用户名: 密码: 验证码:
棉花纤维初始发育的磷酸蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维是重要的纺织工业原料,在国民经济和人民生活中占有重要的地位。棉花纤维实质上是种皮毛,是从胚珠外表皮细胞分化而来的一种单细胞结构,是迄今为止发现的最长的植物细胞。作为研究细胞伸长的理想模式植物,科学家们一直致力于揭示棉纤维发育的分子机理。棉花分子生物学、功能基因组学的发展已大大促进了棉花纤维发育过程中基因的表达谱及其调控机制的研究。但是,在蛋白质翻译、蛋白质分解、运输和翻译后修饰(如磷酸化、糖基化、酰基化)等水平上的棉花蛋白质组学研究较少。本文着重于对棉花纤维初始发育时期的磷酸蛋白质组学研究,一方面是因为棉花原始纤维细胞的分化决定着种皮细胞是否能发育成为纤维;另一方面是因为可逆的磷酸化修饰是细胞信号转导的重要途径,在生物发育过程中起着关键的调节作用。因此,开展棉花纤维初始发育时期的磷酸蛋白质组学研究对于深入探究棉花纤维分化和突起的分子调控机制有着重要的意义。
     本文以陆地棉品种徐州142(WT)及其无绒无絮突变体(fl)初始发育时期的开花前3天(-3 DPA)、1天(-1 DPA)、开花当天(0 DPA)的胚珠为材料,通过比较磷酸化蛋白质组学的分析,鉴定了与棉花纤维初始发育相关的磷酸蛋白质,分析了蛋白质磷酸化修饰在棉花初始发育中所起的重要作用,并探讨了棉花纤维分化和突起的可能机理。研究结果如下:
     1.由于棉花富含酚类和多糖,而磷酸化蛋白质在提取的过程中又十分容易脱磷酸化,因此本研究首先评价了TCA-苯酚法和改良苯酚法两种蛋白提取方法在蛋白产量、蛋白纯度和电泳图谱等方面的差异,明确了改良苯酚法能最大限度的保证磷酸蛋白质的质量和产量,适用于提取棉花胚珠总蛋白应用于磷酸化蛋白质组学研究。同时发现,选用pH 4~7的18cm IPG胶条,以被动吸涨上样方式来进行IEF的双向电泳能很好地分离棉花胚珠磷酸蛋白质。
     2.采用MOAC(金属氧化物/氢氧化物亲和层析)先富集磷酸化蛋白质再对其进行2-DE分析,和先对总蛋白质进行2-DE分析再用Pro-Q Diamond磷酸化特异性染色染料进行染色这两种策略分析棉花磷酸化蛋白质,对比双向电泳图谱发现,直接对棉花总蛋白2-DE胶进行Pro-Q Diamond特异性染色所得到的磷酸蛋白质图谱蛋白质点较多,能对棉花胚珠中的磷酸蛋白质进行全景式的观察与分析。初步建立了双向电泳—特异性荧光染色—质谱鉴定的棉花磷酸化蛋白质组研究的技术路线。
     3.在此技术平台基础上,本文对WT和.fl纤维初始发育阶段的-3、-1、0 DPA胚珠的磷酸蛋白质进行了比较分析。经PDQuest软件分析,共检测到73个差异表达磷酸蛋白质,通过MALDI-TOF-TOF MS/MS分析,成功鉴定了63种磷酸蛋白质。这些蛋白质主要涉及氧化-还原动态平衡与调控;蛋白合成、加工、降解;糖代谢和呼吸代谢;细胞骨架等生物学过程。初步揭示了磷酸化作用在棉花纤维初始发育中起重要的调控作用,并为进一步研究其调控机制提供了线索和候选蛋白质。本研究是首次运用磷酸化蛋白质组学研究方法分析棉花纤维分化和起始发育的分子机理。
Cotton fiber is an important textile industrial material, which plays a significant role in national economy and people's lives. Cotton fiber is a tubular single cell derived from the outer epidermis of ovule, which is known as the longest single botanic cell in record. As an ideal mode plant for the investigation of cell elongation, scientists have been trying intensively to reveal the molecular mechanism of cotton fiber development. The progress made in cotton molecular biology and functional genomics has greatly promoted gene expression profiling and discovering regulation mechanisms underlying cotton fiber development. However, few proteomic studies have been conducted in cotton at protein translation, protein degradation, protein trafficking, and post translation modifications (eg. glycosylation, phosphorylation, acetylation) levels. The present work focuses on phosphoproteomic analysis during cotton fiber differentiation and initiation, given that on one hand, the differentiation of primordial fiber determnines the number of testa cells which can develop into fibers, on the other hand, the reversible protein phosphorylation is one of the most important ways in cell signal transduction playing key regulatory roles in biological development. Therefore, phosphoproteomic studies on early cotton fiber development will greatly deepen our knowledge about molecular mechanisms controlling cotton fiber differentiation and initiation.
