用户名: 密码: 验证码:
大豆叶茸毛着生状态与筛豆龟蝽抗性的关联及基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物的抗虫性常常与作物的形态特征有关,茸毛着生状态这一形态特征是昆虫寻觅适宜生栖环境和食物的感觉依据,影响着昆虫在植物表面的取食和产卵等行为。已有研究结果指出叶片茸毛的着生状态与大豆抗虫性存在显著相关,发现叶片上具匍匐状茸毛的大豆材料对豆卷叶螟的抗性好于叶片直立茸毛的大豆。经典遗传学研究表明大豆叶片茸毛着生状态受少数基因控制,但该特性也表现较典型的数量性状特点,受基因型、生长时期及环境条件等因素的影响较大。筛豆龟蝽通过刺吸大豆茎叶以及引发病害而对大豆的产量和品质造成巨大危害,近年来已成为我国南方地区的主要害虫,且有上升的趋势。选育抗虫品种是防治筛豆龟蝽的最重要措施,揭示大豆资源中抗性遗传变异、发掘抗虫基因资源是抗虫育种的首要工作。
     本研究利用来源于全国24个省份的400份大豆地方品种研究大豆叶茸毛着生状态与筛豆龟蝽抗性的关系,比较叶片和叶柄茸毛着生状态与筛豆龟蝽抗性的关联;进一步通过重组自交系群体和构建的高代自交分离群体,对控制叶片茸毛着生状态的基因进行定位和验证,为叶片茸毛着生状态基因的育种利用及其与抗虫性的相互作用等研究提供指导。本研究的主要结果如下:
     (1)大豆种质资源品种间对筛豆龟蝽抗性存在较大的变异,筛豆龟蝽的抗性等级与生态区间也存在显著的相关,东北、黄淮海生态区的高感品种的频率高于长江中下游,中南,西南高原和华南热带等南方生态区,而长江中下游,中南,西南高原和华南热带等南方生态区高抗品种的频率高于东北、黄淮海生态区。
     (2)叶茸毛着生状态与筛豆龟蝽的危害率两者间存在极显著关联。匍匐型叶片茸毛抗筛豆龟蝽,直立型叶片茸毛感筛豆龟蝽;紧贴型叶柄茸毛抗筛豆龟蝽,直立型叶柄茸毛感筛豆龟蝽,且叶片与叶柄相比,叶片的茸毛着生状态与筛豆龟蝽抗性的关联更为显著。
     (3)重组自交系群体(NJRISX)中直立型叶片茸毛家系有85个,匍匐型叶片茸毛家系有91个,符合1:1的一对基因的基因型分离比,利用221个分子标记(218个SSR标记,3个形态标记)对叶片茸毛着生状态做连锁分析,将控制叶片茸毛着生状态的基因定位在H连锁群末端,与Satt317相距36.6 cM。
     (4)以通山薄皮黄豆甲(T)×矮秆黄(A)组合,构建叶片茸毛着生状态的高代自交分离群体,选择到了目标区段杂合单株,通过田间表型鉴定和连续选择,得到7个单株衍生成的家系共353株,叶片茸毛匍匐为显性共252株,叶片茸毛直立为隐性共101株,卡平方测验符合3:1的一对基因的表型分离比,结合重组自交系群体(NJRISX)中1:1的基因型分离比,验证了叶片茸毛着生状态一对基因的遗传。利用H连锁群上9个SSR分子标记对构建的高代自交分离群体控制叶片茸毛着生状态的基因进行了定位,发现叶片茸毛着生状态基因与分子标记Satt434紧密连锁,将其定位在H连锁群上距Satt434约4.6 cM处。
Insect resistance of crop is often related to crop morphology, and the looking for suitable living environment and food of insects is often based on the feeling toward plant. Soybean [Glycine max (L.) Merr.] accessions with prostrate leaf blade pubescence show higher resistance than those with erect leaf blade pubescence. Classic genetics indicates that the trait of leaf blade pubescence status is controlled by several genes, however its phenotype also shows quantitative trait character which is easily affected by genotype, growing stage and environment conditions.
