用户名: 密码: 验证码:
溶磷菌的筛选、溶磷条件优化及对玉米的促生作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施用溶磷菌是提高土壤中难溶性磷生物有效性的重要措施之一,为了使施入的溶磷菌在土壤中更好地发挥其活化难溶性磷、改善作物磷素营养状况的作用,所筛选的溶磷菌就必须兼具利用多种形态难溶性磷的能力。本文采用改良的Pikovskaya(?)培养基筛选兼具溶解Ca3(P04)2、磷矿粉和卵磷脂等难溶性磷源的菌株,并通过液体摇瓶试验、生理生化特性和16S rDNA序列分析、盆栽试验、培养及溶磷条件优化等,研究了其在NBRIP培养基中的溶磷效果、分类学地位、对玉米的促生作用及溶磷相关因素的影响。获得的主要结果如下:
     (1)从江苏和安徽的5种石灰性土壤中共分离获得16株溶磷菌,其中菌株P1对Ca3(P04)2、磷矿粉和卵磷脂中磷的溶解效果最佳,溶磷量分别为674.5μg·mL-1、132.3μg·mL-1和33.0μg·mL-1。
     (2)经过菌落及菌体形态特征、生理生化特性和16S rDNA序列分析,初步鉴定菌株P1和P3分别为唐菖蒲伯克霍尔德氏菌(Burkholderia gladioli)和乙酸钙不动杆菌(Acinetobacter calcoaceticus)。根据pqqE和gabY基因序列设计引物,通过PCR扩增菌株P1、P2、P3、P4和P5中pqqE和gabY基因片段,仅从菌株P3中扩增到与Pseudomonas cepaciaE37(U10242.1)(?)勺溶磷相关基因gabY同源性为95%的基因片段,而其它菌株中未扩增出该基因片段。
     (3)菌株P1和P3的最佳培养碳、氮源分别是葡萄糖、谷氨酸和淀粉、蛋白胨,而菌株P1和P3的最佳溶磷碳氮源条件分别是葡萄糖、KN03和葡萄糖、(NH4)2SO4。在NBRIP液体培养的1~7d内,170rpm,30℃,菌株P1和P3培养液的pH值第1d就分别下降至5.03和4.98,并且在后续培养中仍趋于保持该值。随着培养时间的增加,水溶性磷浓度呈增长趋势,而菌体数量变化总体趋势都是先下降,后上升,再下降,最后趋于稳定。此外,加透析袋处理WSP浓度有所减低。
     (4)盆栽试验中,5种溶磷菌微生物有机肥均可显著促进玉米生长,株高、叶长、叶宽和干重分别增加5.1%-33.8%、14.0%-38.0%、17.7%-37.6%和31.7%-177.1%,植株全磷含量比对照增加41.6%~366.6%。经抗生素标记的5株溶磷菌在盆栽试验中的定殖效果以菌株P4和P5优于P1、P2和P3,而对玉米的促生作用却以P1的效果最佳,P3次之,P4和P5效果较差。菌株P1和P3的发酵上清液可在一定程度上促进玉米种子发芽。室内平板对峙试验结果显示菌株P1对辣椒疫病、棉花黄萎病、烟草黑胫病和黄瓜立枯病的病原菌都有明显的拮抗作用,而菌株P3只对棉花黄萎病病原菌有拮抗作用。
     筛选的菌株P1和P3兼具溶解Ca3(PO4)2、磷矿粉和卵磷脂和拮抗土传病原菌的功能,在盆栽试验和玉米种子发芽试验中也均表现出一定的促生作用,因此,在微生物肥料生产中具有潜在的应用前景。
Applying phosphate-solubilizing bacteria strains (PSBs) into soil was one of the major methods to improve bioavailability of insoluble phosphates. In order to make effectively solubilize insoluble phosphates and improve phosphorus uptake of plants, PSBs should have the abilities to dissolve multifarious forms of insoluble phosphates. PSBs which could dissolve tricalcium phosphate, rock phosphate and lecithin were isolated and screened with modified Pikovskaya media in this paper. Culture conditions of growth and solubilizing insoluble phosphates, physiological characteristics and 16S rDNA gene sequence analysis of the isolated PSBs were carried out. Pot experiment was conducted to evaluate the isolated PSBs roles in dissolving phosphates and growth promotion to maize. The results obtained were as follows:
     (1) Sixteen strains, which could solubilize tricalcium phosphate, rock phosphate and lecithin were isolated from five calcareous soils collected from Jiangsu and Anhui province. Among all of the isolated strains, strain P1 was the most effective for solubilizing tricalcium phosphate, rock phosphate and lecithin. After 7 days incubation, strain P1 could produce water-soluble phosphorus (WPS) up to 674.5μg·mL-1,33.0μg·mL-1 and 33.0μg·mL-1, respectively, with tricalcium phosphate, rock phosphate and lecithin as insoluble phosphate source.
