324 nt were assembled de novo based on 32 million filtered paired-end sequence reads for the transcriptome of an individual M. micrantha growing in the field. Seventy-three percent of the unique sequences showed significant similarity to existing proteins in the NCBI database, and 25,478 could be grouped based on gene ontology assignments. The sequences obtained in this study represent the first large-scale dataset of expressed genes in an invasive weed. Of particular interest are the sequences that share homology with genes involved in genome evolution, plasticity, secondary metabolism, and defense responses. This resource provides essential information to support the investigation of numerous questions regarding the invasive biology of M. micrantha and related species.
     2. Comparison of population genetic characteristics of source population and invasion population of M. micrantha: In this thesis, the population from Costa Rica in Central America (14 individuals) and population from Dongguan and Guangzhou (12 individuals) have been treated as the representatives of source population and invasion population of M. micrantha, respectively. The seedlings from different sources were cultured in the common garden for one month. Then we pooled two groups of individuals with equal amount of individual RNA respectively and sequenced the two RNA mixtures by Illumina GAII system. De novo assembling the transcriptome of population of M. micrantha and SNP identification were carried out on the basis of the reference sequence which comes from individual transcriptome obtained before. A total of 270,000 candidate SNP sites were screened from about 7.8 million loci based on the comparison results. The population genetic parameters such asθandπwere estimated for source population and invasion population of M. micrantha respectively (θ= 5.7‰,π= 4.1‰in population of Costa Rica,θ= 4.8‰,π= 3.0‰in population of Guangdong). The genetic diversity of population of Costa Rica was slightly higher than that of population of Guangdong. Our result also provided a wealth of SNP information available for the further research.
     The present study demonstrated a successful application of second-generation high-through sequencing technologies on the transcriptome analysis of non-model typical invasive species Mikania micrantha. The important population parameters such as the genetic diversity of populations and SNP loci were estimated based on the transcriptome analysis of M. micrantha Our study has revealed that next-generation DNA sequencing technologies can be used effectively for de novo sequencing of transcriptomes of non-model invasive species, making it possible to carry out rapid and low-cost sequencing for other important plant species. With these genomic approaches, it is possible to dissect the invasiveness-related genes and their expression and regulation patterns, identify invasive genotypes and hence understand plant invasiveness, which can be used to disassemble plant invasion mechanisms and define the evolutionary patterns during plant invasions.
引文
Ainouche ML, Baumel A, Salmon A, et al. Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytologist, 2004, 161: 165 - 172.
    Alpert P, Bone E, Holzapfel C. Invasiveness and invasibility: the possible role of environmental stress in preventing biological invasions by plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3: 52 - 66.
    Anderson JV, Davis DG. Abiotic stress alters transcript profiles and activity of glutathione S - transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologia Plantarum, 2004, 120, 421 - 433.
    Anderson JV, Horvath DP. Random sequencing of cDNAs and identification of mRNAs. Weed Science, 2001, 49, 590 - 597.
    Anderson JV, Horvath DP, Chao WS, et al. Characterization of an EST database for the perennial weed leafy spurge: An important resource for weed biology research. Weed Science, 2007, 55, 193 - 203.
    Anderson RM, May RM. Understanding the AIDS pandemic. Scientific American, 1992, 266 (5): 58 - 66.
    Basu C, Halfhill MD, Mueller TC, Stewart CN. Weed genomics: new tools to understand weed biology. Trends in Plant Science, 2004, 9, 391 - 398.
    Bentley DR. Whole-genome resequencing. Curr. Opin. Genet. Dev., 2006, 16: 545 - 525.
    Botton A, Galla G, Conesa A, et al. Large - scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics, 2008, 9, 19.
    Bradford JR, Needham CJ, Tedder P, et al. GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data. Plant Journal, 2010, 61, 713 - 721.
    Broz AK, Broeckling CD, He JB,, et al. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa. BMC Plant Biology, 2007, 7:25.
    Callaway RM, Aschehoug ET. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 2000, 290: 521 - 523.
    Carey JR. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology, 1996, 77 (6): 1690 - 1697.
    Carroll SP, Dingle H. The Biology of post-invasion events. Biological Conservation, 1996, 78:207 - 214.
    Case TJ. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Nat. Acad. Sci., USA, 1990, 87: 9610 - 9614.
    Chao WS, Horvath DP, Anderson JV, et al. Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Science, 2005, 53, 929 - 937.
    Christian CE. Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature, 2001, 41(11):635 - 639.
