用户名: 密码: 验证码:
新型高分子抗菌剂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子抗菌剂由于其高效杀菌、杀菌时效性长等优点,日益受到人们的广泛关注。目前研究和使用的高分子抗菌剂主要有季铵盐类、季膦盐类、吡啶盐类、有机锡类和胍盐类,它们都具有一定地杀菌效果,但是普遍存在热稳性和加工性差的问题,限制了其在工业上的大规模应用。基于此种情况,本论文设计合成了新型咪唑盐类高分子抗菌剂,咪唑盐独特的五元环结构可使此类抗菌剂具有很高的热稳定性。
     本论文首先通过研究抗菌剂的结构与其热稳定性间的关系,发现咪唑盐类高分子抗菌剂尤其是经BF4和PF6离子取代后的抗菌剂具有很好的热稳定性,初始热分解温度高达350 oC,能够满足大部分加工、应用的要求。其次考察了咪唑盐类高分子抗菌剂的结构与其抗菌性能的关系,结果表明:咪唑盐上取代的疏水碳链长度以及不同阴离子种类对抗菌效果有较大的影响。当咪唑盐上取代的疏水碳链长度为12时,抗菌效果最好,过长或过短都会减弱其抗菌能力(其中3-十二烷基-1-乙烯基咪唑溴盐聚合物对大肠杆菌的最小抑菌浓度(MIC)仅为33μg/mL,对金黄色葡萄球菌的MIC值为47μg/mL);不同阴离子种类抗菌剂的抗菌活性顺序为Br>BF4>PF6。
     本文还将咪唑盐类高分子抗菌剂应用到高分子抗菌药物这一前沿领域。模仿抗菌多肽的结构,将抗菌剂与亲水的聚乙二醇大分子单体共聚合成了三种阳离子型双亲性共聚合物:PEG-co -3-丁基-1-乙烯基咪唑溴盐聚合物(PEG-co-3- P[BVIM][Br])、PEG-co -3-己基-1-乙烯基咪唑溴盐聚合物(PEG-co-3-P[HVIM][Br]),和PEG-co-3-十二烷基-1-乙烯基咪唑溴盐聚合物(PEG-co-3-P[DDVIM][Br])。并研究了共聚物结构,及其与血液相容性和抗菌性能的关系。结果发现咪唑盐两亲性阳离子聚合物在水中自装成纳米颗粒,纳米颗粒的粒径随疏水烷基链长的变短而变小, PEG-co-3-P[BVIM][Br]、PEG-co-3-P[HVIM][Br]和PEG-co-3-P[DDVIM][Br]形成的纳米颗粒的体积平均粒径分别为88 nm、72 nm和19 nm;抗菌共聚物的溶血性随咪唑盐上取代烷基长度的缩短而减弱。PEG-co-3-P[DDVIM][Br]、PEG-co-3-P[HVIM][Br]和PEG-co-3-P[BVIM][Br]的半数溶血值(HC50)分别在1μg/mL、5μg/mL和100μg/mL左右;抗菌能力随咪唑盐上取代烷基长度的增加而增加。最后通过比较共聚物的HC50值和MIC值,我们发现PEG-co-3-P[BVIM][Br]的HC50(100μg/mL)>MIC(90μg/mL),符合临床医学抗菌药物的要求。
     本文最后针对市场上聚乙烯(PE)管和聚丙烯(PP-R)管由于使用银系抗菌剂存在银离子污染的问题,与杭州市联通管业有限公司联合开发了无银抗菌PE管和PP-R供水管(使用高分子抗菌剂)。产品的力学性能和卫生性能达到PE和PP-R的行业标准,另外其抗菌率达100%。实现年产能达1200万元。
Antimicrobial polymers have been widely concerned for their effective and long-term antimicrobial ability. Most of the antimicrobial polymers studied were based on ammonium, phosphonium, pyridinium, organotin, or guanidine, whose applications are limited by their poor thermal stability. Meanwhile, the imidazolium may provide good stability due to its unique five-membered ring structure.