     (2) Strain P1 and P3 were identified as Burkholderia gladioli and Acinetobacter calcoaceticus, respectively, based on their physiological characteristics and 16S rDNA gene sequence analysis. Amplification of gabY and pqqE in P1 P2, P3, P4 and P5 strains by PCR method was carried, however, the DNA fragment of gabY genes was obtained only in strains P3, which showed 95% similarities with that in strain Pseudomonas cepaciaE37(U10242.1).
     (3) The optimal carbon and nitrogen sources for the growth of P1 and P3 were glucose, starch and glutamic acid peptone, respectively. While the optimal carbon and nitrogen sources for strain P1 and P3 dissolving phosphate were glucose, glucose and potassium nitrate and ammonium sulfate, respectively. During seven-day incubation by shaking at 170 rpm and 30℃in the liquid NBRIP media, the culture pH value of strain P1 and P3 fell to 5.03 and 4.98 on 1st day, respectively, and pH value of culture kept steady in the following days. WSP concentration in culture increased along with the incubation time. Simultaneously, WSP contents in tne medium decreased to a certain extent using dialysis tubing. The variation tendency of cell counts was that it declined at first, then raised, declined again, finally maintained at a stable level.
     (4) Five PSB bio-fertilizers significantly promoted the growth of maize as compared with organic fertilizer. Shoot height of maize seedling increased by 5.1%-33.8%, leaf length by 14.0%-38.0%, leaf width by 17.7%-37.6% and dry weight by 31.7%-177.1%, and phosphorus accumulation in maize increased by 41.6%~366.6%. The colonization numbers of P4 and P5 in maize rhizosphere soil were more than that of P1, P2 and P3 in pot experiment. Among the five treatments, P1 was the most effective one in promotion of maize growth, then P3, and P4 and P5 were the last. Besides, fermentation supernatants of P1 and P3 showed promotion to maize seed germination. P1 also had strong antagonistic activities against Phytophthoia capsici, Verticillium dahliae, Phytophthora parasitica var. nicotianae and Rhizoctonia solani.
     In summary, strains P1 and P3 with the abilities of solubilizing multifarious insoluble phosphates and antagonizing some soil-borne pathogens, showed promotion to maize growth both in pot and seed germination experiment, suggesting that their potential application in bio-organic fertilizer-producing is promising in future.
引文
1. Adams A P, Bartholomew M V, Clark F E. Measurement of nucleic acid components in soil[J]. Soil Science Society of America Journal,1954 (18):40-46.
    2. Anna R, Bjorn D L, Andy F S T, et al. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different m inerals[J]. FEMS Microbiology Ecology, 2003 (47):31-37.
    3. Asea P E A, Kucey R M N, Stewart J W B. Inorganic phosphate solubilization by two Penicillium sp. in solution culture and soil[J]. Soil Biology and Biochemistry,1988 (20):459-464.
    4. Babu-Khan S, Yeo C, Martin W L, et al. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia[J]. Applied and Environmental Microbiology,1995 (61):972-978.
    5. Barea J M, Navarro E, Montoya E. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria[J]. Journal of Applied Microbiology,1976,40 (2):129-134.
    6. Baskanova G, Macaskie L E. Microbially-enhanced chemisorption of nickel into biologically-synthesized hydrogen uranyl phosphate: a novel system for the removal and recovery of metals from aqueous solutions [J]. Biotechnology and Bioengineering,1997 (54):319-329.
    7. Beacham I R. Periplasmic enzymes in Gram-negative bacteria[J]. International Journal of Biochemistry,1979,10 (11):877-883.
    8. Beever R E and Burns D J W. Phosphorus uptake storage and utilization by fungi [J]. Advances in Botanical Research,1980 (8):127-219.
    9. Belimov A A, Kojemiakov A P, Chuvarliyeva C V. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria[J]. Plant and Soil,1995,173 (1):29-37.
    10. Bonthrone K M, Baskanova G, Lin F et al. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism[J]. Nature Biotechnology,1996 (14):635-638.
    11. Bowman R A, Cole C A. Transformations of organic substrates in soils as evaluated by NaHCO3 extraction[J]. Soil Science,1978 (125):49-54.
    12. Breant D, Jezequel K, Lebeau T. Optimisation of the cell release from immobilized cells of Bacillus simplex cultivated in culture media enriched with Cd2+:influence of Cd2+, inoculum size, culture medium and alginate beads characteristics [J]. Biotechnol. Lett,2002 (24):1237-1241.
    13. Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in the soil microbial biomass[J]. Soil Biology and Biochemistry,1984 (16):169-175.
    14. Buchanan(布坎南)R.E., Gibbons(吉本斯)N.E.(中国科学院微生物研究所翻译组译).伯杰氏细菌鉴定手册[M].北京科学出版社,1984.
    15. Chabot R, Antoun H, Cescas M. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseoli[J]. Plant and Soil,1996 (184):311-321.