    Church SA, Livingstone K, Lai Z, et al. Using variable rate models to identify genes under selection in sequence pairs: Their validity and limitations for EST sequences. Journal of Molecular Evolution, 2007, 64, 171 - 180.
    Cloonan N, Forrest ARR, Kollr G. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods, 2008, 5: 613 - 619.
    Cohen AN,Carlton J. Accelerating invasion rate in a highly invaded estuary. Science, 1998, 179(23):555 - 317.
    Corlett RT. The ecological transformation of Singapore, 1819-1990. Journal of Biogeography, 1992, 19: 411 - 420.
    D’Antonio CM, Vitousek PM. Biological invasions by exotic grasses, the grass/fire cycle and global change. Annual Review of Ecology and Systematics, 1992, 23: 63 - 87.
    Daehler CC. Variation in self fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology, 1998, 12 (5):553 - 568.
    DeFerrari CM, Naiman RJ. A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. Journal of Vegetation Science, 1994, 5: 247 - 258.
    Drake J A, Mooney H A, di Castri F, et al. Biological invasions: A Global Perspective. Chichester: John Willey. 1 - 30.
    Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 2008, 17:431 - 449.
    Dortas MEM, Aparecida MMM, Ruas PM, et al. Cytogenetic analysis in populations of Mikania micrantha H.B.K. (Asteraceae). Nat Rio Claro, 1998, 23:61 - 69.
    Drake JA. The mechanics of community assembly and succession. Journal of Theoretical Biology, 1990, 147: 213 - 233.
    Driesche JV, Diresche RV. Nature out of Place: Biological Invasion in the Global Age. Island Press, Washington, DC. USA. 2000, 363pp.
    Duggin JA, Gentle CB. Experimental evidence on the importance of disturbance intensity for invasion of Lantana camera L. in dry rainforest-open forest ecotones in north-eastern NSW, Australia. Forest Ecology and Management, 1998, 109: 279 - 292.
    Dukes J S, Mooney H A, 1999. Does global change increase the success of biological invaders?. Trends in Ecology & Evolution, 14 (4): 135 - 139.
    Dwyer M, Kaunzinger CK, Wyckoff PH, et al. The myth of the resilient forest: Case study of the invasive Norway maple (Acer platanoides). Rhodora, 2000, 102 (911): 332 - 354.
    Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Nat. Acad. Sci., USA, 2000, 97:7043 - 7050.
    Elton CS. The Ecology of Invasion by Animals and Plants, Chapman & Hall, London, 1958.
    Ewel JJ, O’Dowd DJ, Bergelson J, et al. Deliberate introductions of species: research needs. BioScience, 1999, 49: 619 - 681.
    Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics. Nat. Rev. Genet., 2003, 4: 651 - 657.
    Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451, 475 - U9.
    Fridriksson S, Magnusson B. Development of the ecosystem on Surtsey with references to Anak Krakatau. Geo. Journal, 1992, 28: 287 - 291.
    Friesen ML, von Wettberg EJ. Adapting genomics to study the evolution and ecology of agricultural systems. Curr. Opin. Plant Biol., 2010, 13, 119 - 25.
    Gonzalez - Martinez SC, Krutovsky KV, Neale DB. Forest-tree population genomics and adaptive evolution. New Phytol., 2006, 170: 227 - 238.
    Gracey AY, Cossins AR. Application of microarray technology in environmental and comparative physiology. Annu Rev Physiol., 2003, 65: 231 - 259.
    Haltuch MA, Berkman PA. Geographic information system (GIS) analysis of ecosystem invasion: Exotic mussels in Lake Erie. Limnol. Oceanogr, 2000, 45(8):1778 - 1787.
    Hertling UM, Lubke RA. Assessing the potential for biological invasion - the case of Ammophila arenaria in South Africa. South African Journal of Science, 2000, 96 (9 - 10): 520 - 527.
    Holdgate MW. Summary and conclusions: characteristics and consequences of biological invasions. Philos. Trans. R. Soc. London B, 1986, 314:733 - 742.
    Holm L, Doll J, Holm E, et al. World weeds: natural histories and distribution. Wiley, New York, USA, 1997.
    Holmes WC. Revision of the old world Mikania (Compositae). Bot Jahrb Syst, 1982, 103(2): 211 - 246.
    Holway DA, Suarez AV, Case TJ. Loss of intraspecific aggression in the success of a widespread invasive social insect. Science, 1998, 282: 949 - 952.