     In this thesis, a comparative phosphoproteomic research were conducted between the 3 days before postanthesis (-3 DPA),1 day before postanthesis (-1 DPA) and 0 day before postanthesis (0 DPA) ovules of a fuzzless-linless mutant (fl) derived from the upland cotton variety of Xuzhou 142 (WT) and WT, phosphoproteins related to cotton fiber differentiation and initiation were identified, the significance of the protein phosphorylation modification in these stages, and the possible mechanisms of cotton fiber differentiation and initiation were discussed. The main results are as follows:
     1. Because cotton tissue is rich of phenol and polysaccharide compounds, and the phosphate residual on proteins are vulnerable in protein extraction, the yields, purities and 2-DE profiles of the proteins extracted by using TCA plus phenol extraction method and modified phenol extraction method were compared, and the modified phenol extraction method can extract high yield and high quality of protein from cotton ovules, therefore this method is applicable for phosphoproteomic research. In addition, we found that 2-DE using 18cm pH 4-7 IPG strips and the sample in-gel rehydration method for IEF allowed isolating phosphoproteoins in cotton ovules.
     2. Two strategies of MO AC (metal oxide/hydroxide affinity chromatography) enrichment of phosphoproteins followed by 2-DE analysis and separating total protein 2-DE and visualizing phosphoproteins with specific Pro-Q Diamond staining were evaluated in cotton phosphoprotein analysis. The 2-DE maps obtained by two strategies were compared and the results indicated that the strategy by total protein 2-DE combined with Pro-Q Diamond visualization can identify relatively more phosphoproteins on gels. A technology routine based on Two-dimensional electrophoresis/phosphoprotein specific Pro-Q Diamond staining/MS identification was established for cotton phosphoproteome analysis.
     3. Based on this technology platform, a comparative phosphoptein analysis was carried out between -3,-1,0 DPA ovules of WT and fl during fiber differentiation and initiation respectively.73 phosphoproteins were detected to be differentially expressed between WT and fl significantly by using PDQuest software, and 63 phosphoproteins were successfully identified by MALDI-TOF-TOF MS/MS analysis. These proteins are mainly involved in redox homeostasis, protein synthesis, protein processing and degradation, carbohydrate metabolism and respiratory metabolism, and cytoskeleton construction, etc. Our results initially reveal that phosphorylation plays important roles in the earl cotton fiber development, which provide clues and candidate proteins for further research on molecule regulating mechanisms. This is the first time to our knowledge to use phosphoproteomics to analyze the molecular mechanism of cotton fiber differentiation and initiation development.