     Herein a seris of new imidazolium based antimicrobial polymers were synthesized, and the relationship between the thermal and antimicrobial properties and their structures was investigated. It was found that polymers based on imidazolium, especially those with BF4 and PF6 anion showed good thermal stability with the intial decomposition tempreature upto 350 o C, which was high enough for various applications. The study of the relationship between their structures and antimicrobial activities against E. coli and Staphylococcus aureus indicated that the polymer [poly(3 - dodecyl -1- vinylimidazolium bromide)] with the hydrophobic alkyl chain of 12 CH2 had the best antimicrobial properties, having the MIC values of 33μg/ml against E. coli and 47μg/ml against Staphylococcus aureus. In addition, the types of anions had great effect on the antibacterial with antimicrobial capability order of Br> BF4> PF6.
     The imidazolium based antimicrobial polymers were also modified to make antimicrobial drugs. To mimic the structure of antimicrobial peptides, amphiphilic cationic copolymers were designed and synthesized by copolymerization of antimicrobial monomers with hydrophilic PEG including PEG-co-poly(3-butyl-1-vinylimidazolium bromide) (PEG- co-3-P[BVIM][Br]), PEG-co–poly(3-hexyl-1-vinylimidazolium bromide) (PEG-co-3-P[HVIM][Br]), and PEG-co–poly(3-dodecyl-1-vinylimidazolium bromide) (PEG-co-3-P[DDVIM][Br]). The amphiphilic imidazolium cationic polymer self-assembled into nanoparticles in water, and the size of the nanoparticles decrease with the reductionof the hydrophobic alkyl chain length. The volume average hydrodynamic diameter of the nanoparticles made of PEG-co-3-P [BVIM] [Br], PEG-co-3-P[HVIM][Br], and PEG-co-3-P[DDVIM][Br] were 88 nm, 72nm and 19.3nm, respectively. Their blood compatibility, antimicrobial properties were investigagted, indicating that the hemolysis ability of antimicrobial copolymers decreased with the reduction in the alkyl length. with the HC50 for PEG-co-3-P[DDVIM][Br] , PEG-co-3-P[HVIM][Br], PEG-co-3-P [BVIM][Br] of 1μg/mL、5μg/mL and 100μg/mL. Antibacterial ability increased with the increase of the alkyl length. By comparing the HC50 values and MIC values, we find that PEG-co-3-P[BVIM][Br] are promising as antimicrobial drug wih the HC50 (100μg/ml)> MIC (90μg/ml),.
     Finially, since most of antimicrobial polyethylene (PE) and polypropylene (PP-R) pipes were made of silver antimicrobial agents with a risk of siliver pollution in water for life, the author in cooperation with Hangzhou Unicom Pipe Co., Ltd, developed antibacterial PE and PP-R pipes by adding antimicrobial polymers instead of silver antimicrobial agents and The health performance and mechanical properties of the antimicrobial PE and PP-R pipes reached industry standard, and their antibacterial rate reached 100%. The productions were successively industrialized with an annual production capacity of 12 million yuan.
引文
[1]卡伦道思维特.韩亚明.防腐剂的功与过.日用化学品科学, 6 2000), 17-18.
    [2] Park, E. S. Lee, H. J. Park, H Y. Kim, M. N. Chung, K. H. Yoon, J. S. Antifungal effect of carbendazim supported on poly(ethylene-co-vinyl alcohol) and epoxy resin. Journal of Applied Polymer Science, 2001,80: 728-736.
    [3] Patel, M. B. Patel, S. A. Ray, A. and Patel, R. M. Synthesis, characterization, and antimicrobial activity of acrylic copolymers. Journal of Applied Polymer Science, 89, 4 2003), 895-900.
    [4]顾生玖水性抗菌涂料的制备及性能研究.西南师范大学博士论文2006).
    [5] Boone, S. A. and Gerba, C. P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease Applied and Environmental Microbiology, 732007), 1687-1696.
    [6] Brady MT, Evans J and J, C. Survival and disinfection of parainfluenza viruses on environmental surfaces. American Journal of Infection 181990), 18-23.
    [7] Bridges, C. B., Kuehnert, M. J. and Hall, C. B. Transmission of influenza: implications for control in health care settings. Clinical Infectious Diseases, 372003), 1094-1011.