    Horvath DP, Chao WS, Suttle JC, et al. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics, 2008,9.
    Horvath DP, Sung S, Kim D, et al. Characterization, expression and function of dormancy associated MADS-box genes from leafy spurge. Plant Molecular Biology, 2010 ,73, 169 - 179.
    Huang Y, Tan F, G Su,, et al. Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica, 2008, 133: 47 - 5.
    Hufbauer RA. Biological Invasions: Paradox Lost and Paradise Gained. Current Biology, 2008, 18: 246 - 247.
    Juliano SA. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition. Ecology, 1998, 79: (1) 255 - 268.
    Kaiser J. Does biodiversity help fend off invaders?. Science, 2000, 288: 785 - 786.
    Kaneshiro K. Introduction, colonization, and establishment of exotic insect populations: fruit flies in Hawaii and California. American Entomologist, 1993, 39 (Spring): 23 - 29.
    Kitayama K, Muellerdombois D. Biological invasion on an oceanic island mountain - do alien plant species have wider ecological ranges than native species. Journal of Vegetation Science, 1995, 6 (5): 667 - 674.
    Kong GH, Wu QG, Hu QM. Appearing of exotic weed Mikania micrantha H.B.K. in China. J. Trop. Subtrop. Bot, 2000, 8: 27.
    Lai Z, Gross BL, Zou Y, et al. Microarray analysis reveals differential gene expression in hybrid sunflower species. Molecular Ecology, 2006, 15, 1213 - 1227.
    Lai Z, Kane NC, Zou Y, et al. Natural variation in gene expression between wild and weedy populations of Helianthus annuus. Genetics, 2008, 179, 1881 - 1890.
    Lavergne S, Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci., USA, 2007, 104:3883 - 3888.
    Lee CE. Evolutionary genetics of invasive species. Trends. Ecol. Evol., 2002, 17: 386 - 391.
    Lee CE, Mitchell-Olds T. Preface to the special issue: ecological and evolutionary genomics of populations in nature. Mol. Ecol., 2006, 15: 1193 - 1196.
    Levine DA. Ecological speciation: lessons from invasive species. Syst. Bot., 2003, 28:643 - 650.
    Levine J. Species diversity and biological invasions: relating local process to community pattern.Science, 2000, 288: 852 - 854.
    Levine JM, D’Antonio CM. Elton revisited: a Review of evidence liking diversity and invasibility. Oikos, 1999, 87: 15 - 26.
    Levis JM. Species diversity and biological invasions: relating local process to community pattern. Science, 2000, 288(5):852 - 854.
    Li MG, Zhang WY, Liao WB. The history and status of the study on Mikania micrantha. Ecol. Sci., 2000, 19: 41 - 45.
    Li YF, Costello JC, Holloway AK, et al. "Reverse ecology" and the power of population genomics. Evolution, 2008, 62, 2984 - 2994.
    Lister R, O'Malley RC, Tonti Filippini J, et al. Highly integrated single - base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133(3): 523 - 536.
    Lonsdale WM. Global patterns of plant invasions and the concept of invasibility. Ecology, 1999, 80 (5): 1522 - 1536.
    Lowe SM, Boudjelas BS, DePoorter M. 100 of the World’s Worst Invasive Alien Species: A selection from Global Invasive Species Database. IUCN - ISSG, Auckland, New Zealand, 2001.
    Lowei GL. Global change through invasion. Nature, 1997, 388(14):627 - 628.
    Mack RN, Simberloff D, Lonsdale WM, et al. Biotic Invasion: Causes, epidemiology, global consequences, and control. Ecological Application, 2000, 10(3):689 - 710.
    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in micro-fabricated high-density picoliter reactors. Nature, 2005, 437: 376 - 380.
    Maron JL, Vila M, Bommarco R, et al. Rapid evolution of an invasive plant. Ecological Monographs, 2004, 74:261 - 280.
    McGrady - Steed J, Harris PM, Morin PJ. Biodiversity regulates ecosystem predictability. Nature, 1997, 390: 162 - 165.
    McKinney ML, Lockwood JL. Biotic homogenisation: a few winners replacing many losers in the next mass extinction. Trend Ecol. Evol., 1999,14: 451 - 453.
    McNeely JA, Mooney HA, Neville LE, et al. A Global Strategy on Invasive Alien Species. IUCN Gland, Switzerland and Cambridge, UK, 2001.