引文
[1]敖世洲.蛋白质可逆磷酸化对细胞活动的调节[C].国家高技术研究发展计划生物技术领域战略研讨会论文集,上海:科学技术出版社,1994:1-5
    [2]柏长青,徐楚年,贾君镇.棉花胚珠培养的研究[J].北京农业大学学报,1992,增刊,122-128
    [3]曹晶,谢锦云.2-DE技术中疏水性和碱性蛋白质的研究进展[J].生命科学研究,2004,8(3):207-214
    [4]邓新宇,姜颖,贺福初.磷酸化蛋白质及多肽相关研究的技术进展[J].遗传,2007,29(10):1163-1166
    [5]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217
    [6]高飞,王彦平,周宜君,等.植物应答非生物胁迫的蛋白质组学研究进展[J].中国农业科技导报,2008,10(6):9-15
    [7]姜颖,徐朗莱,贺福初.质谱技术解析磷酸化蛋白质组[J].生物化学与生物物理进展,2003,30(3):350-356
    [8]赖童飞,杜雄明.棉纤维分化起始的分子生物学研究进展[J].西北植物学报,2008,28(2):416-424
    [9]赖童飞,贾银华,杜雄明.棉纤维发育突变体胚珠全蛋白及种子水溶性蛋白SDS凝胶电泳分析.棉花学报,2008,20(5):330-334
    [10]李成奇,郭旺珍,张天真.棉花4个栽培种纤维初始发育的比较研究[J].作物学报,2007,33(8):1346-1351
    [11]李万九,张秀如,孙湘宁,等.棉花热激蛋白(HSP)的研究及其应用前景展望[J].棉花学报,1997,9(1):1-4
    [12]梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114-125
    [13]刘春,麻浩,刘健晖,等.大豆蛋白质组学研究进展[J].大豆科学,2010,29(4):712-716
    [14]刘金凤,王京兰,钱小红,等.翻译后修饰蛋白质组学研究的技术策略[J].中国生物化学与分子生物学报,2007,23(2):93-100
    [15]刘进元,吴雪萍.植物磷酸化蛋白质组学研究进展[J].中国农业科技导报,2007,9(4):43-48
    [16]刘康,胡凤萍,张天真.棉花胚珠与纤维蛋白质的两种提取方法比较研究[J].棉花学报,2005,17(61):323-327
    [17]刘康,张天真,潘家驹.陆地棉纤维初始发育与胚珠过氧化物酶和吲哚乙酸氧化酶的关系的研究[J].棉花学报,1999,11(6):293-296
    [18]马洪雨,王占奎,杨立明,等.适用于黄麻根部蛋白质组学分析的双向电泳技术[J].西北植物学报,2010,30(1):195-202
    [19]梅文倩,秦咏梅,朱玉贤.乙烯、超长链脂肪酸、活性氧、油菜素内酯和赤霉素相互作用调控棉纤维伸长发育的分子机制研究[J].生命科学,2010,22(1):7-14
    [20]邱金龙,王隆华,颜季琼,等.棉纤维分化和发育研究进展[J].植物学通报,1996,13(2):1-6
    [21]萨其拉,李文彬,孙勇如.G-box和G-box结合蛋白在植物基因诱导表达中的转录调控作用[J].植物生理学通讯,2003,39(1):89-92
    [22]沙月霞,简桂良,肖崇刚,等.棉叶总蛋白提取及SDS-PAGE电泳的改良[J].棉花学报,2005,17(3):146-150
    [23]上官小霞,王凌健,李燕娥,等.棉花纤维发育的分子机理及品质改良研究进展[J].棉花学 报,2008,20(1):62-69
    [24]王娟,倪志勇,吕萌,等.棉花纤维伸长期与次生壁增厚期蛋白质组比较[J].作物学报,2010,36(11):2004-2010
    [25]王京兰,钱小红.磷酸化蛋白质分析技术在蛋白质组研究中的应用[J].分析化学评述与进展,2005,33(7):1029-1035
    [26]王荣,崔百明,彭明,等.赤霉素信号转导与棉纤维的分子发育[J].遗传,2007,29(3):276-282
    [27]王素会,杜雄明.两个棉纤维发育突变体分子生物学研究进展[J].棉花学报,2003,15(6):376-379
    [28]王阳梦,董银卯,何聪芬.蛋白质组学核心技术研究进展[J].北京工商大学学报(自然科学版)2006,24(4):9-14
    [29]吴亚丹.植物蛋白质组学的研究策略[J].现代农业科学,2009,16(5):12-16
    [30]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J].浙江农业学报,2007,19(2):71-74
    [31]徐子剑,舒骁,杨亦玮,等.棉花纤维蛋白质3种提取及二维电泳方法的比较[J].中国生物化学与分子生物学报,2006,22(1):77-80
    [32]姚远,杜劭君,刘进元.利用碱性磷酸酶初步判定二维电泳中蛋白质磷酸化修饰[J].中国生物化学与分子生物学报,2007,23(8):688-691
    [33]尹志成,蔺万煌,蒋建雄,等.影响棉纤维分化和发育的因素[J].生命科学研究,2005,9(4):121-124
    [34]应万涛,钱小红.生物质谱技术应用及进展[J].军事医学科学院院刊,2000,2(24):146-150
    [35]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报,2009,44(4):410-425
    [36]于晓敏,蓝兴国,李玉花.泛素/26S蛋白酶体途径与显花植物白交不亲和反应[J].植物学通报,2006,23(2):197-206
    [37]曾亚,丁新华,沈祥陵,等.水稻抗病基因介导的抗白叶枯病反应中蛋白质表达谱的比较分析[J].中国水稻科学,2008,22(3):234-242
    [38]张辉,汤文开,谭新,等.棉纤维发育及其相关基因表达调控研究进展[J].植物学通报,2007,24(2):127-133
    [39]朱华国,涂礼莉,金双伙,等.棉花细胞初始脱分化的基因差异表达分析[J].科学通报,2008,53(20):2483-2492
    [40]Abeles F B, Morgan P W, Saltveit M E. Regulation of ethylene produetion by internal, environmental and stress factors [J]. Ethylene in Plant Biology,1992
    [41]Abrahams J P, Leslie A G W, Lutter R. et al. Structure at 2.8U resolution of Fl-ATPase from bovine heart mitochondria [J]. Nature,1994,370:621-628
    [42]Arrigo A P,Michel M R. Decreased heat and tumornecrosis factormediated hsp28 phosphrylation in themotolerant HeLa cells [J]. FEBS Lett,1991,282 (1):152-156
    [43]Balter, M. The postgenomic era-windfall for European data bank [J]. Science,2001,292:1275
    [44]Beasley C A, Birnbaum E H, Dugger W M, et al. A quantitative procedure for estimating cotton fiber growth [J]. Stain Technol,1974,49 (2):85-92
    [45]Beasley C A, Ting I P. The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules [J]. Am J Bot,1973,60 (2):130-139