    [8] Lai, M. Y. Y., Cheng, P. K. C. and Lim, W. W. L. Survival of severe acute respiratory syndrome coronavirus. Clinical Infectious Diseases 412005), E67–E71.
    [9]夏金.王春. and刘新星.抗菌剂及其抗菌机理.中南大学学报, 352004), 31-38.
    [10] Clark, J. H., Butterworth, A. J. and Tavener, S. J. Environmentally Friendly Chemistry Using Supported Reagent Catalysts: Chemically-Modified Mesoporous Solid Catalysts. Journal of Chemical Technology & Biotechnology, 681997), 367-376.
    [11]赵崇立国外塑料抗菌剂新产品介绍.化工新型材料, 271999), 35-36.
    [12]何继辉,谭绍早and马文石聚丙烯/无机抗菌粒子复合材料的性能研究.塑料工业, 312003), 42.
    [13]吉向飞,李玉平and杨柳青抗菌剂及抗菌材料的发展和应用.太原理工大学学报, 242003), 12-15.
    [14] Kenawy, E. R. Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. Journal of Applied Polymer Science, 822001), 1364-1374.
    [15]中华人民共和国发展改革委员会.QB/T2591-2003抗菌塑料抗菌性能实验方法和抗菌效果[S]:北京.中国标准出版社,2003.
    [16] Bhattacharya, R. and Mukherjee, P. Biological properties of. ''naked'' metal nanoparticles. Advanced Drug Delivery Reviews 602008), 1289-1306.
    [17] Rai, M., Yadav, A. and Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 1 2009), 76-83.
    [18] Jia, H. S., Hou, W. S. and Wei, L. Q. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dental Materials, 242008), 244-249.
    [19] Berger, T. J., Spardaro, J. A. and Bierman, R. Antifungal Properties of Electrically Generated Metallic Ions. Antimicrob Agents Chemother, 101976), 856-860.
    [20] Choa, K. H., Park, J. E., Osaka, T. and Park, S. G. The study of antimicrobial activity and preservative effects of nanosilver ingredient Electrochimica Acta, 512005), 956-960.
    [21] Tomsic, B., Simoncic, B., Orel, B. and Zerjav, M. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric Carbohydrate Polymers, 752009), 618-626.
    [22] Klasen, H. J. A historical review of the use of silver in the treatment of burns. II. Renewed interestfor silver. Burns, 262000), 131-138.
    [23] Melaiye, A., Sun, Z. and Hindi, K. Silver(I)-Imidazole Cyclophane gem-Diol Complexes Encapsulated by Electrospun Tecophilic Nanofibers: Formation of Nanosilver Particles and Antimicrobial Activity. Journal of the American Chemical Society, 1272005), 2285-2291.
    [24] Slawson, R. M., Lee, H. and Trevors, J. T. Bacterial interactions with silver. Biology of Metals 31990), 151-154.
    [25] Im, K., Takasaki, Y. and Endo, A. Antibacterial activity of A-type zeolite supporting silver ions in deionized distilled water. Antibacterial Antifungal Agents, 241996), 269-274.
    [26] Hamouda, T., Myc, A. and Donovan, B. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi Microbiological Research, 1562001), 1-7.
    [27] Jiang, H. and Manolache, S. Plasma-Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the Generation of Antimicrobial Characteristics. Journal of Applied Polymer Science, 932004), 1411-1422.
    [28] Inoue, Y., Hoshino, M. and Takahashi, H. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry 922002), 37-42.
    [29] Marambio-Jones, C. and Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12, 5, 1531-1551.
    [30] Wang, R. and Hashimoto, K. Light-induced amphiphilic surfaces. Nature, 3881997), 431-432.
    [31] Michael R Hoffmann and Martin, S. T. Environmental application of semiconductor photocatalysis. Chemical Reviews 951995), 69-96.
    [32]郑红and汤鸿.有机污染物半导体多相光催化氧化机理及动力学研究进展.环境科学进展, 41996), 2-16.
    [33] Zhang, H. and Ching, M. P. Bactericial mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1302000), 163-170.
    [34] Jacoby, W. and Maness, P. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 321998), 2650-2653.
    [35] Lacombe, A., Wu, V. C. H., Tyler, S. and Edwards, K. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. International Journal of Food Microbiology, 139, 1-2, 102-107.