    Meekins JF, McCarthy BC. Competitive ability of Alliaria petiolata (Garlic Mustard, Brassicaceae), an invasive, non-indigenous forest herb. International Journal of Plant Sciences, 1999, 160 (4): 743 - 752.
    Meyerowitz EM. Arabidopsis thaliana. Annual Review of Genetics, 1987, 21, 93 - 111.Mooney H, Cleland E. The evolutionary impact of invasive species.Proc. Natl. Acad. Sci., 2001, 98: 5446 - 5451.
    Morin RD, O’Connor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008, 18: 610 - 621.
    Nissen SJ, Masters RA, Lee DJ, et al. DNA - based marker systems to determine genetic diversity of weedy species and their application to biocontrol. Weed Science, 1995, 43, 504 - 513.
    Perrings C, Williamson M, Dalmazzone S. The Economics of Biological Invasion. Cheltenham, UK, Edward Elgar Publishing, 2000.
    Pester TA, Ward SM, Fenwick AL, et al. Genetic diversity of jointed goatgrass (Aegilops cylindrica) determined with RAPD and AFLP markers. Weed Science, 2003, 51, 287 - 293.
    Pimental D, Lach L, Zuniga R. Environmental and economic costs of non - indigenous species in the United States. BioScience, 2000, 50(1):53 - 65.
    Prentis PJ, Wilson JR, Dormontt EE, et al. Adaptive evolution in invasive species. Trends Plant Sci, 2008, 13:288 - 94.
    Raejmanek M, Richardson DM. What attributes make some plant species more invasive?. Ecology, 1996, 77 (6): 1655 - 1661.
    Richardson DM, Pyek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geog., 2006, 30: 409 - 431.
    Roman J. Diluting the founder effect: cryptic invasions expand a marine invader's range. Proc. R .Soc. B - Biol. Sci., 2006, 273:2453 - 2459.
    Rowe ML, Lee DJ, Nissen SJ, et al. Genetic variation in North American leafy spurge (Euphorbia esula) determined by DNA markers. Weed Science, 1997, 45, 446 - 454.
    Saccheri I, Kuussaari M, Kankare M, et al. Inbreeding and extinction in a butterfly meta - population. Nature, 1998, 392: 491 - 494.
    Sahai K. Macro and micro - morphology of seed surface of some exotic pine species adapted in Indian Himalayan climate. Phytomorphology, 1994, 44 (1 - 2): 31 - 35.
    Sakai AK, Allendorf FW, Holt JS, et al. The Population biology of invasive Species. Annu. Rev. Ecol. Syst., 2001, 32:305 - 332.
    Sala OE, Chapin FS III, Armesto JJ, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287: 1770 - 1774.
    Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 2005, 14, 1163 - 1175.
    Sanger F, Nicklen S, Coulson AR. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA, 1977, 74:5463 - 5467.
    Sax DF, Stachowicz JJ, Brown JH, et al. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol., 2007, 22:465 - 471.
    Schaal BA, Gaskin JF, Caicedo AL. Phylogeography, haplotype trees, and invasive plant species. J. Hered., 2003, 94: 197 - 204.
    Schuster SC. Next-generation sequencing transforms today’s biology. Nat. Method, 2008, 5: 6 - 18.
    Sharov AA, Liebhold AA. Model of slowing the spread of gypsy moth (Lepidoptera Lymantriidae) with a barrier zone. Ecological Applications, 1998, 8 (4): 1170 - 1179.
    Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology, 2008, 26:1135 - 1145.
    Shimizu KK, Purugganan MD. Evolutionary and ecological genomics of Arabidopsis. Plant Physiology, 2005, 138: 578 - 584.
    Shine C, Williams N, Gundling L. A Guide to designing Legal and Institutional Frameworks on Alien Invasive Species. IUCN Gland, Switzerland, Cambridge and Bonn, 2000.
    Smith CM, Walters LJ. Fragmentation as a strategy for caulerpa species: fates of fragments and implications for management of an invasive weed. Marine Ecology Pubblicazioni Del la Stazione Zoologica Di Napol i I, 1999, 20 (3 - 4): 307 - 319.
    Stachowicz JJ, Whitlatch RB, Osman RW. Species diversity and invasion resistance in Marine ecosystem. Science, 1999, 286: 1577 - 1579.
    Stohlgren TJ, Binkley D, Chong GW, et al. Exotic plant species invade hot spots of native plant diversity. Ecological Monographs, 1999, 69: 25 - 46.