    16. Chang I P, Kommedahl T. Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms[J]. Phytopathology,1968 (58):1395-1401.
    17. Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology,2006(34):33-41.
    18. Chen Z X, Ma S W, Liu L L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresource Technology,2008 (99):6702-6707.
    19. Chung H, Park M, Madhaiyan M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biology and Biochemistry,2005 (37):1970-1974.
    20. Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology,2005,71 (9):4951-4959.
    21. De-Freitas J R, Banerjee M R, Germida J J. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napusL.)[J]. Biol Fertil Soils, 1997 (24):358-364.
    22. Deng S, Elkins J G, Da L H, et al. Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14[J]. Archives of microbiology,2001 (176):255-263.
    23. Deng S, Summers M L, Kahn M L, et al. Cloning and characterization of a Rhizobium. Meliloti nonspecific acid phosphatase[J]. Archives of microbiology,1998 (170):18-26.
    24. Dey C. Effects of citrate and tartrate on phosphorus adsorption byamorphour ferric hydroxide[J]. Fertilizer Research,1994,40 (2):129-134.
    25. Diaz-Ravina M, Acea M J, Carballas T. Seasonal changes in microbial biomass and nutrient flush in forest soils[J]. Biol Fertil Soils.1995 (19):220-226.
    26. Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) [J]. Plant, Cell and Environment, 1989 (12):285-292.
    27. Drever J I, Stillings L L. The role of organic acids in mineral weathering[J]. Colloids Surface, 1997 (120):167-181.
    28. Elizabeth P, Miguel S, Maria M B. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region[J]. Soil Biology and Biochemistry,2007,38 (11):2905-2914.
    29. Feng K, Lu H M, Sheng H J, et al. Effect of organic ligands on biological vailability of inorganic phosphorus in soils[J]. Pedosphere,2004,14 (1):85-92.
    30. Fox T R, Comford N B. Low-molecular-weight organic acids in selected forest soils of southeastern USA[J]. Soil Science Society of America Journal,1990 (54):1139-1144.
    31. Fraga R, Rodriguez H, Gonzalez T. Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain[J]. Acta Biotechnologica,2001 (21):359-369.
    32. Gadd G M. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes[J]. Advances in Microbial Physiology,1999 (41):47-92.
    33. Goldstein A H, Liu S T. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola[J].Biotechnology,1987 (5):72-74.
    34. Goldstein A H. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In Phosphate in Microorganisms: Cellular and Molecular Biology. Eds. A TorrianiGorini, E Yagil and S Silver, pp.197-203. ASM Press, Washington, DC.1996.
    35. Golovan S, Wang G, Zhang J, et al. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities [J]. Canadian Journal of Microbiology,2000 (46):59-71.
    36. Greaves M P. The hydrolysis of phosphates by Aerobacter acrogenes[J]. Biochimica et Biophysica Acta,1967 (132):412-418.
    37. Gulden R H, Vessey J K. Penicillium bilaii inoculation increases root hair production in field pea[J]. Canadian journal of soil science,2000 (80):801-804.
    38. Gupta R, Singal R, Shankar A, et al. A modified plate assay for screening phosphate solubilizing microorganisms[J]. Journal of General and Applied Microbiology,1994 (40):255-260.
    39. Hameeda B, Harini G, Rupela O P, et al. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna[J]. Microbiological Research, 2008 (163):234—242.
    40. Hameeda B, Reddy Y H K, Rupela O P, et al. Effect of Carbon Substrates on Rock Phosphate Solubilization by Bacteria from Composts and Macrofauna. Current Microbiology,2006 (53):298-302.
    41. Hariprasad P and Niranjana S R. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato[J]. Plant and Soil,2009 (316):13-24.
    42. Hariprasad P, Navya H M, Chandra nayaka S, et al. Advantage of using PSIRB over PSRB and IRB to improve plant health of tomato[J]. Biological Control,2009 (50):307-316.
    43. Hayes J E, Richardson A E, Simpson R J. Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase[J]. Biology and Fertility of Soils,2000, 32:279-286.
    44. Heekyung C, Myoungsu P, Munusamy M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biology and Biochemistry,2005 (37):1970-1974.
    45. Hu J L, Lin X G, Wang J H, et al. Population size and specific potential of P-mineralizing and-solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil[J]. Pedobiologia,2009 (53):49-58.
    46. Iddris E E, Makarewicz O, Farouk A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect[J]. Microbiology, 2002 (148):2097-2109.
    47. Illmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms [J]. Soil Biology and Biochemistry,1995,27 (3):257-263.
    48. Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil[J]. Soil Biology and Biochemistry,1992 (24):389-395.