     Globular stink bug (GSB) [Megacota cribraria (Fabricius)] can cause great damage to yield and quality of soybean. And it is the main pest in eastern coast of China in recent 20 years, showing increasing damage tendency. Breeding resistant varieties is an important measure to reduce the soybean loss caused by M. cribraria. Revealing genetic variation and exploring resistant genes in soybean varieties are priorities in the work of soybean insect-resistant breeding.
     In this study, the researchers investigated the association between soybean leaf pubescence status and M. cribraria resistance of varieties, and compared leaf blade pubescence status with leaf petiole pubescence status to find out which association is more closely with M. cribraria resistance by using 400 varieties from 24 provinces of China. Furthermore, a gene controlling leaf blade pubescence status was verified and mapped by using recombinant inbred lines and high generation inbred separation lines.
     The main results of this experiment are listed as follows:
     (1) The coefficients of variation of leaf pubescence status and the resistance to M. cribraria were large in the selected soybean germplasm, and the relationship between varieties for GSB resistance and leaf pubescence status were detected to be significant correlation. There were more high resistant accessions and less high susceptible accessions in Southern China eco-region (including Middle and lower changjiang valleys, Central-south, Southwest plateau and Southwest trophic eco-regions) than that in Northeast China and HuangHuaiHai valleys in China, indicating resistance to M. cribraria in soybean being related with the geographic sources.
     (2) Significant correlations were detected between leaf pubescence status and geographic sources damage rate. The correlation between resistance levels of varieties to M. cribraria and leaf pubescence status had also reached a significant level. Prostrate leaf pubescence was resistant, erect leaf pubescence was susceptible to GBS in field. Compare leaf blade pubescence status with leaf petiole pubescence status, leaf blade pubescence status showed a more significant correlation with M. cribraria resistant of soybean.
     (3) There were 85 lines with erect leaf blade pubescence and 91 lines with prostrate leaf blade pubescence in recombined inbred lines (NJRISX). It fitted the expected genotype segregation ratio of 1:1. According to the linkage analysis between the genotype (including 218 SSR markers and 3 morphological markers) and pheonotype informations, the gene cotrolling leaf blade pubescence was located at the end part of H linkage group,36.6 cM away from SSR marker Satt317.
     (4) Some high generation inbred seperation lines were constructed. The population is selected from the lines derived from the cross of two soybean varieties T and A. Firstly, four single plants with heterozygous marker genotypes at the targeted genome regions were selected, and other genome regions of these plants remained homozygous. By subsequently genotypic and field phenotypic investigation, seven different heterozygous lines of the leaf blade pubescence status were developed. The pooled lines contained 353 plants, in which 252 plants showed dominant phenotype (prostrate leaf blade pubescence) and 101 plants showed recessive phenotype (erect leaf blade pubescence). The phenotype segregation pattern fitted 3:1 expected ratio. Based on the 1:1 genotype segregation ratio of recombined inbred lines (NJRISX), the conclusion that this character was controlled by a single major gene was verified. Using the high generation inbred seperation lines and 9 SSR markers to fine map the targeted gene, the result showed the targeted gene was tightly linked with two SSR markers Satt434 and 12-1364a, and located the gene around the marker Satt434 about 4.6 cM.