    [36] Mahltig, B., Fiedler, D., Fischer, A. and Simon, P. Antimicrobial coatings on textiles-modification of sol-gel layers with organic and inorganic biocides. Journal of Sol-Gel Science and Technology, 55, 3, 269-277.
    [37] Mahltig, B. and Fischer, A. Inorganic/Organic Polymer Coatings for Textiles to Realize Water Repellent and Antimicrobial Properties-A Study with Respect to Textile Comfort. Journal of Polymer Science Part B-Polymer Physics, 48, 14, 1562-1568.
    [38]佟会and邱树毅季铵盐类抗菌剂及其应用研究进展.贵州化工, 312006), 1-7.
    [39] Franklin, T. J. and Snow, G. A. Biochemistry of Antimicrobial Action [M].London : Chapman and Hall1981).
    [40]张长荣and金聪玲阳离子活性杀菌剂的合成进展及结构与杀菌力的关系.陕西化工, 91997), 1-7.
    [41]李银涛and蒋晓慧单吡啶季铵盐表面活性剂的合成及杀菌性能.化学研究与应用, 172005), 411-413.
    [42]李杰,秦秀芬and马淑杰双季铵盐杀菌剂的合成.化学工程师, 12005), 59-60.
    [43] Kenawy, E.-R. and Worley, S. D. The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Biomacromolecules, 82007), 1359-1384.
    [44]卢滇楠and周轩榕表面接枝季铵盐型聚合物的纤维素纤维-灭菌机理研究.高分子学报, 107-1132004).
    [45] Kalyon, B. and Olgun, U. Antibacterial efficacy of triclosan-incorporated polymers. American Journal of Infection Control 292001), 124-125.
    [46] Top, A. U. and lku, S. Silver, zinc, and copper exchange in a Naclinoptilolite and resulting effect on antibacterial activity. Applied Clay Science, 272004), 13-19.
    [47] Sajomsang, W. Synthetic methods and appications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review. Carbohydrate Polymers, 80, 3 2010), 631-647.
    [48] Cho, Y. W., Cho, Y. N., Chung, S. H., Yoo, G. and Ko, S. W. Water-soluble chitin as a wound healing accelerator. Biomaterials, 20, 22 1999), 2139-2145.
    [49] Rabea, E. I., El Badawy, M., Rogge, T. M., Stevens, C. V., Hofte, M., Steurbaut, W. and Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science, 61, 10 2005), 951-960.
    [50] Liu, X., Guan, Y. and Yang, D. Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 792001), 1324-1335.
    [51] Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G. and Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4, 6 2003), 1457-1465.
    [52]庄旭品and程博闻壳聚糖的抗菌性及其改性纤维素纤维的研究.产业用纺织品, 242006), 9-12.
    [53] Tanigawa, T., Tanaka, Y. and Shashiwa Various biological effects of chitin derivatives. Elsevier Applied Science1992).
    [54] Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. I., Wu, J. C. G. and Lin, J. G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica, 25, 7 2004), 932-936.
    [55] Helander, I. M. Chitosan disrupts the barrier properties of out membrane of Gram-negative bacterial. International Journal of Food Microbiology, 712001), 235-244.
    [56] Je, J. Y. and Kim, S. K. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and Food Chemistry, 54, 18 2006), 6629-6633.
    [57] Domard, A., Rinaudo, M. and Terrassin, C. NEW METHOD FOR THE QUATERNIZATION OF CHITOSAN. International Journal of Biological Macromolecules, 8, 2 1986), 105-107.
    [58] Muzzarelli, R. A. A. and Tanfani, F. THE N-PERMETHYLATION OF CHITOSAN AND THE PREPARATION OF N-TRIMETHYL CHITOSAN IODIDE. Carbohydrate Polymers, 5, 4 1985), 297-307.
    [59] Kenawy, E. R., Abdel-Hay, F. I., El-Shanshoury, A. and El-Newehy, M. H. Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. Journal of Polymer Science Part a-Polymer Chemistry, 40, 14 2002), 2384-2393.
    [60] Tan, S., Li, G., Shen, J., Liu, Y. and Zong, M. Study of modified polypropylene nonwoven cloth. II. Antibacterial activity of modified polypropylene nonwoven cloths. Journal of Applied Polymer Science, 77, 9 2000), 1869-1876.