    49. Jaleed S, Ahmad J S, Baker R. Rhizosphere competence of Trichoderma hanianum[J]. Phytopathology,1987,77 (2):182-189.
    50. Jayasinghearachchi H S, Seneviratne G. Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms[J]. Soil Biology and Biochemistry,2006 (38):405-408.
    51. Jenkinson D S, Parry L N. The nitrogen cycle in the Broadbalk wheat experiment: A model for the turnover of nitrogen through the soil microbial biomass. [J] Soil Biology and Biochemistry, 1989,21:535-543.
    52. Johri J K, Surange S, Nautiyal C S. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils[J]. Current Microbiology,1999,39 (2):89-93.
    53. Jugsujinda A, Krairapanond A, Patrick Jr W H. Influence of extractable iron, aluminium, and manganese on P-sorption in flooded acid sulfate soils[J]. Biology and Fertility of Soils,1995 (20):118-124.
    54. Jung I, Park D H, Park K. A Study of the Growth Condition and Solubilization of Phosphate from Hydroxyapatite by Pantoea agglomerans. Biotechnology and Bioprocess Engineering, 2002 (7):201-205.
    55. Kabznelson H, Peterson E A, Rouatt J W. Phosphate-dissolving microorganisms on seed and in the root zone of plants[J]. Canandian Journal of Botany,1962,40 (9):1181-1186.
    56. Kerovuo J, Lauraeus M, Nurminen P, et al. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis[J]. Applied and Environmental Microbiology,1998 (64):2079-2085.
    57. Kim K Y, Jordan D and Krishnan H B. Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli[J]. FEMS Microbiology Letters,1998b (159):121-127.
    58. Kim K Y, Jordan D, Krishnan H B. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite[J]. FEMS Microbiology Letters,1997b (153):273-277.
    59. Kim K Y, McDonald G A and Jordan D. Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium[J]. Biology and Fertility of Soils, 1997a (24):347-352.
    60. Kim Y O, Lee J K, Kim H K, et al. Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli[J]. FEMS Microbiology Letters, 1998a (162):185-191.
    61. Kloepper J W, Beauchamp C J. A review of issues related to measuring colonization of plant roots by bacteria[J]. Canadian Journal of Microbiology,1992 (38):1219-1232.
    62. Kobus J. The distribution of microorganisms mobilizing phosphorus in different soils[J]. Acta Microbiology of Polish,1962 (11):255-264.
    63. Krishnaraj P U, Goldstein A H. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens[J]. FEMS Microbiology Letters,2001 (205):215-220.
    64. Kucey R M N, Janzen H H, Legett M E. Microbially mediated increases in plant-available phosphorus[J]. Advances in Agronomy,1989 (42):199-228.
    65. Kucey R M N. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils[J]. Canadian journal of soil science,1983 (63):671-678.
    66. Kumar V, Behl R K, Narula N. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions[J]. Microbiological Research,2001 (156):87-93.
    67. Kumar V, Narula N. Solubilization of inorganic phosphate and growth emergency of wheat as affected by Azotobacter chroococcum mutants [J]. Biology and Fertility of Soils,1999 (28):301-305.
    68. Lei X G and Stahl C H. Biotechnological development of effective phytases for mineral nutrition and environmental protection[J]. Applied Microbiology and Biotechnology,2001 (57):474-481.
    69. Lyamuremye F, Dick R P, Baham J. Organic amendments andphosphorus dynamics:I Phosphorus chemistry and sorption[J]. Soil Science,1996,161 (7):426-435.
    70. Macaskie L E, Yong P, Doyle T C, et al. Bioremediation of uranium-bearing waste-water: biochemical and chemical factors affecting bioprocess application [J]. Biotechnology and Bioengineering,1997 (53):100-109.
    71. McDowell R W, Condron L M, Stewart I. An examination of potential extraction methods to assess plant available organic phosphorus in soil[J]. Biology and Fertility of Soils,2008, 44:707-715.
    72. McGill W B, Cole C V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter[J]. Geoderma,1981,26:267-286.
    73. Meek B D, Graham L E, Donovan T J, et al. Phosphorus availability in a calcareous soil after high loading rate of animal manure[J]. Soil Sci. Am. J,1979 (43):741-743.
    74. Mehta S. Nautiyal C S. An efficient method for qualitative screening of phosphate-solubilizing bacteria[J]. Current Microbiology,2001 (43):51-56.
    75. Meulenberg J J, Sellink E, Riegman N H, et al. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon[J]. Molecular and General Genetics,1992 (232):284-294.
    76. Molla M A Z, Chowdhury A A. Microbial mineralization of organic phosphate in soil[J]. Plant and Soil,1984 (78):393-399.
    77. Muller B, Burgstaller W, Strasser H, et al. Leaching of zinc from an industrial filter dust with Penicillium, Pseudomonas and Corynebacterium:Citric acid is the leaching agent rather than amino acids[J]. Journal of Industrial Microbiology,1995 (14):208-212.