引文
1.陈桂华,诸葛梓,童彩文.大豆筛豆龟蜷为害损失率测定及其防治指标研究.昆虫知识,1996,33(4):207-208
    2.陈琦,王俊岭,郭松景,白红霞,卓喜牛.筛豆龟蝽的生物学特性研究.河南农业科学,2009,(4):88-90
    3.崔章林,盖钧镒,吉东风等.南京地区大豆食叶性害虫种类调查与分析.大豆科学,1997,16(1):12-20
    4.盖钧镒,汪越胜.中国大豆品种生态区域划分的研究.中国农业科学,2001,34(2):139-145
    5.郭香墨,丰嵘,刘海涛等.棉花多茸毛性状的引进和利用.中国棉花,1995,22(9):4-5
    6.胡是林,张文淑,杨庆林.番茄新种质材料一茸毛番茄的获得.园艺学报,1981,8(2):67-69
    7.李颜辉,潘战胜,张建平,李旺盛.筛豆龟蜷生物学特性观察.植保技术与推广,2001,21(7):11-12
    8.马克斯维尔.翟凤林译.植物抗虫育种.北京:农业出版社,1985
    9.莫惠栋.数量性状遗传基础研究的回顾与思考—后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):24-31
    10.潘学彪,张亚芳,左示敏等.作物重要数量性状鉴定与应用的若干问题.扬州大学学报(农业与生命科学版),2005,26:50-55
    11.普莉,索金凤,薛勇彪.植物表皮毛发育的分子遗传控制.遗传学报,2003,30:1078-1084
    12.任秀荣,许海涛.夏大豆筛豆龟蝽的综合防治.庄稼医院,2004,(6):17
    13.苏成付.大豆QTL准确定位技术和策略的研究.南京农业大学博士学位论文,2009
    14.苏成付,卢卫国,赵团结等.多模型QTL初扫描基础上的目标区段剩余杂合系精细定位.科学通报,2010,55(1):1-10
    15.王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用.南京农业大学博士学位论文.2001
    16.王永军.大豆特异种质的RAPD分析及抗感SCN基因分子标记的初步研究.南京农业大学硕士学位论文.1997
    17.文白翔,赵团结,郑永战等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记.作物学报,2008,34(7):1169-1178
    18.吴梅香,许开腾.福州郊区菜用大豆害虫的初步研究.武夷科学,2002,18:27-32
    19.吴业春,王慧,吴巧娟,盖钧镒,喻德跃.大豆对食叶性害虫田间抗性的相对稳定性.中国油料作物学报,2004,26(4):66-70
    20.西蒙兹编.作物进化.北京:农业出版社,1987
    21.邢光南.大豆抗豆卷叶螟和筛豆龟蝽的鉴定、遗传和QTL分析.南京农业大学博士学位论文,2007
    22.邢光南,赵团结,王柬人,盖钧镒.大豆叶茸毛着生状态的变异及其与豆卷叶螟抗性的相关性.大豆科学,2009,28(5):768-773
    23.邢光南,赵团结,盖钧镒.大豆资源的筛豆龟蝽[Megacopta Cribraria (Fabricius)]抗性鉴定.作物学报,2006,32(4):491-496
    24.邢光南,周斌,赵团结,喻德跃,邢邯,陈受宜,盖钧镒.大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析.作物学报,2008,34(3):361-368
    25.徐春晓.大豆对食叶性害虫抗性的植株反应和虫体反应及其在资源鉴定、遗传与选育中的应用.南京农业大学硕士论文,2000
    26.徐冉,张礼凤,王彩洁等.抗烟粉虱大豆种质资源筛选和抗性机制初探.植物遗传资源学报,2005,6(1):56-58
    27.张环,吴宝顺,柴敏.番茄多茸毛性状的遗传行为及其利用研究初报.园艺学报,1983,10(3):193-197
    28.郑贵彬,郁和平.茸毛番茄新品系的一代杂种避蚜防病(CMV)效果的初步探讨.中国农业科学,1986,(4):57-61
    29.周明样.植物抗虫性原理及应用.北京:北京农业大学出版社,1991
    30.朱成松,张宝龙,王学军.大豆对食叶性害虫的抗性与农艺性状的关系.中国油料作物学报,1999,21(3):32-35
    31.北京农业大学主编.作物抗虫性原理及应用.北京:北京大学出版社,1991
    32. Agrawal A A. Induced responses to herbivory in wild radish:effects on several herbivores and plant fitness. Ecology,1999,80:1713-1723
    33. Boerma H, Specht J E. Soybeans:Improvement, Production, and Uses (third edition). Madison, Wisconsin USA,2004
    34. Bernard R L. The inheritance of appressed pubescence. Soybean Genetics Newsletters,1973,2: 34-36
    35. Binder R G, Waiss A C. Effects of soybean leaf extracts on growth and mortality of bollworm larva. Journal of Entomology,1984,77(6):1585-1588
    36. Bowers G R. Registration of soybean cultivars Crockett. Crop Sci,1990,30(2):427
    37. Brown G R, Kruglyak L, Gill G P, Fontana J R, Wheeler N C, Megraw R A, Davis M F, Sewell M, Tuskane G A, David B, NealeMitchell. Identification of quantitative traitloci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics.2003,164:1537-1546
    38. Cregan P B. Simple sequences repeat DNA length polymorphism probe spring.1992,23:56-57
    39. Darvasi A, Weinerb A, Minke V et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics,1993,134:943-951
    40. Editorial Committee of Plate of Chinese Diseases and Insects on Crop. Plate of Chinese Diseases and Insects on Crops, Diseases and Insects on Oil Crops, No.1. Beijing:Agriculture Press,1982,5: 136-137
    41. Esch J J, Chen M, Sanders M, Hillestad M, Ndkium S, Idelkope B, Neizer J, Marks M D. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development,2003,130:5885-5894