    [61] Li, G. J. and Shen, J. R. A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. Journal of Applied Polymer Science, 78, 3 2000), 676-684.
    [62] Ward, M., Sanchez, M., Elasri, M. O. and Lowe, A. B. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. Journal of Applied Polymer Science, 101, 2 2006), 1036-1041.
    [63] Kanazawa, A., Ikeda, T. and Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. Journal of Polymer Science Part A: Polymer Chemistry, 32, 10 1994), 1997-2001.
    [64] Chen, C. Z. S., Beck-Tan, N. C., Dhurjati, P., van Dyk, T. K., LaRossa, R. A. and Cooper, S. L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: Structure-activity studies. Biomacromolecules, 1, 3 2000), 473-480.
    [65] Meyers, S. R., Juhn, F. S., Griset, A. P., Luman, N. R. and Grinstaff, M. W. Anionic Amphiphilic Dendrimers as Antibacterial Agents. Journal of the American Chemical Society, 130, 44 2008), 14444-+.
    [66] Ikeda, T., Hirayama, H., Suzuki, K., Yamaguchi, H. and Tazuke, S. BIOLOGICALLY-ACTIVE POLYCATIONS .6. POLYMERIC PYRIDINIUM SALTS WITH WELL-DEFINED MAIN CHAIN STRUCTURE. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 187, 2 1986), 333-340.
    [67] Ikeda, T., Hirayama, H., Yamaguchi, H., Tazuke, S. and Watanabe, M. POLYCATIONIC BIOCIDES WITH PENDANT ACTIVE GROUPS - MOLECULAR-WEIGHT DEPENDENCE OF ANTIBACTERIAL ACTIVITY. Antimicrobial Agents and Chemotherapy, 30, 1 1986), 132-136.
    [68] Ikeda, T., Yamaguchi, H. and Tazuke, S. NEW POLYMERIC BIOCIDES - SYNTHESIS AND ANTIBACTERIAL ACTIVITIES OF POLYCATIONS WITH PENDANT BIGUANIDE GROUPS. Antimicrobial Agents and Chemotherapy, 26, 2 1984), 139-144.
    [69] Kanazawa, A., Ikeda, T. and Endo, T. POLYMERIC PHOSPHONIUM SALTS AS A NOVEL CLASS OF CATIONIC BIOCIDES .2. EFFECTS OF COUTER ANION AND MOLECULAR-WEIGHT ON ANTIBACTERIAL ACTIVITY OF POLYMERIC PHOSPHONIUM SALTS. Journal of Polymer Science Part a-Polymer Chemistry, 31, 6 1993), 1441-1447.
    [70] Nonaka, T., Hua, L., Ogata, T. and Kurihara, S. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides-N-isopropylacrylamide copolymers and their functions. Journal of Applied Polymer Science, 87, 3 2003), 386-393.
    [71] Sawada, H., Umedo, M., Kawase, T., Tomita, T. and Baba, M. Synthesis and properties of fluoroalkylated end-capped betaine polymers. European Polymer Journal, 35, 9 1999), 1611-1617.
    [72] Guiga, W., Galland, S., Peyrol, E., Degraeve, P., Carnet-Pantiez, A. and Sebti, I. Antimicrobial plastic fim: Physico-chemical characterization and nisin desorption modeling. Innovative Food Science & Emerging Technologies, 10, 2 2009), 203-207.
    [73] Mauriello, G., De Luca, E., La Storia, A., Villani, F. and Ercolini, D. Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41, 6 2005), 464-469.
    [74] Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B. and Roullet, J. B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61, 4 2008), 869-876.
    [75] [75] Schadow, K. H., Simpson, W. A. and Christensen, G. D. CHARACTERISTICS OF ADHERENCE TO PLASTIC TISSUE-CULTURE PLATES OF COAGULASE-NEGATIVE STAPHYLOCOCCI EXPOSED TO SUBINHIBITORY CONCENTRATIONS OF ANTIMICROBIAL AGENTS. Journal of Infectious Diseases, 157, 1 1988), 71-77.