    78. Nahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil[J]. World Journal of Microbiology and Biotechnology,1996 (12):567-572.
    79. Narsian V and Patel H H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology and Biochemistry,2000 (32):559-565.
    80. Nwoke O C, Vanlauwe B, D iels J, et al. The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of West Africa[J]. Nutrient Cycling in Agroecosystems,2004,69:127-141.
    81. Ogbo F C. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi [J]. Bioresource Technology,2010 (101):4120-4124.
    82. Oliveira C A, Alves V M C, Marriel I E, et al. Phosphate solublilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry,2009,41 (9):1782-1787.
    83. Paul N B, Sundara R W V B. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes[J]. Plant and Soil,1971 (35):127-132.
    84. Peix A, Rivas R, Mateos P F, et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro[J]. International Journal of Systematic and Evolutionary Microbiology,2003 (53):2067-2072.
    85. Peixa A, Rivas-Boyerob A A, Mateos P F, et al. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions[J]. Soil Biology and Biochemistry,2001 (33):103-110.
    86. Perez E, Sulbardn M, Ball M M, et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region[J]. Soil Biology and Biochemistry,2007 (39):2905-2914.
    87. Ponmurugan P, Gopi C. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria[J]. African Journal of Biotechnology,2006,5 (4):348-350.
    88. Rashid M, Khalil S, Ayub N, et al. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions[J]. Pakistan Journal of Biological Sciences,2004,7 (2):187-196.
    89. Reilly T J, Baron G S, Nano F et al. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis[J]. The Journal of Biological Chemistry,1996 (271):10973-10983.
    90. Relwani L, Krishna P, Reddy M S. Effect of Carbon and Nitrogen Sources on Phosphate Solubilization by a Wild-Type Strain and UV-Induced Mutants of Aspergillus tubingensis. Current Microbiology,2008,57 (5):401-406.
    91. Reyes I, Valery A, Valduz Z. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine[J]. Plant and Soil,2006 (287):69-75.
    92. Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate[J]. The Plant Journal, 2001 (25):641-649.
    93. Richardson A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants[J]. Australian Journal of Plant Physiology,2001 (28):897-906.
    94. Richardson A E. Soil microorganisms and phosphorous availability. In Soil Biota: Management in Sustainable Farming Systems. Eds. CE Pankhurst, BM Doube and VVSR Gupta, pp.50-62. CSIRO, Victoria, Australia.1994.
    95. Rodriguez E, Han Y, Lei X G. Cloning, sequencing and expression of an Escherichia.coli acid phopshatase/phytase gene (appA2) isolated from pig colon[J]. Biochemical and Biophysical Research Communications,1999 (257):117-123.
    96. Rodriguez H and Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances,1999 (17):319-339.
    97. Rodriguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil,2006 (287):15-21.
    98. Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances,1999 (17):319-339.
    99. Rodriguez H, Rossolini G M, Gonzalez T, et al. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity[J]. Current Microbiology,2000 (40):362-366.
    100. Rosas S B, Andres J A, Rovera M,et al. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis [J]. Soil Biology and Biochemistry,2006 (38):3502-3505.
    101. Rossolini G M, Shipa S, Riccio M L, et al. Bacterial non-specific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology[J]. Cell Mol. Life Sci.1998 (54):833-850.
    102. Sadeghi A M, Kissel D E, Cabrera M L. Temperature effects on urea diffusion coefficients and urea movement in soil[J]. Soil Science Society of America Journal,1988 (52):46-49.
    103. Sahin F, Cakmakci R, Kantar F. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria[J]. Plant and Soil,2004 (265):123-129.
    104. Scott J T, Condron L M. Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system[J]. Biology and Fertility of Soils,2003 (39):65-73.
    105. Sharma K N, Deb D L. Effect of soil moisture tension and soil compaction on self-diffusion zine in soils of varying texture[J]. Journal of Nuclear Agriculture and Biology,1984,13 (4):118-120.
    106. Shukla S S, Syers J K, Williams J D, et al. Sorption of inorganic phosphate by lake sediments[J]. Soil Science Society of America Journal,1971,35:244-249.
    107. Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology,2006 (97):204-210.
    108. Sperber J I. Solution of apatite by soil microorganisms producing organic acids[J]. Australia Journal of Agricultural Research,1958 (9):782-789.
    109. Sperber J I. Solution of mineral phosphates by soil bacteria. Nature,1957 (180):994-995.
    110. Sterflinger K. Fungi as geologic agents[J]. Geomicrobiology Journal,2000 (17):97-124.
    111. Stevenson F J, Cole M A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. New York: John Wiley and Sons Press,1999.
    112. Sudhansu S P. Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops[J]. Plant and Soil,1998 (198):169-177.
    113. Sundara B, Natarajan V, Hari K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields [J]. Field Crop Research,2002 (77):43-49.