    42. Esch J J, Chen M A, Hillestad M, Marks M D. Comparison of TRY and the closely related Atlg01380 gene in controlling Arabidopsis trichome patterning. Plant J,2004,40:860-869
    43. Feeny P P. Plant apparency and chemical defense. In:Wallace J M, Mansell R L (eds) Biochemical interaction between plants and insects. Plenum Press, New York,1976, pp 1-40
    44. Gai J Y, Cui Z L. A study on methods and criteria of identification of resistance to leaf-feeding insects in soybean breeding. Acta Agronomica Sinica,1997,23(4):400-407 (in Chinese with English abstract)
    45. Humphries J A, Walker A R, Timmis J N, Orford S J. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol,2005,57:67-81
    46. Hyne V, Kearsey M J, Pike D J et al. QTL analysis:Unreliablity and bias in estimation procedures. Molecular Breeding,1995,1:273-282
    47. Gange A C. Aphid performance in an alder (Alnus) hybrid zone. Ecology,1995,76:2074-2083
    48. Heinz K M, Zalom F G. Performance of the predator Delphastus pusillus on Bemisia resistant and susceptible tomato lines. Entomol Exp Appl,1996,81:345-352
    49. Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell,2007,19:2531-2543
    50. Jeffrey J, Esch, Margaret Chen, Mark Sanders, Matthew Hillestad, Sampson Ndkium, Brian Idelkope, James Neizer M, David Marks. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Research article Development.2003, 130 (24):5885-5894
    51. Jennifer M Lee, Arla L Bush, James E Specht, Randy C. Shoemaker Mapping of duplicate genes in soybean.1999, Genome.42:829-836
    52. Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell,2002,14: 1359-1375
    53. Kearsey M J, Farquhar A G. QTL analysis in plants:where are we now? Heredity,1998,80: 137-142
    54. Kirik V, Simon M, Hulskamp M, Schiefelbein J. The enhancer of TRY and CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol.2004a,268:506-513
    55. Kirik V, Simon M, Wester K, Schiefelbein J, Hulskamp M. Enhancer of TRY and CPC2 (ETC2) reveal redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol. Biol.2004b,55:389-398
    56. Kivimaki M, Karkkainen K, Gaudeul M, Loe G, Agren J. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol Ecol. 2007,16:453-462
    57. Kobayashi S, Araki E, Osaki M et al. Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice. Field Crops Res,2006,96:106-112
    58. Koornneef M. The complex syndrome of ttg mutants. Arabidopsis InfServ,1981,18:45-51
    59. Krips O E, Kleijn P W, Willems P E L, Gols G J Z, Dicke M. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari:Phytoseiidae). Exp Appl Acarol 1999,23:119-131
    60. Lander E S, Bostein D R. Mapping Mendelian factors underlying quantitative traits using RFLP linkage map. Genetics,1989,121:185-189
    61. Larkin J C, Oppenheimer D G, Pollock S et al. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell,1993,5:1739-1748
    62. Lee J M, Bush A L, Specht J E et al. Mapping of duplicate genes in soybean. Genome,1999,42: 829-836
    63. Levin D A. The role of trichomes in plant defense. Q Rev Biol.1973,48:3-15
    64. Li J, Thomason M, McCouch S. Fine mapping of a grain weight QTL in the peri-centromeric region of rice chromosome 3. Genetics,2004,168:2187-2195
    65. Li Y H, Pan Z S, Zhang J P, Li W C. Observation of biology behavior of Megacopta cribraria (Fabricius). Plant Protection Technology and Extension,2001,21(7):11-12