    [76] Baytukalov, T. A., Bogoslovskaya, O. A., Olkhovskaya, I. P., Glushchenko, N. N., Ovsyannikova, M. N., Lopatin, S. A. and Varlamov, V. P. Regenerating activity and antibacterial effect of low-molecular-weight chitosan. Biology Bulletin, 32, 6 2005), 545-548.
    [77] Purwar, R. and Joshi, M. Recent developments in antimicrobial finishing of textiles - A review. Aatcc Review, 4, 3 2004), 22-26.
    [78] Ghosh, S., Yadav, S., Vasanthan, N. and Sekosan, G. A Study of Antimicrobial Property of Textile Fabric Treated with Modified Dendrimers. Journal of Applied Polymer Science, 115, 2 2010), 716-722.
    [79] Mahltig, B. and Fischer, A. Inorganic/Organic Polymer Coatings for Textiles to Realize Water Repellent and Antimicrobial Properties-A Study with Respect to Textile Comfort. Journal of Polymer Science Part B-Polymer Physics, 48, 14 2010), 1562-1568.
    [80] Misra, G. P. and Siegel, R. A. New mode of drug delivery: long term autonomous rhythmic hormone release across a hydrogel membrane. Journal of Controlled Release, 81, 1-2 2002), 1-6.
    [81] Kenawy, E. R. and Abdel-Fattah, Y. R. Antimicrobial properties of modified and electrospun poly(vinyl phenol). Macromolecular Bioscience, 2, 6 2002), 261-266.
    [82] Kuroda, K. and DeGrado, W. F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. Journal of the American Chemical Society, 127, 12 2005), 4128-4129.
    [83] Damas, C., Brembilla, A., Baros, F., Viriot, M. L. and Lochon, P. SYNTHESIS AND BEHAVIOR STUDY OF AMPHIPHILIC POLYVINYLIMIDAZOLIUM SALTS IN AQUEOUS-MEDIA - EFFECTS OF THE MICRODOMAINS ON A BIMOLECULAR REACTION INVOLVING HYDROPHOBIC REACTANTS. European Polymer Journal, 30, 11 1994), 1215-1222.
    [84] Kuroda, K., Caputo, G. A. and DeGrado, W. F. The Role of Hydrophobicity in the Antimicrobial and Hemolytic Activities of Polymethacrylate Derivatives. Chemistry-a European Journal, 15, 5 2009), 1123-1133.
    [85] Kenawy, E. R., Al-Deyab, S. S., Shaker, N. O., El-Sadek, B. M. and Khattab, A. H. B. Synthesis and Antimicrobial Activity of Metronidazole Containing Polymer and Copolymers. Journal of Applied Polymer Science, 113, 2 2009), 818-826.
    [86] Kurt, P., Wood, L., Ohman, D. E. and Wynne, K. J. Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir, 23, 9 2007), 4719-4723.
    [87] Nigmatullin, R., Gao, F. G. and Konovalova, V. Permanent, Non-leaching Antimicrobial Polyamide Nanocomposites Based on Organoclays Modified with a Cationic Polymer. Macromolecular Materials and Engineering, 294, 11 2009), 795-805.
    [88] Yang, H. S. and Park, E. S. Mechanical properties and antimicrobial activity of silicone rubber compounds containing acrylated norfloxacin and its polymer. Macromolecular Materials and Engineering, 291, 6 2006), 621-628.
    [89] Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 415, 6870 2002), 389-395.
    [90]陈阵,邵年.纳米抗菌管材及其制备方法:辽宁,CN02100605.9[P].2002-07-17
    [91]金德管业集团有限公司.一种共挤抗菌管材:,CN200420070421.3[P].2005-08-24.
    [92]上海瑞河管业有限公司.抗菌管:上海,CN200720072147.7[P].2008-08-13.
    [93]上海瑞河管业有限公司.一种新型抗菌PE管:上海,CN200820057731.X[P].2009-03-11.
    [94]国家质量技术监督局.GB/T 13663-2000给水用聚乙烯(PE)管材国家标准[S].北京:中国标准出版社,2000.
    [95]国家质量技术监督局. GB/T 18742.2-2002冷热水用聚丙烯管道系统第2部分:管材[S].北京:中国标准出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700