    114. Sundara Rao W V B, Sinha MK. Phosphate dissolving microorganisms in the soil and rhizosphere [J]. Indian Journal of Agricultural Sciences,1963 (33):272-278.
    115. Thaller M C, Berlutti F, Schippa S, et al. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii[J]. Microbiology,1994 (140),1341-1350.
    116. Thaller M C, Berlutti F, Schippa S, et al. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. [J] Microbiology,1994 (140),1341-1350.
    117. Thaller M C, Berlutti F, Schippa S, et al. Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae[J]. Int. J.Syst.Bacteriol,1995a (45):255-261.
    118. Thaller M C, Lombardi G, Berlutti F, et al. Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii:identification of a new family of bacterial acid phosphatase encoding genes[J]. Microbiology 1995b (140):147-151.
    119. Thomas GV. Occurrence and ability of phosphate solubilizing fungi from coconut plant soils[J]. Plant and Soil,1985 (87) 357-364.
    120. Tiessen H, Stewart J W B, Cole C V. Pathways of Phosphorus Transformations in Soils of Differing Pedogenesis[J]. Soil Science Society of America Journal,1984 (48):853-858.
    121. Tilak K V B R, Ranganayaki N, Pal K K, et al. Diversity of plant growth and soil health supporting bacteria[J]. Current Science,2005,89 (1):136-150.
    122. Tsubota G. Phosphate reduction in the paddy field[J]. Soil and Plant Food,1959 (5):10-15.
    123. Tye A J, Siu F K, Leung T Y et al. Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis[J]. Applied Microbiology and Biotechnology,2002 (59):190-197.
    124. Varsha N, Patel H H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology and Biochemistry,2000 (32):559-565.
    125. Vassilev N, Baca M T, Vassileva M, et al. Rock phosphate solubilization by Aspergilus niger grown on sugerbeet wast medium[J]. Applied Microbiology and Biotechnology,1995, (44):546-549.
    126. Vassileva N, Vassileva M, Nikolaeva I. Simultaneous p-solubilizing and biocontrol activity of microorganisms:potentials and future trends[J]. Applied Microbiology and Biotechnology, 2006 (71):137-144.
    127. Vazquez P, Holguin G, Puente M E, et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils,2000 (30):460-468.
    128. Walbridge M R, Richardson C J, Swank W T. Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils [J]. Biogeochemistry,1991,13:61-85.
    129. Wanner B L. Phosphorus assimilation and control of the phosphate regulon. In Escherichia Coli and Salmonella, Cellular and Molecular Biology,. Eds. FC Niedhardt, R Curtiss Ⅲ, JL Ingraham, EC Lin, KB Low, B Magasanik, WS Rezniko□, M Riley, M Schaechter and HE Umbarger. pp.1357-1381.2nd edition,1ASM Press, Washington, DC.1996
    130. Wenzel C L, Ashford A E and Summerell B A. Phosphate-solubilizing bacteria associated with proteoid root of seedlings of waratah[Telopea speciosissima (Sm.) R.Br.][J]. New Phytologist,1994 (128):487-496.
    131. Whitelaw M A, Harden T J, Helyar K R. Phosphate solubilisation in solution culture by the soil fungus Penicillum radicum[J]. Soil Biology and Biochemistry,1999 (31):655-665.
    132. Yanming H, Wilson D B, Lei X G. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology,1999(65):15-18.
    133. Zou X M, Binkley D, Doxtader K G. A new method for estimating gross phosphorus mineralization and immobilization rates in soils[J]. Plant and Soil,1992 (147):243-250.
    134.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:81-83,264-271.
    135.陈华癸,李阜棣,陈文新.土壤微生物学[M].上海:上海科学技术出版社,1979.
    136.陈廷伟.矿质磷细菌的分离培养[J].农业学报,1955,6(3)
    137.谌书,连宾,刘丛强.一株胶质芽胞杆菌对磷矿石风化作用的实验研究[J].矿物学报,2008,28(11):77-83.
    138.谌书,刘丛强,连宾.一株黑曲霉对磷矿石的风化作用[J].矿物学报,2009,29(11):103-108.
    139.程宝森,房玉林,刘延琳,等.渭北旱塬葡萄根际解磷细菌的筛选及其对葡萄的促生效应[J].西北农业学报,2009,18(4):185-190.
    140.程池,杨梅,李金霞,等.BIOLOG微生物自动分析系统细菌鉴定操作规程的研究[J].食品与发酵工业,2006,32(5):50.
    141.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    142.董昌金,将宝贵.解磷细菌PD01的分离与分子标记[J].湖北农业科学,2005(1):62-63.
    143.杜春梅,金术超,王葳等.无机磷分解菌BL-11的鉴定及其解磷能力研究[J].微生物学通报.2007,34(2):283-286.
    144.范丙全,金继运,葛诚.32p示踪法研究溶磷真菌对磷肥转化固定和有效性的影响[J].应用生态学报,2004,15(11):2142-2146.