    Su G, Huang Y, Tan F, et al. Genetic diversity and conservation genetics of Lumnitzera littorea (Combretaceae), an endangered mangrove species, from the Indo-West Pacific. Marine Biology, 2007, 150: 321 - 328.
    Suarez AV, Tsutsui ND, Holway DA, et al. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1999, 1 (1): 43 - 53.
    Thompson JN. Rapid evolution as an ecological process. TREE, 1998, 13(8):329 - 332.
    Tilman D. Community invisibility, recruitment limitation, and grassland biodiversity. Ecology, 1997, 78: 81 - 92.
    Tsutsui ND, Suarez AV, Holway DA, et al. Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences, USA, 2000, 97 (11): 5948 - 5953.
    Vasseur L, Potvin C. Natural pasture community response to enriched carbon dioxide atmosphere. Plant Ecology, 1998, 135: 31 - 41.
    Vij S, Gupta V, Kumar D, et al. Decoding the rice genome. Bioessays, 2006, 28, 421 - 432.
    Vitousek PM, D’Antonio CM, Loope LL, et al. Biological invasions as global environmental change. American Scientist, 1996, 84: 218 - 228.
    Wang T, Su Y, Chen G. Population Genetic Variation and Structure of the Invasive Weed Mikania micrantha in Southern China: Consequences of Rapid Range Expansion. J. Hered., 2008, 99: 22 - 33.
    Ward SM, Reid SD, Harrington J, et al. Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States. Weed Science, 2008, 56, 394 - 399.
    Weinig C, Brock MT, Dechaine JA, Welch SM. Resolving the genetic basis of invasiveness and predicting invasions. Genetica, 2007, 129, 205 - 216.
    Wilcove DS, Rothstein DR, Dubow J, et al. Quantifying threats to imperiled species in the United States. Science, 1998, 48: 607 - 615.
    Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single - nucleotide resolution. Nature, 2008, 453(7199): 1239 - 1243.
    Williamson M, Brown KC. The analysis and modeling of British invasions. Philos. Trans. R. Soc. London B, 1986, 314:505 - 522.
    Williamson M, Fitter A. The varying success of invaders. Ecology, 1996, 77 (6): 1661 - 1666.
    Williamson M. Invaders, weeds and the risk from genetically modified organisms. Experientia, 1993,49: 219 - 224.
    Zalba S, Sonaglioni MI, Compagnoni CA, et al. Using a habitat model to assess the risk of invasion by an exotic plant. Biological Conservation, 2000, 93:203 - 208.
    Zhang LY, Ye WH, Cao HL, et al. Mikania micrantha H.B.K. in China - an overview. Weed Res, 2004, 44:42–49.
    Zhang Z, Zhou R, Tang T, et al. Ocean currents and genetic differentiation of Excoecaria agallocha populations in the Indo-West Pacific. Aquatic Botany, 2008, 89: 57 - 62.
    黄忠良,曹洪麟,梁晓东.不同生境和森林内薇甘菊的生存与危害状况,热带亚热带植物学报, 2000,8 (2):131 - 138.
    李振宇,解焱.中国外来入侵种.北京:中国林业出版社, 2002.
    彭少麟.中国南亚热带退化生态系统的恢复及其生态效应.应用与环境生物学报, 1995, 1(4):403 - 414.
    尚蕾,央金卓嘎,杨继等.基因组学:理解植物入侵性的重要工具,生物多样性, 2010, 18: 533 - 546.
    万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策.生物多样性, 2002, 10: 119 - 125.
    王伯荪,廖文波,缪汝槐.薇甘菊学名订正及其近缘种检索,中山大学学报(自然科学报), 2001,40 (5):72 - 75.
    王伯荪,廖文波,昝启杰等.薇甘菊(Mikania micrantha)在中国的传播,中山大学学报(自然科学版), 2003, 42 (4): 47 - 50.
    王曦,汪小我,王立坤等.新一代高通量RNA测序数据的处理与分析-生物化学与生物物理进展, 2010.
    吴兆录,闫海忠.生物多样性保护的一个理论框架-生物最小面积概念.生物多样性, 1996, 4 (1):26 - 31.
    徐承远,张文驹,卢宝荣,陈家宽.生物入侵机制研究进展.生物多样性, 2001, 9 (4): 430 - 438.
    张炜银,王伯荪,廖文波等.外域恶性杂草薇甘菊研究进展,应用生态学报, 2002, 13(12)∶1684 - 1688.
    朱世新,覃海宁,陈艺林.中国菊科植物外来种概述,广西植物, 25 (1): 69 - 76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700