    66. Mao C Z, Cheng S H. Analysis of accuracy and influence factor in QTL mapping about agronomic traits in rice (Oryza sativa L). Journal of Agricultural Biotechnology,1999,7(4):386-394 (in Chinese with English abstract)
    67. Maxwell F G, Jenkins J N, Parrott W L. Resistance of plants to insects. Adv Agron,1985,24: 187-265
    68. Mingzhe Zhao, Kengo Morohashi, Greg Hatlestad, Erich Grotewold, Alan Lloyd. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development.135,2008.11:1991-1999
    69. Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol.2007,145: 736-746
    70. Paterson A H, DeVerna J W, Lanini B et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics.1990,124: 735-742
    71. Nan Yu, WenJuan Cai, Shucai Wang, ChunMin Shan, LingJian Wang, and XiaoYa Chen. Temporal control of trichome distribution by MicroRNA156-targeted SPL genes in Arabidopsis thaliana. The Plant Cell.2010
    72. Ohashi Y, Oka A, Ruberti I, Morelli G, Aoyama T. Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J.2002,29:359-369
    73. Oppenheimer D G, Herman P L, Esch J et al. A myb-related gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell,1991,67:483-493
    74. Payne T, Clement J, Arnold D, Lloyd A. Heterologous myb genes distinct from GL1 enhancer production when overexpressed in Nicotiana tabacum. Development,1999,126:671-682
    75. Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics.2000,156: 1349-1362
    76. Pollard A J, Briggs D. Genecological studies of Urtica dioica L. Ⅲ. Stinging hairs and plant-herbivore interactions. New Phytol.1984,97:507-522
    77. Rerie W G, Feldmann K A, Marks M D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev.1994,8:1388-1399
    78. Roda A, Nyrop J, English-Loeb G. Pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol.2003,29:193-211
    79. Rosenheim J A, Limburg D D, Colfer R G. Impact of generalist predators on a biological control agent, Chrysoperla carnea:direct observations. Ecol Appl.1999,9:409-417
    80. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfaher J, Jurgens G, Hulskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidosis. EMBO J,2002,21(19):5036-5046
    81. Schiefelbein J. Cell-fate specification in the epidermis:A common patterning mechanism in the root and shoot. Currt Opin Plant Biol,2003,6:74-78
    82. Schnittger A, Jurgens G, Hulskamp M. Tissue layer and organ specificity of trichome formation are regulated by GLABRA1 and TRIPTYCHON in Arabidopsis. Development.1998,125:2283-2289
    83. Schnittger A, Folkers U, Schwab B, Jurgens G, Hulskamp M. Generation of a spacing pattern:The role of triptychon in trichome patterning in Arabidopsis. Plant Cell.1999.11:1105-1116
    84. Serna L, Martin C. Trichomes:different regulatory networks lead to convergent structures. Trends Plant Sci.2006,11:1360-1385
    85. Shapiro J A, Steffens J C, Mutschler M A. Acylsugars of the wild tomato (Lycopersicon pennellii) in relation to geographic distribution of the species, Biochem. Syst and Ecol,1994,22:545-561
    86. Simon M, Lee M M, Lin Y, Gish L, Schiefelbein J. Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Dev. Biol.2007,311:566-578
    87. Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARSOYSSR-1.0) in soybean. Crop Sci,2010,50:1950-1960
    88. Southwood S R. Plant surfaces and insects-an overview. In:Juniper B, Southwood S R. Insects and the plant surface. Arnold, London,1986, pp 1-22