    145.范业宽,李世俊Bowman-Cole石灰性土壤有机磷分组法的改进[J].土壤通报,2004,35(6):743-749.
    146.郜春花,王岗,董云中.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43.
    147.顾益初,蒋伯藩,鲁如坤.风化对土壤粒级中磷素形态转化及其有效性的影响[J].土壤学报,1984,21(2):134-143.
    148.郭小芳,宗兆锋,杨洪俊.6种放线菌抗药性标记及其在植株体内定殖能力测定[J].西北农业学报,2005,14(2):69-73.
    149.韩梅,温志丹,肖亦农,等.解磷细菌的筛选及对植物病原真菌的拮抗作用[J].沈阳农业大学学报,2009-10,40(5):594-597.
    150.黄昌勇.土壤学[M].北京.中国农业出版社,2001.
    151.姜成林,徐丽华.微生物资源学[M].北京:科学出版社,1997.
    152.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66.
    153.黎起秦,罗宽,林纬,等.内生菌B47的定殖能力及对其番茄青枯病的防治作用[J].植物保护学报,2006,33(4):363-368.
    154.李繁,涂然,陈三风.7株解有机磷细菌的分离和鉴定[J].农业生物技术学报,2006,14(4):600-605.
    155.李伏生,康绍忠,张富仓,等.大气温度对土壤养分迁移和春小麦干物质积累的效应[J]. 西北农业学报,2002,11(3):132-137.
    156.李阜棣,胡正嘉.微生物学[M].北京:中国农业出版社,2000.
    157.李淑仪,蓝佩玲,廖新荣,等砖红壤磷的有效性研究[J].生态环境,2003,12(2):170-171.
    158.李玉娥,姚拓,朱颖,等.兰州地区苜蓿和红豆草根际溶磷菌筛选及菌株部分特性研究[J].草地学报,2009,31(1):45-51.
    159.梁锦锋,陈欣,唐建军.1株磷细菌基本培养条件的研究[J].浙江林学院学报,2002,19(4):342-345.
    160.梁绍芬,姜瑞波,葛诚.微生物肥料的生产和发展及存在的问题[M].北京:中国农业科技出版社,1996.
    161.林启美,王华,赵小蓉.一些细菌和真菌的解磷能力及其机理初探[J].微生物学报,2001,28(2):26-30.
    162.林启美,赵小蓉,孙焱鑫,等.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    163.刘辉,吴小芹,陈丹.4种外生菌根真菌对难溶性磷酸盐的溶解能力[J].西北植物学报,2010,30(1):0143-0149.
    164.刘丽丽,陈立新,王广朝.93202SD系列菌的溶磷研究[J].南开大学学报,1998,31(3):75-79.
    165.刘丽丽.PK菌肥的菌种筛选及其应用研究[J].南开大学学报,1994,27(3):82-86.
    166.刘丽丽.津农菌肥对水果糖度和着色度的影响[J].天津农业科学,1995(3):17-18.
    167.鲁如坤,时正元,顾益初.土壤积累态磷研究:Ⅱ.磷肥的表观积累利用率[J].土壤,1995,27(6):286-289.
    168.鲁如坤,时正元,钱承梁.土壤累积态磷研究Ⅲ.几种典型土壤中累积态磷的形态特征及其有效性[J].土壤,1997,(2):57-60.
    169.鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社.1998.
    170.陆景陵.植物营养学[M].中国农业大学出版社.2004.
    171.吕德国,于翠,秦嗣军,等.本溪山樱根部解磷细菌的定殖规律及其对植株生长发育的影响[J].中国农业科学,2008,41(2):508-515.
    172.祁之秋,李兴海,王英姿,等.黄瓜枯萎病拮抗芽孢杆菌B67在土壤及黄瓜根际的定殖[J].中国蔬菜,2009(8):63-66.
    173.秦芳玲,田中民.同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响[J].西北农林科技大学学报(自然科学版).2009,37(6):151-157.
    174.沈仁芳.潮土无机磷的形态及其分布特点[J].河南农业科学,1992(12):24-25.
    175.盛下放.硅酸盐细菌NBT菌株在小麦根际定殖的初步研究[J].应用生态学报,2003,14(11):1914-1916.
    176.宋建利,石伟勇.磷细菌肥料的研究和应用现状概述[J].化肥工业,2006,32(4):18-20.
    177.覃丽金,王真辉,陈秋波,等.解磷细菌接种对热研2号柱花草生长与土壤酸化的效应.草业学报,2008,17(1):20-28.
    178.王鹏,孙剑秋,臧威,等.磷细菌研究进展[J].河南农业科学,2008(9):5-9.
    179.王岳坤,于飞,唐朝荣.海南生态区植物根际解磷细菌的筛选及分子鉴定[J].微生物学报,2009.49(1):64-71.