    [46]Beausoleil S A, Jedrychowski M, Schwartz D, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins [J]. Proc. Natl. Acad. Sci. U.S.A.2004,101:12130-12135
    [47]Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dve binding [J]. Anal. Biochem.1976,72:248-254
    [48]Bykoval N V, Egsgaard H, Miller I M. Identification of 14 new phosphoproteins involved in important plant mitochondrial processes [J]. FEBS Lett,2003,540:141-146
    [49]Cao J, Shen C P, Wang H, et al. Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Careinoma Cells with a Complementary Proteomics Approach [J]. J. Proteome Res.2009,8:662-672
    [50]Charbonneau H, Tonks N K.1002 Protein PhosPhatases Allnual review of cell [J]. biology,1992, 8:463-493
    [51]Cohen P. TheoriginsofProteinPhosPhorylation [J]. Nat. Cell Biol,2002,4 (5):127-130
    [52]Cosgrove D J. Biophysical control of plant cell growth. Annu Rev [J]. Plant Physiology,1986,37: 377-405
    [53]Cosgrove D J. How do plant cell walls extend. Plant Physiology,1993,102:1-6
    [54]Cutting J A, Roth T F. Staining of Phospho-proteins on acrylamide geleleetropherograms [J]. Anal Biochem,1973,54 (2):386-394
    [55]Davydov D R. Microsomal monooxygenase inapoptosis:another target for cytochrome csignaling [J]. Trends in Bioc hemical sciences,2001,26 (3):155-160
    [56]Debruyne I. Staining of alkali-labile phosphoproteins and alkaline phosphatases on polyacrylamide gels [J]. Anal Bioehem,1983,133 (1):110-115
    [57]Espartero J, Pintor-Toro J A, Pardo J M Differential accumulation of s-adenosylmethionine synthetase transeripts in response to salt stress [J]. Plant Mol Biol.1994,25:217-227
    [58]Facius A, Englbrecht C, Birzele F, et al. PRIME:A graphical interface for integrating genomic/proteomic databases [J]. Proteomics,2005,5:76-80
    [59]Ficarro S B, McCleland M L. Stukenberg P T, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae [J]. Nat Biotechnol,2002,20 (3): 301-305
    [60]Fisher J R, Sharma Y, Iuliano S, et al. Purifieation of myristoylated and nonmyristoylated neuronal caleium sensor-1 using single-step hydrophobic interaetion chromatography [J]. Prot Expr Purif,2000,20 (1):66-72
    [61]Flury T, Adam D, Euz D. A 2,4-D-inducible glutathione S-transferases from soybean(Glycine max), Purification, Characteristion and Induction [J]. Physiologia Plantarum,1995,94:312-318
    [62]Ganesh K A, Jay J T. Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins [J]. Proteomics,2005,5:4684-4688
    [63]Gomez-Gomezz L, Carraseo P. Differential Expression of the s-Adenosyl-L-Methionine Synthase Genes during Pea Developmeot [J]. PlantPhysiol,1998,117:397-405
    [64]Gorg A. The current state of two-dimensional electrophoresis with immobilized pH gradients [J]. Electrophoresis,1988,9:531-546
    [65]Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins [J]. Electrophoresis,1997,18: 328-337
    [66]Gubler F, Chandler P, White R, et al. GA signaling in barley aleurone cells:Control of SLN1 and GAMYB expression [J]. Plant Physiology,2002,129:191-200
    [67]Horst R, Tom C, Jiirgen S, et al. Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure [J]. Proteomics,2008,8:3548-3560
    [68]Hunter T. Signaling-2000 and Beyond [J]. Cell,2000,100(1):113-127
    [69]Humphries J A, Walker A R, Timmis J N, et al. Two WD-repeat genes from cotton are functional homo-logues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene [J]. Plant Mol Biol,2005,57:67-81
    [70]Hunter T, Philos T R, Soc L,The Phosphorylationof Proteinsontyrosin:Its role in cell growth and disease [J]. B Biol Sci,1998,353:58-60