    89. Szymanski D B, Jilk R A, Pollock S M, Marks M D. Control of GL2 expression in Arabidopsis leaves and trichomes. Development.1998,125:1161-1171
    90. Szymanski D B, Lloyd A M, Marks M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci,2000,5:214-219
    91. Szymanski D B, Marks M D. G.LABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell,1998,10:2047-2062
    92. Tanksley S D. Mapping polygenes. Annu. Rev. Genet,1993,27:205-233
    93. Traw B M, Dawson T E. Reduced performance of two specialist herbivores (Lepidoptera:Pieridae, Coleoptera:Chrysomelidae) on new leaves of damaged black mustard plants. Environ Entomol 2002a,31:714-722
    94. Tuinstra M R, Ejeta G, Goldsbrough P B. Evaluation of near-isogenic sorghum lines contrasting for QTL associated with drought tolerance. Crop Sci,1998,38:835-842
    95. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis:A method for developing nearisogenic lines that differ at quantitative trait loci. Theor Appl Genet,1997,95: 1005-1011
    96. Turnipseed S G. Influence of trichome density on populations of small phytophagous insects on soybean. Environ Entomol,1977,6:815-817
    97. Wada T, Tachibana T, Shimura Y et al. Epidermal cell differentiation in Arabidopsis determined by a MTB homology CPC. Science,1997,277:1113-1116
    98. Walker A R, Davison P A, Bolognesi, Win field A C et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein Plant Cell,1999,11:1337-1350
    99. Wang H S, Zhang C S, Yu D P. Preliminary studies on occurrence and control technology of Megacopta cribraria (Fabricius). China Plant Protection,2004,24(8):45
    100. Wang S, Hubbard L, Chang Y, Guo J, Schiefelbein J, Chen J.G Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biol.2008b,8:81
    101. Wang S, Kwak S H, Zeng Q, Ellis B E, Chen X Y, Schiefelbein J, Chen, J G. TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development.2007,134: 3873-3882
    102. Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell,2004,16:2323-2334
    103. Wang Z X, Wang H D, Chen G H, Zhuge Z, Tong C W. Occurrence and control of Megacopta cribraria (Fabricius) on soybean. Plant Protection,1996,22(3):7-9
    104. Wen Z X, Zhao T J, Zheng Y Z et al. Association analysis of agronomic and quality traits with SSR markers in glycine max and glycine soja in China:I. population structure and associated markers. Acta Agronomica Sinica,2008,34(7):1169-1178
    105. Xu J L, Xue Q Z, Luo L J et al. QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L). Acta Genetica Sinica,2001,28(8):752-759 (in Chinese with English abstract)
    106. Yamanaka N, Watanabe S, Toda K et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Gene,2005, 110:634-639
    107. Zhang F, Gonzalez, A, Zhao, M, PayneC T, Lloyd, A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development.2003,130:4859-4869
    108. Zhang L F, Wang C J et al. Screening of soybean germplasm resistant to whitefly and the resistant mechanism. Journal of Plant Genetic Resources,2005,6(1):56-58
    109. Zhao G Y, Wang J, Han Y P et al. Identification of QTL underlying the resistance of soybean to pod borer, Legum inivora glycin ivorella (Mats.) obraztsov, and correlations with plant, pod and seed traits. Euphytica,2008,164:275-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700