    180.魏勇,张焕朝,张金龙.杨树根际土壤磷的分布特征及其有效性[J].南京农业大学学报, 2003,27(5):20-24.
    181.翁启勇,陈庆河,赵健,等.利福平标记菌株BS1在番茄、茄子根部及土壤中的定殖动态[J].福建农业学报.2003,18(2):87-88.
    182.吴霭民,顾本康,傅正擎,等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物病理学报,2001,31(4):289-294.
    183.吴平,印莉萍,张立平.植物营养分子生理学[M].北京:科学技术出版社,2001.
    184.向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报.2004,10(6):663-670.
    185.肖辉林,郑习健.土壤温度上升对某些土壤化学性质的影响[J].土壤与环境,2000,9(4):316-321.
    186.肖相政,刘可星,廖宗文.短小芽孢杆菌BX-4抗生素标记及定殖效果研究[J].农业环境科学学报,2009,28(6):1172-1176.
    187.杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报,2005,42(2):348-350.
    188.姚拓.高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定[J].草业学报,2004,13(3):85-90.
    189.尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246.
    190.尹逊霄,华珞,张振贤,等.土壤中磷素的有效性及其循环转化机制研究[J].首都师范大学学报(自然科学版).2005,26(3):95-101.
    191.游春平,刘任,肖爱萍,等.拮抗细菌Bio-d5在香蕉根部定殖能力的测定[J].华中农业大学学报,2008,27(3):363-366.
    192.于翠,吕德国,秦嗣军,等.本溪山樱根际与非根际解磷细菌群落结构及动态变化[J].应用生态学报,2006,17(12):2381-2384.
    193.于翠,吕德国,秦嗣军,等.大青叶根际与非根际解磷细菌分布特征研究初报[J].中国农学通报,2006,22(2):237-240.
    194.于海秋,彭新湘,曹敏建.缺磷对不同磷效率基因型大豆光合日变化的影响[J].沈阳农业大学学报,2005,36(5):519-522.
    195.余贤美,王义,沈奇宾,等.解磷细菌PSB3的筛选及拮抗作用的研究[J].微生物学通报,2008,35(9):1398-1403.
    196.袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.
    197.湛方栋,陆引罡,黄建国.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-491.
    198.张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,36(1):104-111.
    199.张炳欣,张平.植物根围外来微生物定殖的检测方法[J].浙江大学学报.2000,26(6):624-628.
    200.张健,洪坚平,郝晶,等.不同解磷菌群在石灰性土壤中对油菜产量及品质的影响[J].山西农业大学学报,2006,26(2):149-151.
    201.张林,吴宁,吴彦,等.土壤磷素形态及其分级方法研究进展[J].应用生态学报.2009,20(7):1775-1782.
    202.张桃林,高超,吴蔚东.氧化还原条件对土壤磷素固定与释放的影响[J].土壤学报,2002,39(4):542-549.
    203.张巍,冯玉杰,胡纯国等.耐盐碱解磷菌的分离鉴定及解磷能力研究[J].土壤通报,2009,40(3):572-575.
    204.章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150.
    205.章永松,林咸永,倪吾钟.淹水和风干过程对水稻土磷的吸附、解吸及有效磷的影响[J].中国水稻科学,1998,12(1):40-44.
    206.赵少华,宇万太,张璐,等.土壤有机磷研究进展[J].应用生态学报,2004,15(11):2189-2194.
    207.赵小蓉,林启美,李保国.C、N源及C/N比对微生物溶磷的影响.植物营养与肥料学报,2002,8(2):197-204.
    208.赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7.
    209.赵小蓉,林启美,孙焱鑫,等.小麦根际与非根际解磷细菌的分布[J].华北农学报.2001c,16(1):111-115.
    210.赵小蓉,林启美,孙焱鑫,等.玉米根际与非根际解磷细菌的分布特点[J].生态学杂志,2001b,20(6):62-64.
    211.赵小蓉,林启美,孙焱鑫.细菌解磷能力的测定方法的研究[J].微生物学通报,2001d,28(1):1-4.。
    212.赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001a,5(3):7-11.
    213.郑传进,黄林,龚明.巨大芽孢杆菌解磷能力的研究[J].江西农业大学学报,2002,24(2):190-192.
    214.郑少奎,杨敏,关晓辉,等.矿石之微生物脱磷机理的初步研究[J].高校地质学报,2000,6(2):345-348.
    215.钟传青,黄为一.不同种类解磷微生物的溶磷效果极其磷酸酶活性的变化[J].土壤学报,2005,42(2):286-294.
    216.周华君,王校常,吴文彬.根系分泌物对几种难溶磷活化作用的研究[J].西南农业大学学报,2001,23(5):401-403.
    217.朱培淼,杨兴明,徐阳春,等.高效解磷细菌的筛选及其对玉米苗期生的促进作用[J].应用生态学报,2007,18(1):107-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700