    [71]Hu V W, Heikka D S, Dieffenbaeh P B, et al. Metabolic radio labeling:experimental tool or Trojan horse (35) S-Methionine induces DNA fragmeniation and P53-dependent ROS produetion [J]. FASEB J.2001,15 (9):1562-1568
    [72]Hu V W. Heikka D S. Radiolabeling revisited:metabolic labeling with (35) S-methionine inhibits cell cycle progression,proliferation,and survival [J]. FASEB J,2000,14 (3):448-454
    [73]Imanishi S Y, Kochin V, Eriksson J E. Optimization of phosphopeptide elution conditions in immobilized Fe (Ⅲ) affinity chromatography [J]. Proteomics,2007,7:174-176
    [74]Jones A M, Dangl J L. Logjam at the styx:programmed cell death in plants [J]. Trends Plant Sci, 1996,1:114-119
    [75]Kachroo A, Lapchyk L, Fukushige H, et al. Plastidial fatty acid signaling modulates salicylic acid and jasmonic acid mediated defense pathways in the Arabidopsis ssimutant [J]. Plant Cell,2003, 15:2952-2965
    [76]Kaji H, Kamiie J, Kawakami H, et al. Proteomics Reveals N-Linked GlyeoProtein Diversity in Caenorhabditis elegans and Suggests an Atypical Translocation Mechanism for Integral Membrane Proteins [J]. Mol. Cell. Proteomics,2007,6:2100-2109
    [77]Karaca M, Saha S, Jenkins J N, et al. Simple sequence repeat (SSR) Markers Linked to the Ligon Lintless(Li1)Mutant in cotton [J]. J Hered,2002,93:221-223
    [78]Kateryna V, Faiza T, Douglas J H, et al. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible species Solanum chacoense Bitt [J]. Proteomics,2007,7:232-247
    [79]Kaufmann H, Bailey J E, Fussenegger M. Use of antibodies for detectionof Phosphorylated proteins separated by two-dimensional gel electrophoresis [J]. Proteomies,2001,1 (2):194-199
    [80]Kawalleck P, Plesch G, Halhbrock K, et al. Induetion of s-adenosyl-1-methionine synthetaseand s-adenosyl-1homoeysteine hydrolase mRNAs in cultured cells and leaves of Petroselium crispum [J]. Proc Natl Acad Sci USA,1992,89:4713-4717
    [81]Kahl J, Siemens D H, Aerts R J, et al. Herbivore-indueed ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore [J]. Planta,2000,210:336-342
    [82]Khan M M, Jan A, Karibe H, et al. Identification of Phosphoproteins reg Ulated by Gibberellin in rice leaf sheath [J]. Plant Mol Biol,2005,58:27-40
    [83]Kim H J, Song E J, Lee K J. Proteomic analysis of protein phosphorylations in heat shock response and thermo tolerance [J]. J Biol Chem,2002,277 (26):23193-23207
    [84]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227:680-685
    [85]Lait C G, Zwiazek J J. A calcium-binding protein with similarity to serum albumin localized to the ER-Golgi network and cell walls of spinach (Spinacia oleracea) [J]. Physiol Plant,2001,112 (4): 460-469
    [86]Larsen M R, Sorensen G L, Fey S J, et al. Phos phoproteomics:evaluation of the use of enzymatic de-phos phorylation and differential mass spectrometric peptide mass mapp ing for site specific phos phorylation assignment in p roteins separated by gel electrophoresis [J]. Proteomics,2001,1: 223-238
    [87]Loguercio L L, Zhang J Q, Wilkins T A. Differentialregulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L) [J]. Mol Gen Genet,261:660-670
    [88]Maguire P B, Wynne K J, Harney D F, et al. Identification of the phosphotyrosine proteome from thrombin activated platelets [J]. Proteomics,2002,2 (6):642-648
    [89]Manning G, Whyte D B, Martinez R, et al. The Protein Kinase Complement of the Human Genome [J]. Seienee,2002,298:1912-1934
    [90]Mann M, Ong S E, Gronborg M, et al. Analysisof Protein Phosphorylation using masss peetrometry:deciphering the Phosphoproteome [J]. Trends Bioteehnol,2002,20:261-268
    [91]Mcfadden J J, Poovaiah B W. Rapid changes in protein phosphorylation ass ociated with light-induced gravity perception incorn roots [J]. Plant Physiol,1988,86:332-334
    [92]McLachlin D T, Chait B T. Analysis of phosphorylated proteins and peptides by mass spectrometry [J]. Curr. Opin. Chem. Biol,2001,5 (5):591-602
    [93]Mecurdy S P, Clarkson B H, SPeirs R L, et al. Phosphoprotein extraction from the dentine/eementum complex of human tooth roots [J]. Arch oral Biol,1990,35 (5):347-357
    [94]Morelle W, Canis K, Chirat F, et al. The use of mass Speetrometry for the proteomic analysis of gycosylation [J]. Proteomics,2006,6:3993-4015
    [95]Neuhoff V, Arold N, Taube D, et al. Improved staining of proteins in polyacrylamine gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue dyes G-250 and R-250 [J]. Electrophoresis,1988,9:255-262
    [96]Nuhse T S, Stensballe A, Jensen O N, et al. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metalion affinity chromatography and mass spectrometry [J]. Mol Cell Proteomics,2003,2(11):1234-1243
    [97]Nuhse T S, Stensballe A, Jensen O N, et al. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylati on site database [J]. Plant Cell,2004,16:2394-2405
    [98]Nuhse T S, Peck S C, Hirt H, et al. Microbial elieitors induce activation and dual Phosphorylation of the Arabidopsis thaliana MAPK 6 [J]. Biol. Chem,2000,275:7521-7526
    [99]O'Farrell P H. High resolution two-dimensional elec-trophoresis of proteins [J]. Biol Chem,1975, 250:4007-4021
    [100]Oda Y, Nagasu T, Chait B T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome [J]. Nature Bioteehnol,2001,19:379-382
    [101]O'Donnell P J, Calvert C, Atzorn R, et al. Ethylene as a signal mediating the wound response of tomato plants [J]. Science,1996,274:1914-1917
    [102]Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination [J]. The Plant Cell,2003,15:1591-1604
    [103]Olszewski N, Sun T P, Gubler F. Gibberellin signaling:biosynthesis,catabolism and response pathways [J]. The Plant Cell,2002,9:61-80
    [104]Palzkill T. Proteomics [M]. Boston:Kluwer Academic Publishers,2002
    [105]Patterson S D, Aebersold R, Goodlett D R. Proteomics from protein sequence to function [J]. New York:Springer-Verlag,2001,87-130
    [106]Mann M, Ong S E, Gronborg M, et al. Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome [J]. Trends Biotechnol,2002,20 (6):261-268
    [107]Peck S C, Nthse T S, Hess D, et al. Direeted proteomics identifies a plant-specific protein rapidly PhosPhorylated in resPonse to bacterial and fungal elicitor [J]. The Plant Cell,2001,13: 1467-1475
    [108]Przybyla-Zawislak B, Dennis R A, Zakharkin S O, et al. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae [J]. Eur J Biochem,1998,258:736-743
    [109]Ramsey J C, Berlin J D. Ultrastructure of early stages of cotton fiber differentiation [J]. Botanical Gazette,1976,137(1):11-19
    [110]Reinders J, Sieknlann A. State-of-the-artin phosphoproteomies [J]. Proteomies,2005,5 (16): 4052-4061
    [111]Robert W, Alois H, Angelika G, et al. Towards higher resolution:Two-dimensional electrophoresis of Saccharomyces cerecisiae proteins using overlapping narrow imobilized pH gradients [J]. Electrophoresis,2000,21:2610-2616
    [112]Ruan Y L, Llewellyn D J, Furbank R T, et al. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose syn-thase expression and plasmodesmata gating in a lintless mutant of cotton [J]. J Exp Bot,2005,56:977-984
    [113]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol,1998,118:399-406
    [114]Ruan Y L, Llewellyn D J, Furbank R T, et al. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose syn-thase expression and plasmodesmata gating in a lintless mutant of cotton [J]. J Exp Bot,2005,56:977-984
    [115]Santos A D, Thiers V, Saf S, et al. Contribution of laser microdessection-basde technology to proteomic analysis in hepatocellular carcinoma developing on cirrhosis [J].Proteomics Clin Appl, 2007,1:545-554
    [116]Shi S D H, Hemling M E, Carr S A. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry [J]. Anal Chem,2001,73:19-22
    [117]Spengler S J. Bioinformatics in the Information Age [J]. Science,2000,287 (18):1221-1223
    [118]Steinberg T H, Agnew B J, Gee K R, et al. Global quantitative phosphoprotein analysis using Multiplexed Proteomies teehnology [J]. Proteomics,2003,3 (7):1128-1144
    [119]Stewart J M. Fiber initiation on the cotton ovule (Gossypium hirsutum) [J]. American Journal of Botany,1975,62 (7):723-730
    [120]Sun Y, Veerabomma S, Abdel-Mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules [J]. Plant Cell Physiol,2005,46:1384-1391
    [121]Stensballe A, Jensen O N, Olsen J V, et al. lectron capture dissociation of singly andmultiply phosphorylated peptides [J]. Mass Spectrom,2000,14:1793-1800
    [122]Tatiana M B, Elison B B, Simon G. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana [J]. The Plant Journal,1999,7 (16):57-665
    [123]Thomas P C, Ti M D. An enriched look at tyrosine phosphorylation [J]. Nature Biotechnol,2005, 23:36-37
    [124]Trinidad J C, Specht C G, Thalhammer A, et al. Comprehensive identification of phosphorylation sites in postsynaptic density preparations [J]. Mol Cell Proteomics,2006,5 (5):914-917
    [125]Tuomainen J, Betz C, Ernst D, et al. Ozone affects the ethylene biosynthatiepathway at both biochemical and mRNA levels [M]. NATO Advaneed, Researeh Wbrkshop. In Biology and Bioteehnology of the Plant Hormone Ethylene. Chania, Greece,1996,9-13
    [126]Van B F, Dekeyser R, Gielen J, et al. Characterization of a s-adenosylmethionine synthase gene in riee [J]. Plant Physiol,1994,105:1463-1464
    [127]Vener A V, Harms A, Sussman M R, et al. Mass s pectr ometric res olution of reversible p r otein phos phorylati on in photosynthetic membranes of A rabidopsis thaliana [J]. J. Biol Chem,2001, 276:6959-6966
    [128]Wang L J, Li F X, Sun W, et al. Coneanavalin A-captured Glyeoproteins in Healthy Human Urine [J]. Cell.Proteomics,2006,5:560-562
    [129]Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene [J]. Plant Cell,2004,16:2323-2334
    [130]Weiss D, Halevy A H. Stamens and gibberellin in the regulation of corolla pig mentation and growth in Petunia hibrida [J]. Planta,1989,179:89-96
    [131]Wei L, Chen Y Q, Ye B Y, et al. The establishment of extraction method and two-dimensional electrophoresis conditions for proteome analysis ofSelaginella tamariscina (Beauv) spring [J]. Letters in Biotechnology,2006,17 (1):46-48
    [132]Wiseman S B, Singer T D. Applications of DNA and protein microarrays in comparative physiology [J]. Biothchnol,2002,20:379-389
    [133]Wu Y, Machado A C, White R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton [J]. Plant Cell Physiol,2006,47:107-127
    [134]Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC) [J]. Proteomics,2005,5(17):4389-4392
    [135]Xu Z B, Zhou X W, Lu H J, et al. Comparative glycoproteomics based on lectins affinity capture of N-linked glyeoproteins from human Chang liver cells and MHCC97-H cells [J]. Proteomics 2007,7:2358-2370
    [136]Yeargin J, Haas M. Elevated levels of wild-type P53 induced by radiolabeling of cells leads to apoptosis or sustained growth arrest [J]. Curr Biol.1995,5 (4):423-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700